56
Views
3
CrossRef citations to date
0
Altmetric
Review

Roles and mechanism of natural killer cells in clinical and experimental transplantation

, &
Pages 79-91 | Published online: 10 Jan 2014

References

  • Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J. Exp. Med.203(8), 1851–1858 (2006).
  • Gasser S, Raulet DH. Activation and self-tolerance of natural killer cells. Immunol. Rev.4, 130–142 (2006).
  • Murphy WJ, Koh CY, Raziuddin A, Bennett M, Longo DL. Immunobiology of natural killer cells and bone marrow transplantation: merging of basic and preclinical studies. Immunol. Rev.181, 279–289 (2001).
  • Anfossi N, Andre P, Guia S et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity25(2), 331–342 (2006).
  • Boyton RJ, Altmann DM. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clin. Exp. Immunol.149(1), 1–8 (2007).
  • Beelen DW, Ottinger HD, Ferencik S et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood105(6), 2594–2600 (2005).
  • Stet RJ, Hermsen T, Westphal AH et al. Novel immunoglobulin-like transcripts in teleost fish encode polymorphic receptors with cytoplasmic ITAM or ITIM and a new structural Ig domain similar to the natural cytotoxicity receptor NKp44. Immunogenetics57(1–2), 77–89 (2005).
  • Tha-In T, Metselaar HJ, Tilanus HW et al. Intravenous immunoglobulins suppress T-cell priming by modulating the bidirectional interaction between dendritic cells and natural killer cells. Blood110(9), 3253–3262 (2007).
  • Forte P, Lilienfeld BG, Baumann BC, Seebach JD. Human NK cytotoxicity against porcine cells is triggered by NKp44 and NKG2D. J. Immunol.175(8), 5463–5470 (2005).
  • Graham CM, Christensen JR, Thomas DB. Differential induction of CD94 and NKG2 in CD4 helper T cells. A consequence of influenza virus infection and interferon-γ? Immunology121(2), 238–247 (2007).
  • Gonzalez-Hernandez Y, Pedraza-Sanchez S, Blandon-Vijil V et al. Peripheral blood CD161+ T cells from asthmatic patients are activated during asthma attack and predominantly produce IFN-γ. Scand. J. Immunol.65(4), 368–375 (2007).
  • Bauer S, Groh V, Wu J et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285(5428), 727–729 (1999).
  • Ortaldo JR, Mason AT, Winkler-Pickett R, Raziuddin A, Murphy WJ, Mason LH. Ly-49 receptor expression and functional analysis in multiple mouse strains. J. Leukoc. Biol.66(3), 512–520 (1999).
  • Braud VM, Allan DS, Wilson D, McMichael AJ. TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr. Biol.8, 1–10 (1998).
  • Adang LA, Tomescu C, Law WK, Kedes DH. Intracellular Kaposi’s sarcoma-associated herpesvirus load determines early loss of immune synapse components. J. Virol.81(10), 5079–5090 (2007).
  • Xie X, Dighe A, Clark P, Sabastian P, Buss S, Brown MG. Deficient major histocompatibility complex-linked innate murine cytomegalovirus immunity in MA/My.L-H2b mice and viral downregulation of H-2k class I proteins. J. Virol.81(1), 229–236 (2007).
  • Moretta A. Molecular mechanisms in cell-mediated cytotoxicity. Cell90(1), 13–18 (1997).
  • Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature419(6908), 734–738 (2002).
  • Sutherland CL, Chalupny NJ, Cosman D. The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions. Immunol. Rev.181, 185–192 (2001).
  • Parolini S, Bottino C, Falco M et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein–Barr virus-infected cells. J. Exp. Med.192, 337–346 (2000).
  • Philips JH, Gumperz JE, Parham P, Lanier LL. Superantigen-dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science268, 403–405 (1995).
  • Mingari MC, Schiavetti F, Ponte M et al. Human CD8+ T lymphocyte subsets that express HLA class I-specific inhibitory receptors represent oligoclonally or monoclonally expanded cell populations. Procl. Natl Acad. Sci. USA93, 12433–12438 (1996).
  • Reyburn H, Mandelboim O, Valés-Goméz M et al. Human NK cells; their ligands, receptors and functions. Immunol. Rev.155, 119–125 (1997).
  • Coles MC, McMahon CW, Takisawa H, Raulet DH. Memory CD8 T lymphocytes express inhibitory MHC-specific Ly 49 receptors. Eur. J. Immunol.30, 236–244 (2000).
  • Colonna M, Nkajima H, Cella M. Inhibitory and activating receptors involved in immune surveillance by human NK and myeloid cells. J. Leukoc. Biol.66, 718–722 (1999).
  • Lepin EJ, Bastin JM, Allan DS et al. Functional characterization of HLA-F and binding of HLA-F tetramers to ILT2 and ILT4 receptors. Eur. J. Immunol.30, 3552–3561 (2000).
  • French AR,Yokoyama WM. Natural killer cells and autoimmunity. Arthritis Res. Ther.6, 8–14 (2004).
  • Valiante NM, Uhrberg M, Shilling HG et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity7, 739–751 (1997).
  • Held W, Dorfman JR, Wu MF, Raulet DH. Major histocompatibility complex class-I-dependent skewing of the natural killer cell Ly49 receptor repertoire. Eur. J. Immunol.26, 286–2292 (1996).
  • Grzywacz B, Kataria N, Sikora M et al. Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells. Blood108(12), 3824–3833 (2006).
  • Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat. Immunol.5, 996–1002 (2004).
  • Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH. A subset of natural killer cells achie achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood105, 4416–4423 (2005).
  • Wu MF, Raulet DH. Class I-deficient hematopoietic cells and nonhematopoietic cells dominantly induce unresponsiveness of NK cells to class I-deficient bone marrow grafts. J. Immunol.158, 1628–1633 (1997).
  • Johansson MH, Bieberich C, Jay G, Karre K, Hoglund P. Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex I transgene. J. Exp. Med.186, 353–364 (1997).
  • McNerney ME, Guzior D, Kumar V. 2B4 (CD244)-CD48 interactions provide a novel MHC class I-independent system for NK-cell self-tolerance in mice. Blood106(4), 1337–1340 (2005).
  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiantiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol.17, 189–220 (1999).
  • Raulet DH, Vance RE, McMohan CW. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol.19, 291–330 (2001).
  • Johansson S, Johansson M, Rosmaraki et al. Natural killer cell eduction in mice with single or multiple major histocompatibiltiy complex class I molecules. J. Exp Med.201, 1145–1155 (2005).
  • Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc. Natl Acad. Sci. USA101, 8102 –8107 (2004).
  • Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science295, 2097–2100 (2002).
  • Afzali B, Lechler RI, Hernandez-Fuentes MP. Allorecognition and the alloresponse: clinical implications. Tissue Antigens69(6), 545–556 (2007).
  • Petersdorf E, Anasetti C, Martin PJ et al. Genomics of unrelated-donor hematopoietic cell transplantation. Curr. Opin. Immunol.13(5), 582–589 (2001).
  • Zhao XY, Huang XJ, Liu KY, Xu LP, Liu DH. Prognosis after unmanipulated HLA-haploidentical blood and marrow transplantation is correlated to the numbers of KIR ligands in recipients. Eur. J. Haematol.78(4), 338–346 (2007).
  • Zhao XY, Huang XJ, Liu KY, Xu LP, Liu DH. Reconstitution of natural killer cell receptor repertoires after unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation: analyses of CD94:NKG2A and killer immunoglobulin-like receptor expression and their associations with clinical outcome. Biol. Blood Marrow Transplant.13(6), 734–744 (2007).
  • Sobecks RM, Ball EJ, Maciejewski JP et al. Survival of AML patients receiving HLA-matched sibling donor allogeneic bone marrow transplantation correlates with HLA-Cw ligand groups for killer immunoglobulin-like receptors. Bone Marrow Transplant.39(7), 417–424 (2007).
  • Cudkowicz G, Bennett M. Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J. Exp. Med.134(6), 1513–1528 (1971).
  • Suzue K, Reinherz EL, Koyasu S. Critical role of NK but not NKT cells in acute rejection of parental bone marrow cells in F1 hybrid mice. Eur. J. Immunol.31(11), 3147–3152 (2001).
  • Raziuddin A, Longo DL, Bennett M, Winkler-Pickett R, Ortaldo JR, Murphy WJ. Increased bone marrow allograft rejection by depletion of NK cells expressing inhibitory Ly49 NK receptors for donor class I antigens. Blood100(8), 3026–3033 (2002).
  • Lee LA, Sergio JJ, Sykes M. Natural killer cells weakly resist engraftment of allogeneic, long term, multilineage hematopoirtic stem cells. Transplantation61, 125–132 (1996).
  • Han M, Fallena M, Guo Y, Stastny P. Natural killer cell crossmatch: functional analysis of inhibitory killer immunoglobulin-like receptors and their HLA ligands. Hum. Immunol.68 (6), 507–513 (2007).
  • Ruggeri L, Mancusi A, Burchielli E, Aversa F, Martelli MF, Velardi A. Natural killer cell alloreactivity and haplo-identical hematopoietic transplantation. Cytotherapy8(6), 554–558 (2006).
  • Murphy WJ, Longo DL. The potential role of NK cells in the separation of graft-versus-tumor effects from graft-versus-host disease after allogeneic bone marrow transplantation. Immunol. Rev.157, 167–176 (1997).
  • Ruggeri L, Capanni M, Martelli MF, Velardi A. Cellular therapy, exploiting NK cell alloreactivity in transplantation. Curr. Opin. Hematol.8, 355–359 (2001).
  • Hamby K, Trexler A, Pearson TC, Larsen CP, Rigby MR, Kean LS. NK cells rapidly reject allogeneic bone marrow in the spleen through a perforin- and Ly49D-dependent, but NKG2D-independent mechanism. Am. J. Transplant.7(8), 1884–1896 (2007).
  • Markus PM, Selvaggi G, Cai X, Fung JJ, Starzl TE. Induction of donor-specific transplantation tolerance to skin and cardiac allografts using mixed chimerism in (A + B–>A) in rats. Cell Transplant.2(4), 345–353 (1993).
  • Shelton MW, Walp LA, Basler JT, Uchiyama K, Hanto DW. Mediation of skin allograft rejection in scid mice by CD4+ and CD8+ T cells. Transplantation54(2), 278–286 (1992).
  • Bingaman AW, Ha J, Waitze SY et al. Vigorous allograft rejection in the absence of danger. J. Immunol.164(6), 3065–3071 (2000).
  • Zijlstra M, Auchincloss H Jr, Loring JM, Chase CM, Russell PS, Jaenisch R. Skin graft rejection by β2-microglobulin-deficient mice. J. Exp. Med.175(4), 885–893 (1992).
  • Beilke JN, Gill RG. Frontiers in nephrology: the varied faces of natural killer cells in transplantation – contributions to both allograft immunity and tolerance. J. Am. Soc. Nephrol.18(8), 2262–2267 (2007).
  • Maurus CF, Schneider MK, Schmidt D, Zund G, Seebach JD. Activation of human microvascular endothelial cells with TNF-α and hypoxia/reoxygenation enhances NK-cell adhesion, but not NK-cytotoxicity. Transplantation81(8), 1204–1211 (2006).
  • Kitchens WH, Uehara S, Chase CM, Colvin RB, Russell PS, Madsen JC. The changing role of natural killer cells in solid organ rejection and tolerance. Transplantation81(6), 811–817 (2006).
  • Kondo T, Morita K, Watarai Y et al. Early increased chemokine expression and production in murine allogeneic skin grafts is mediated by natural killer cells. Transplantation69(5), 969–977 (2000).
  • Obara H, Nagasaki K, Hsieh CL et al. IFN-γ, produced by NK cells that infiltrate liver allografts early after transplantation, links the innate and adaptive immune responses. Am. J. Transplant.5(9), 2094–2103 (2005).
  • Baldwin WM 3rd, Larsen CP, Fairchild RL. Innate immune responses to transplants: a significant variable with cadaver donors. Immunity14(4), 369–376 (2001).
  • Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med.195(3), 327–333 (2002).
  • McDouall RM, Batten P, McCormack A, Yacoub MH, Rose ML. MHC class II expression on human heart microvascular endothelial cells: exquisite sensitivity to interferon-γ and natural killer cells. Transplantation64(8), 1175–1180 (1997).
  • Watson CA, Petzelbauer P, Zhou J, Pardi R, Bender JR. Contact-dependent endothelial class II HLA gene activation induced by NK cells is mediated by IFN-γ-dependent and -independent mechanisms. J. Immunol.154(7), 3222–3233 (1995).
  • Kim S, Poursine-Laurent J, Truscott SM et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature436(7051), 709–713 (2005).
  • Magalhaes-Silverman M, Donnenberg A, Lembersky B et al. Post transplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast Cancer J. Immunother.23, 154–160 (2000).
  • Koenecke C, Shaffer J, Alexander SI et al. NK cell recovery, chimerism, function, and recognition in recipients of haploidentical hematopoietic cell transplantation following nonmyeloablative conditioning using a humanized anti-CD2 mAb, Medi-507. Exp. Hematol.31, 911–923 (2003).
  • Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol.20, 323–370 (2002).
  • López-Alvarez MR, Gómez-Mateo J, Ruiz-Merino G et al. Analysis of KIR2D receptors on peripheral blood lymphocytes from liver graft recipients. Transpl. Immunol.17(1), 51–54 (2006).
  • Kruit WH, Goey SH, Lamers CH et al. High-dose regimen of interleukin-2 and interferon-α in combination with lymphokine-activated killer cells in patients with metastatic renal cell cancer. J. Immunother.20, 312–320 (1997).
  • Cortes JE, Kantarjian HM, O’Brien S et al. A pilot study of interleukin-2 for adult patients with acute myelogenous leukemia in first complete remission. Cancer85, 1506–1513 (1999).
  • Yen JH, Moore BE, Nakajima T et al. Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J. Exp. Med.193(10), 1159–1167 (2001).
  • Ayalon O, Hughes EA, Cresswell P et al. Induction of transporter associated with antigen processing by interferon γ confers endothelial cell cytoprotection against natural killer-mediated lysis. Proc. Natl Acad. Sci. USA95(5), 2435–2440 (1998).
  • Uehara S, Chase CM, Kitchens WH et al. NK cells can trigger allograft vasculopathy: the role of hybrid resistance in solid organ allografts. J. Immunol.175(5), 3424–3430 (2005).
  • Kimura H, Yamaguchi Y. A Phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or non-curative resection of primary lung carcinoma. Cancer80, 42–49 (1997).
  • Aguila HL, Weissman IL. Hematopoietic stem cells are not direct cytotoxic targets of natural killer cells.Blood87, 1225–1231 (1996).
  • Fischer JC, Ottinger H, Ferencik S et al. Relevance of C1 and C2 epitopes for hemopoietic stem cell transplantation: role for sequential acquisition of HLA-C-specific inhibitory killer Ig-like receptor. J. Immunol.178(6), 3918–3923 (2007).
  • Petersson E, Ostraat O, Ekberg H et al. Allogeneic heart transplantation activates alloreactive NK cells. Cell. Immunol.175(1), 25–32 (1997).
  • Cooper MA, Fehniger TA, Turner SC et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood97(10), 3146–51 (2001).
  • Lima M, Teixeira MA, Queirós ML et al. Immunophenotypic characterization of normal blood CD56+lo versus CD56+hi NK-cell subsets and its impact on the understanding of their tissue distribution and functional properties. Blood Cells Mol. Dis.27(4), 731–43 (2001).
  • Jacobs R, Stoll M, Stratmann G, Leo R, Link H, Schmidt RE. CD16- CD56+ natural killer cells after bone marrow transplantation. Blood79(12), 3239–3244 (1992).
  • Ouyang Q, Baerlocher G, Vulto I, Lansdorp PM. Telomere length in human natural killer cell subsets. Ann. NY Acad. Sci.1106, 240–252 (2007).
  • Romagnani C, Juelke K, Falco M et al. CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J. Immunol.178(8), 4947–4955 (2007).
  • Ruggeri L, Capanni M, Casucci M et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood94(1), 333–339 (1999).
  • Rhoades JL, Cibull ML, Thompson JS et al. Role of natural killer cell in the pathogenesis of human acute graft-versus –host disease. Transplantation56(1), 113–120 (1993).
  • Wang JW, Howson JM, Ghansah T et al. Influence of SHIP on the NK repertoire and allogeneic bone marrow transplantation. Science295(5562), 2094–2097 (2002).
  • Wang H, Grzywacz B, Sukovich D, McCullar V et al. The unexpected effect of cyclosporin A on CD56+CD16- and CD56+CD16+ natural killer cell subpopulations. Blood110(5), 1530–1539 (2007).
  • Benlagha K, Kyin T, Beavis A et al. A thymic precursor to the NK T cell lineage. Science296, 553–555 (2002).
  • Emoto M, Kaufmann SHE. Liver NKT cells, an account of heterogeneity. Trends Immunol.24, 364–369 (2003).
  • Chen H, Paul WE. Cultured NK1.11CD41T cells produce large amounts of IL-4 and IFNγ upon activation by anti-CD3 or CD1. J. Immunol.159, 2240 (1997).
  • Daniels KA, Devora G, Lai WC, O’Donnell CL, Bennett M, Welsh RM. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med.194(1), 29–44 (2001).
  • Zeng D, Lewis D, Dejbakhsh-Jones S et al. Bone marrow NK1.1 (-) and NK1.1 (+) T cells reciprocally regulate acute graft versus host disease. J. Exp. Med.189, 1073–1081 (1999).
  • Ikehara Y, Yasunami Y, Kodama S et al. CD41Va14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J. Clin. Invest.105, 1761–1767 (2000).
  • Seino K, Fukao K, Muramoto K et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc. Natl Acad. Sci. USA98, 2577–2581 (2001).
  • Li L, Huang L, Sung SS et al. NKT cell activation mediates neutrophil IFN-γ production and renal ischemia–reperfusion injury. J. Immunol.178, 5899–5911 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.