47
Views
3
CrossRef citations to date
0
Altmetric
Review

X chromosome in autoimmune diseases

, &
Pages 591-597 | Published online: 10 Jan 2014

References

  • Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol.84(3), 223–243 (1997).
  • Whitacre CC. Sex differences in autoimmune disease. Nat. Immunol.2(9), 777–780 (2001).
  • Invernizzi P, Miozzo M, Battezzati PM et al. Frequency of monosomy X in women with primary biliary cirrhosis. Lancet363(9408), 533–535 (2004).
  • Invernizzi P, Miozzo M, Selmi C et al. X chromosome monosomy: a common mechanism for autoimmune diseases. J. Immunol.175(1), 575–578 (2005).
  • Brix TH, Knudsen GP, Kristiansen M, Kyvik KO, Orstavik KH, Hegedus L. High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J. Clin. Endocrinol. Metab.90(11), 5949–5953 (2005).
  • Ozcelik T, Uz E, Akyerli CB et al. Evidence from autoimmune thyroiditis of skewed X-chromosome inactivation in female predisposition to autoimmunity. Eur. J. Hum. Genet.14(6), 791–797 (2006).
  • Yin X, Latif R, Tomer Y, Davies TF. Thyroid epigenetics: X chromosome inactivation in patients with autoimmune thyroid disease. Ann. NY Acad. Sci.1110, 193–200 (2007).
  • Ozbalkan Z, Bagislar S, Kiraz S et al. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum.52(5), 1564–1570 (2005).
  • Uz E, Loubiere LS, Gadi VK et al. Skewed X-chromosome inactivation in scleroderma. Clin. Rev. Allergy Immunol.34, 352–355 (2007).
  • Davis CJ, Davison RM, Payne NN, Rodeck CH, Conway GS. Female sex preponderance for idiopathic familial premature ovarian failure suggests an X chromosome defect: opinion. Hum. Reprod.15(11), 2418–2422 (2000).
  • Sybert VP, McCauley E. Turner’s syndrome. N. Engl. J. Med.351(12), 1227–1238 (2004).
  • Valiaho J, Riikonen P, Vihinen M. Novel immunodeficiency data servers. Immunol. Rev.178, 177–185 (2000).
  • Selmi C, Mayo MJ, Bach N et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology127(2), 485–492 (2004).
  • Ebers GC, Bulman DE, Sadovnick AD et al. A population-based study of multiple sclerosis in twins. N. Engl. J. Med.315(26), 1638–1642 (1986).
  • Green A. The role of genetic factors in the development of insulin-dependent diabetes mellitus. Curr. Top. Microbiol. Immunol.164, 3–16 (1990).
  • Invernizzi P, Selmi C, Mackay IR, Podda M, Gershwin ME. From bases to basis: linking genetics to causation in primary biliary cirrhosis. Clin. Gastroenterol. Hepatol.3(5), 401–410 (2005).
  • Gorodezky C, Alaez C, Murguia A et al. HLA and autoimmune diseases: Type 1 diabetes (T1D) as an example. Autoimmun. Rev.5(3), 187–194 (2006).
  • Barbesino G, Tomer Y, Concepcion ES, Davies TF, Greenberg DA. Linkage analysis of candidate genes in autoimmune thyroid disease. II. Selected gender-related genes and the X-chromosome. International Consortium for the Genetics of Autoimmune Thyroid Disease. J. Clin. Endocrinol. Metab.83(9), 3290–3295 (1998).
  • Becker KG, Simon RM, Bailey-Wilson JE et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc. Natl Acad. Sci. USA95(17), 9979–9984 (1998).
  • Oldstone MB. Molecular mimicry and autoimmune disease. Cell50(6), 819–820 (1987).
  • Selmi C, Balkwill DL, Invernizzi P et al. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology38(5), 1250–1257 (2003).
  • von Herrath MG, Oldstone MB. Virus-induced autoimmune disease. Curr. Opin. Immunol.8(6), 878–885 (1996).
  • Kaplan MM. Novosphingobium aromaticivorans: a potential initiator of primary biliary cirrhosis. Am. J. Gastroenterol.99(11), 2147–2149 (2004).
  • Oldstone MB. Molecular mimicry and immune-mediated diseases. FASEB J.12(13), 1255–1265 (1998).
  • Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell65(2), 319–331 (1991).
  • Richardson B. DNA methylation and autoimmune disease. Clin. Immunol.109(1), 72–79 (2003).
  • Larsson K, Elding-Larsson H, Cederwall E et al. Genetic and perinatal factors as risk for childhood Type 1 diabetes. Diabetes Metab. Res. Rev.20(6), 429–437 (2004).
  • Avner P, Heard E. X-chromosome inactivation: counting, choice and initiation. Nat. Rev.2(1), 59–67 (2001).
  • Brown CJ, Robinson WP. The causes and consequences of random and non-random X chromosome inactivation in humans. Clin. Genet.58(5), 353–363 (2000).
  • Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature434(7031), 400–404 (2005).
  • Powell BR, Buist NR, Stenzel P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr.100(5), 731–737 (1982).
  • Noguchi M, Yi H, Rosenblatt HM et al. Interleukin-2 receptor g chain mutation results in X-linked severe combined immunodeficiency in humans. Cell73(1), 147–157 (1993).
  • Gulino AV, Notarangelo LD. Hyper IgM syndromes. Curr. Opin. Rheumatol.15(4), 422–429 (2003).
  • Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell78(4), 635–644 (1994).
  • Richards EJ. Inherited epigenetic variation – revisiting soft inheritance. Nat. Rev.7(5), 395–401 (2006).
  • Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardson BC. Epigenetics, disease, and therapeutic interventions. Ageing Res. Rev.5(4), 449–467 (2006).
  • Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science187(4173), 226–232 (1975).
  • Bestor TH. The DNA methyltransferases of mammals. Hum. Mol. Genet.9(16), 2395–2402 (2000).
  • Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc. Natl Acad. Sci. USA90(24), 11995–11999 (1993).
  • Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev.15(5), 490–495 (2005).
  • Costa FF. Non-coding RNAs, epigenetics and complexity. Gene410(1), 9–17 (2008).
  • Bjornsson HT, Fallin MD, Feinberg AP. An integrated epigenetic and genetic approach to common human disease. Trends Genet.20(8), 350–358 (2004).
  • Sharp A, Robinson D, Jacobs P. Age- and tissue-specific variation of X chromosome inactivation ratios in normal women. Hum. Genet.107(4), 343–349 (2000).
  • Chagnon P, Provost S, Belisle C, Bolduc V, Gingras M, Busque L. Age-associated skewing of X-inactivation ratios of blood cells in normal females: a candidate-gene analysis approach. Exp. Hematol.33(10), 1209–1214 (2005).
  • Stewart JJ. The female X-inactivation mosaic in systemic lupus erythematosus. Immunol. Today19(8), 352–357 (1998).
  • Huang Q, Parfitt A, Grennan DM, Manolios N. X-chromosome inactivation in monozygotic twins with systemic lupus erythematosus. Autoimmunity26(2), 85–93 (1997).
  • Chitnis S, Monteiro J, Glass D et al. The role of X-chromosome inactivation in female predisposition to autoimmunity. Arthritis Res.2(5), 399–406 (2000).
  • Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum.33(11), 1665–1673 (1990).
  • Cornacchia E, Golbus J, Maybaum J, Strahler J, Hanash S, Richardson B. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol.140(7), 2197–2200 (1988).
  • Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J. Clin. Invest.97(9), 2063–2073 (1996).
  • Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol.179(9), 6352–6358 (2007).
  • Knudsen GP, Harbo HF, Smestad C et al. X chromosome inactivation in females with multiple sclerosis. Eur. J. Neurol.14(12), 1392–1396 (2007).
  • Ozcelik T. X chromosome inactivation and female predisposition to autoimmunity. Clin. Rev. Allergy Immunol.34(3), 348–351 (2008).
  • Miozzo M, Selmi C, Gentilin B et al. Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis. Hepatology46(2), 456–462 (2007).
  • Invernizzi P, Miozzo M, Oertelt-Prigione S et al. X monosomy in female systemic lupus erythematosus. Ann. NY Acad. Sci.1110, 84–91 (2007).
  • Milkiewicz P, Heathcote J. Can Turner syndrome teach us about the pathogenesis of chronic cholestasis? Hepatology40(5), 1226–1228 (2004).
  • Ranke MB, Saenger P. Turner’s syndrome. Lancet358(9278), 309–314 (2001).
  • Goodnow CC. Multistep pathogenesis of autoimmune disease. Cell130(1), 25–35 (2007).
  • Hernandez-Molina G, Svyryd Y, Sanchez-Guerrero J, Mutchinick OM. The role of the X chromosome in immunity and autoimmunity. Autoimmun. Rev.6(4), 218–222 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.