128
Views
17
CrossRef citations to date
0
Altmetric
Review

Targeting signaling pathways with small molecules to treat autoimmune disorders

&
Pages 93-112 | Published online: 10 Jan 2014

References

  • Monaco C, Andreakos E, Kiriakidis S, Feldmann M, Paleolog E. T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases.Curr. Drug Targets Inflamm. Allergy3(1), 35–42 (2004).
  • Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest.117(5), 1119–1127 (2007).
  • Kinne RW, Brauer R, Stuhlmuller B et al. Macrophages in rheumatoid arthritis. Arthritis Res.2(3), 189–202 (2000).
  • Feldmann M, Maini RN. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat. Med.9(10), 1245–1249 (2003).
  • Garces K, Anakinra: interleukin-1 receptor antagonist therapy for rheumatoid arthritis. Issues Emerg. Health Technol.16, 1–4 (2001).
  • Nishimoto N, Yoshizaki K, Miyasaka N et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum.50(6), 1761–1769 (2004).
  • Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol.3(7), 521–533 (2003).
  • Van Deventer SJ. Immunotherapy of Crohn’s disease. Scand. J. Immunol.51(1), 18–22 (2000).
  • Bos JD, de Rie MA, Teunissen MB, Piskin G. Psoriasis: dysregulation of innate immunity. Br. J. Dermatol.152(6), 1098–1107 (2005).
  • Sibilia J. Psoriasis: skin and joints, same fight? J. Eur. Acad. Dermatol. Venereol.20(2), 56–72 (2006).
  • Gottlieb AB. Psoriasis: emerging therapeutic strategies. Nat. Rev. Drug Discov.4(1), 19–34 (2005).
  • Harigai M, Hara M, Kawamoto M et al. Amplification of the synovial inflammatory response through activation of mitogen-activated protein kinases and nuclear factor κB using ligation of CD40 on CD14+ synovial cells from patients with rheumatoid arthritis. Arthritis Rheum.50(7), 2167–2177 (2004).
  • Arrighi JF, Rebsamen M, Rousset F et al. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-α, and contact sensitizers. J. Immunol.166(6), 3827 (2001).
  • Aicher A, Shu GL, Magaletti D et al. Differential role for p38 mitogen-activated protein kinase in regulating CD40-induced gene expression in dendritic cells and B cells. J. Immunol.163(11), 5786–5795 (1999).
  • Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev.81(2), 807–869 (2001).
  • Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J. Clin. Invest.107(1), 7–11 (2001).
  • Symons A, Beinke S, Ley SC. MAP kinase kinase kinases and innate immunity. Trends Immunol.27, 40–48 (2006).
  • Pearson G, Robinson F, Beers Gibson T et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev.22(2), 153–183 (2001).
  • Rousseau S, Dolado I, Beardmore V et al. CXCL12 and C5a trigger cell migration via a PAK1/2-p38α MAPK-MAPKAP-K2-HSP27 pathway. Cell. Signal.18(11), 1897–1905 (2006).
  • Baldassare JJ, Bi Y, Bellone CJ. The role of p38 mitogen-activated protein kinase in IL-1-β transcription. J. Immunol.162(9), 5367–5373 (1999).
  • Shakhov AN, Collart MA, Vassalli P, Nedospasov SA, Jongeneel CV. κB-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor α gene in primary macrophages. J. Exp. Med.171(1), 35–47 (1990).
  • Yao J, Mackman N, Edgington TS, Fan S-T. Lipopolysaccharide induction of the tumor necrosis factor-α promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-κ-B transcription factors. J. Biol. Chem.272(22), 17795–17801 (1997).
  • Zagariya A, Mungre S, Lovis R et al. Tumor necrosis factor α gene regulation: enhancement of C/EBPβ-induced activation by c-Jun. Mol. Cell. Biol.18(5), 2815–2824 (1998).
  • Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy – from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta1754(1–2), 253–262 (2005).
  • Saccani S, Pantano S, Natoli G. p38-dependent marking of inflammatory genes for increased NF-κB recruitment. Nat. Immunol.3(1), 69–75 (2002).
  • Cuzzocrea S. Role of nitric oxide and reactive oxygen species in arthritis. Curr. Pharm. Des.12(27), 3551–3570 (2006).
  • Chan ED, Winston BW, Uh ST, Wynes MW, Rose DM, Riches DW. Evaluation of the role of mitogen-activated protein kinases in the expression of inducible nitric oxide synthase by IFN-γ and TNF-α in mouse macrophages. J. Immunol.162(1), 415–422 (1999).
  • Chen CC, Wang JK. p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol. Pharmacol.55(3), 481–488 (1999).
  • Neininger A, Kontoyiannis D, Kotlyarov A et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem.277(5), 3065–3068 (2002).
  • Kotlyarov A, Neininger N, Schubert C et al. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat. Cell Biol.1(2), 94–97 (1999).
  • Holtmann H, Winzen R, Holland P et al. Induction of interleukin-8 synthesis integrates effects on transcription and mRNA degradation from at least three different cytokine- or stress-activated signal transduction pathways. Mol. Cell. Biol.19(10), 6742–6753 (1999).
  • Holtmann H, Enninga J, Kalble S et al. The MAP kinase kinase TAK1 plays a central role in coupling the interleukin-1 receptor to both transcriptional and RNA-targeted mechanisms of gene regulation. J. Biol. Chem.276(5), 3508–3516 (2001).
  • Beyaert R, Cuenda A, Vanden-Berghe W et al. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J.15(8), 1914–1923 (1996).
  • Badger AM, Bradbeer JN, Votta B, Lee JC, Adams JL, Griswold DE. Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock, and immune function. J. Pharmacol. Exp. Ther.279(3), 1453–1461 (1996).
  • Tong L, Pav S, White DM et al. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat. Struct. Biol.4(4), 311–316 (1997).
  • Ward KW, Proksch JW, Azzarano LM et al. SB-239063, a potent and selective inhibitor of p38 map kinase: preclinical pharmacokinetics and species-specific reversible isomerization. Pharm. Res.18(9), 1336–1344 (2001).
  • Lee MR, Dominguez C. MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38α protein. Curr. Med. Chem.12(25), 2979–2994 (2005).
  • Branger J, van den Blink B, Weijer S et al. Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. J. Immunol.168(8), 4070–4077 (2002).
  • Bianchi M, Ulrich P, Bloom O et al. An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality. Mol. Med.1(3), 254–266 (1995).
  • Cohen PS, Nakshatri H, Dennis J et al. CNI-1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation efficiency. Proc. Natl Acad. Sci. USA93(9), 3967–3971 (1996).
  • Zinser E, Turza N, Steinkasserer A. CNI-1493 mediated suppression of dendritic cell activation in vitro and in vivo. Immunobiology209(1–2), 89–97 (2004).
  • Maroney AC, Finn JP, Connors TJ et al. Cep-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family. J. Biol. Chem.276(27), 25302–25308 (2001).
  • Ciallella JR, Saporito M, Lund S et al. CEP-11004, an inhibitor of the SAPK/JNK pathway, reduces TNF-α release from lipopolysaccharide-treated cells and mice. Eur. J. Pharmacol.515(1–3), 179–187 (2005).
  • Bennett BL, Sasaki DT, Murray BW et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl Acad. Sci. USA98(24), 13681–13686 (2001).
  • Jackson JR, Bolognese B, Hillegass L et al. Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J. Pharmacol. Exp. Ther.284(2), 687–692 (1998).
  • Wadsworth SA, Cavender DE, Beers SA et al. RWJ 67657, a potent, orally active inhibitor of p38 mitogen-activated protein kinase. J. Pharmacol. Exp. Ther.291(2), 680–287 (1999).
  • van den Blink B, Juffermans NP, ten Hove T et al. p38 mitogen-activated protein kinase inhibition increases cytokine release by macrophages in vitro and during infection in vivo. J. Immunol.166(1), 582–587 (2001).
  • Faas MM, Moes H, Fijen JW et al. Monocyte intracellular cytokine production during human endotoxaemia with or without a second in vitro LPS challenge: effect of RWJ-67657, a p38 MAP-kinase inhibitor, on LPS-hyporesponsiveness. Clin. Exp. Immunol.127(2), 337–343 (2002).
  • Fijen JW, Zijlstra JG, de Boer P et al. Suppression of the clinical and cytokine response to endotoxin by RWJ-67657, a p38 mitogen-activated protein-kinase inhibitor, in healthy human volunteers. Clin. Exp. Immunol.124(1), 16–20 (2001).
  • Badger AM, Griswold DE, Kapadia R et al. Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheum.43(1), 175–183 (2000).
  • Wada Y, Nakajima-Yamada T, Yamada K et al. R-130823, a novel inhibitor of p38 MAPK, ameliorates hyperalgesia and swelling in arthritis models. Eur. J. Pharmacol.506(3), 285–295 (2005).
  • Mclay LM, Halley F, Souness JE et al. The discovery of RPR 200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy. Bioorg. Med. Chem.9(2), 537–554 (2001).
  • Nishikawa M, Myoui A, Tomita T, Takahi K, Nampei A, Yoshikawa H. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum.48(9), 2670–2681 (2003).
  • Mbalaviele G, Anderson G, Jones A et al. Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction. J. Pharmacol. Exp. Ther.317(3), 1044–1053 (2006).
  • Kerlund K, Erlandsson-Harris H, Tracey KJ et al. Anti-inflammatory effects of a new tumour necrosis factor-α (TNF-α) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats. Clin. Exp. Immunol.115(1), 32–41 (1999).
  • Larsson E, Harris HE, Palmblad K, Mansson B, Saxne T, Klareskog L. CNI-1493, an inhibitor of proinflammatory cytokines, retards cartilage destruction in rats with collagen induced arthritis. Ann. Rheum. Dis.64(3), 494–496 (2005).
  • Han Z, Boyle DL, Chang L et al. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J. Clin. Invest.108(2), 73–81 (2001).
  • Hollenbach E, Vieth M, Roessner A, Neumann M, Malfertheiner P, Naumann M. Inhibition of RICK/nuclear factor-κB and p38 signaling attenuates the inflammatory response in a murine model of Crohn disease. J. Biol. Chem.280(15), 14981–14988 (2005).
  • Hollenbach E, Neumann M, Vieth M, Roessner A, Malfertheiner P, Naumann M. Inhibition of p38 MAP kinase- and RICK/NF-κB-signaling suppresses inflammatory bowel disease. FASEB J.18(13), 1550–1552 (2004).
  • Hommes D, van den Blink B, Plasse T et al. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease. Gastroenterology122(1), 7–14 (2002).
  • Buchman AL, Katz S, Barish C, Elkin R, Korzenik J, Plasse T. Semapimod treatment of Crohn’s disease. Gastroenterology126(4), 464–465 (2004).
  • Schreiber S, Feagan B, D’Haens G et al.; BIRB 796 Study Group. Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol.4(3), 325–334 (2006).
  • Kaminska B, Gaweda-Walerych K, Zawadzka M. Molecular mechanisms of neuroprotective action of immunosuppressants – facts and hypotheses. J. Cell. Mol. Med.8(1), 45–58 (2004).
  • Matsuda S, Shibasaki F, Takehana K, Mori H, Nishida E, Koyasu S. Two distinct action mechanisms of immunophilin–ligand complexes for the blockade of T-cell activation. EMBO Rep.1(15), 428–434 (2005).
  • Zawadzka M, Kaminska B. A novel mechanism of FK506 mediated neuroprotection: down-regulation of cytokine expression in glial cells. Glia49(1), 36–51 (2005).
  • Lichtiger S, Present DH, Kornbluth A et al. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N. Engl. J. Med.330(26), 1841–1845 (1994).
  • Egan LJ, Sandborn WJ, Tremaine WJ. Clinical outcome following treatment of refractory inflammatory and fistulizing Crohn’s disease with intravenous cyclosporine A. Am. J. Gastroenterol.93(3), 442–448 (1998).
  • McDonald JW, Feagan BG, Jewell D, Brynskov J, Stange EF, Macdonald JK. Cyclosporine for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev.18(2), CD000297 (2005).
  • Rafiee P, Johnson CP, Li MS et al. Cyclosporine A enhances leukocyte binding by human intestinal microvascular endothelial cells through inhibition of p38 MAPK and iNOS. J. Biol. Chem.277(38), 35605–35615 (2002).
  • Hogenauer C, Wenzl HH, Hinterleitner TA, Petritsch W. Effect of oral tacrolimus (FK 506) on steroid-refractory moderate/severe ulcerative colitis. Aliment. Pharmacol. Ther.18(4), 415–423 (2003).
  • Baumgart DC, Pintoffl JP, Sturm A, Wiedenmann B, Dignass AU. Tacrolimus is safe and effective in patients with severe steroid-refractory or steroid-dependent inflammatory bowel disease-a long-term follow-up. Am. J. Gastroenterol.101(5), 1048–1056 (2006).
  • Yoo SA, Park BH, Park GS et al. Calcineurin is expressed and plays a critical role in inflammatory arthrisis. J. Immunol.177(4), 2681–2690 (2006).
  • Magari K, Nishigaki F, Sasakawa T et al. Anti-arthritic properties of FK506 on collagen-induced arthritis in rats. Inflamm. Res.52(12), 524–529 (2003).
  • Kitahara K, Kawai S. Cyclosporine and tacrolimus for the treatment of rheumatoid arthritis. Curr. Opin. Rheumatol.19(3), 238–245 (2007).
  • Stuetz A, Grassberger M, Meingassner JG. Pimecrolimus (Elidel, SDZ ASM 981) – preclinical pharmacologic profile and skin selectivity. Semin. Cutan. Med. Surg.20(4), 233–241 (2001).
  • Scheinfeld N. The use of topical tacrolimus and pimecrolimus to treat psoriasis: a review. Dermatol. Online J.10(1), 3 (2004).
  • Marsland AM, Griffiths CE. The macrolide immunosuppressants in dermatology: mechanisms of action. Eur. J. Dermatol.12, 618–622 (2002).
  • Meingassner JG, Fahrngruber H, Barandi A. SDZASM981, in contrast to CyA and FK 506, does not suppress the primary immune response in murine allergic contact dermatitis (abstract). J. Invest. Dermatol.114, 832 (2000).
  • Rappersberger K, Komar M, Ebelin ME et al. Pimecrolimus identifies a common genomic anti-inflammatory profile, is clinically highly effective in psoriasis and is well tolerated. J. Invest. Dermatol.119(4), 876–887 (2002).
  • Korfitis C, Gregoriou S, Rallis E, Rigopoulos D. Pimecrolimus versus topical corticosteroids in dermatology. Expert Opin. Pharmacother.8(10), 1565–1573 (2007).
  • Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene285(1–2), 1–24 (2002).
  • Murray PJ. The JAK-STAT signaling pathway: input and output integration. J. Immunol.178(5), 2623–2629 (2007).
  • Pfitzner E, Kliem S, Baus D, Litterst CM. The role of STATs in inflammation and inflammatory diseases. Curr. Pharm. Des.10(23), 2839–2850 (2004).
  • Decker T, Stockinger S, Karaghiosoff M, Muller M, Kovarik P. IFNs and STATs in innate immunity to microorganisms. J. Clin. Invest.109(10), 1271–1277 (2002).
  • Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J.374(1), 1–20 (2003).
  • Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O’Shea JJ. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol. Rev.202, 139–156 (2004).
  • Donnelly RP, Sheikh F, Kotenko SV, Dickensheets H. The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain. J. Leukoc. Biol.76, 314–321 (2004).
  • Lin J-X, Leonard WJ. The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene19(21), 2566–2576 (2000).
  • Mudter J, Neurath MF. IL-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm. Bowel Dis.13(8), 1016–1023 (2007).
  • Scheller Ohnesorge N, Rose-John S. Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand. J. Immunol.63(5), 321–329 (2006).
  • Minegishi Y, Saito M, Morio T et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity25(5), 745–755 (2006).
  • Kamezaki K, Shimoda K, Numata A, Matsuda T, Nakayama K, Harada M. The role of Tyk2, Stat1 and Stat4 in LPS-induced endotoxin signals. Int. Immunol.16(8), 1173–1179 (2004).
  • Karaghiosoff M, Neubauer H, Lassnig C et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity13(4), 549–560 (2000).
  • Shaw MH, Boyartchuk V, Wong S et al. A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10 Q/J mice to infection and autoimmunity. Proc. Natl Acad. Sci. USA100(20), 11594–11599 (2003).
  • Matsukawa A. STAT proteins in innate immunity during sepsis: lessons from knockout mice. Acta Med. Okayama61(5), 239–245 (2007).
  • Gao J, Morrison DC, Parmely TJ, Russell SW, Murphy WJ. An interferon-γ-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-γ and lipopolysaccharide. J. Biol. Chem.272(2), 1226–1230 (1997).
  • Nakahira M, Ahn HJ, Park WR et al. Synergy of IL-12 and IL-18 for IFN-γ gene expression: IL-12-induced STAT4 contributes to IFN-γ promoter activation by up-regulating the binding activity of IL-18-induced activator protein 1. J. Immunol.168(3), 1146–1153 (2002).
  • Luo C, Laaja P. Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. Drug Discov. Today9(6), 268–275 (2004).
  • Cetkovic-Cvrlje M, Uckun FM. Targeting Janus kinase 3 in the treatment of leukemia and inflammatory diseases. Arch. Immunol. Ther. Exp. (Warsz.)52(2), 69–82 (2004).
  • O’Shea JJ, Pesu M, Borie DC, Changelian PS. A new modality for immunosuppression: targeting JAK/STAT pathway. Nat. Rev. Drug Discov.3(7), 555–564 (2004).
  • Vassilev AO, Tibbles HE, DuMez D, Venkatachalam TK, Uckun FM. Targeting JAK3 and BTK tyrosine kinases with rationally-designed inhibitors. Curr. Drug Targets7(3), 327–343 (2006).
  • Sudbeck EA, Liu XP, Narla RK et al. Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin. Cancer Res.5(6), 1569–1582 (1999).
  • Stepkowski SM, Erwin-Cohen RA, Behbod F et al. Selective inhibitor of Janus tyrosine kinase 3, PNU156804, prolongs allograft survival and acts synergistically with cyclosporine but additively with rapamycin. Blood99(2), 680–389 (2002).
  • Wang LH, Kirken RA, Erwin RA, Yu CR, Farrar WL. JAK3, STAT, and MAPK signaling pathways as novel molecular targets for the tyrphostin AG-490 regulation of IL-2-mediated T cell response. J. Immunol.162(7), 3897–3904 (1999).
  • Pardanani A, Hood J, Lasho T et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia21(8), 1658–1668 (2007).
  • Changelian PS, Flanagan ME, Ball DJ et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science302(5646), 875–878 (2003).
  • Stepkowski SM, Kao J, Wang ME et al. The Mannich base NC1153 promotes long-term allograft survival and spares the recipient from multiple toxicities. J. Immunol.175(7), 4236–4246 (2005).
  • Chen JJ, Thakur KD, Clark MP et al. Development of pyrimidine-based inhibitors of Janus tyrosine kinase 3. Bioorg. Med. Chem. Lett.16(21), 5633–5638 (2006).
  • Clark George KM, Bookland RG et al. Development of new pyrrolopyrimidine-based inhibitors of Janus kinase 3 (JAK3). Bioorg. Med. Chem. Lett.17(5), 1250–1253 (2007).
  • Cetkovic-Cvrlje M, Dragt AL, Vassilev A et al. Targeting JAK3 with JANEX-1 for prevention of autoimmune Type 1 diabetes in NOD mice. Clin. Immunol.106(3), 213–225 (2003).
  • Hampton T. Arthritis clinical trial results revealed. JAMA297(1), 28–29 (2007).
  • Chan G, Wang C, Boy M, Chow V, Herron J. Dose-dependent reduction in psoriasis severity as evidence of immunosuppressive activity of an oral JAK3 inhibitor in humans. Am. J. Transplant.6(Suppl. 2), 87 (2006) (Abstract 60).
  • Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S. p38 mitogen-activated protein kinase is activated and linked to TNF-α signaling in inflammatory bowel disease. J. Immunol.168(10), 5342–5351 (2002).
  • Revesz L, Blum E, Di Padova FE et al. Novel p38 inhibitors with potent oral efficacy in several models of rheumatoid arthritis. Bioorg. Med. Chem. Lett.14(13), 3595–3599 (2004).
  • Westra J, Limburg PC, de Boer P, van Rijswijk MH. Effects of RWJ 67657, a p38 mitogen activated protein kinase (MAPK) inhibitor, on the production of inflammatory mediators by rheumatoid synovial fibroblasts. Ann. Rheum. Dis.63(11), 1453–1459 (2004).
  • Westra J, Doornbos-van der Meer B, de Boer P, van Leeuwen MA, van Rijswijk MH, Limburg PC. Strong inhibition of TNF-α production and inhibition of IL-8 and COX-2 mRNA expression in monocyte-derived macrophages by RWJ 67657, a p38 mitogen-activated protein kinase (MAPK) inhibitor. Arthritis Res. Ther.6(4), 384–392 (2004).
  • Miwatashi S, Arikawa Y, Kotani E et al. Novel inhibitor of p38 MAP kinase as an anti-TNF-α drug: discovery of N-[4-[2-ethyl-4-(3-methylphenyl)-1,3-thiazol-5-yl]-2-pyridyl]benzamide (TAK-715) as a potent and orally active anti-rheumatoid arthritis agent. J. Med. Chem.48(19), 5966–5979 (2005).
  • Lin TH, Metzger A, Diller DJ et al. Discovery and characterization of triaminotriazine aniline amides as highly selective p38 kinase inhibitors. J. Pharmacol. Exp. Ther.318(2) 495–502 (2006).
  • Nikas SN, Drosos AA. SCIO-469 Scios Inc. Curr. Opin. Investig. Drugs5(11), 1205–1212 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.