15
Views
6
CrossRef citations to date
0
Altmetric
Review

Dyskeratosis congenita: a disorder of telomerase deficiency and its relationship to other diseases

&
Pages 463-479 | Published online: 10 Jan 2014

References

  • Drachtman RA, Alter BP. Dyskeratosis congenita: clinical and genetic heterogeneity. Report of a new case and review of the literature. Am. J. Pediatr. Hematol. Oncol.14(4), 297–304 (1992).
  • Dokal I. Dyskeratosis congenita. A disease of premature ageing. Lancet358(Suppl.), S27 (2001).
  • Marrone A, Dokal I. Dyskeratosis congenita: molecular insights into telomerase function, ageing and cancer. Expert Rev. Mol. Med.6(26), 1–23 (2004).
  • Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, Dokal I. Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood107, 2680–2685 (2006).
  • Heiss NS, Knight SW, Vulliamy TJ et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet.19(1), 32–38 (1998).
  • Jiang W, Middleton K, Yoon HJ, Fouquet C, Carbon J. An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Mol. Cell Biol.13(8), 4884–4893 (1993).
  • Meier UT, Blobel G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J. Cell Biol.127(6 Pt1), 1505–1514 (1994).
  • Ni J, Tien AL, Fournier MJ. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell89(4), 565–573 (1997).
  • Youssoufian H, Gharibyan V, Qatanani M. Analysis of epitope-tagged forms of the dyskeratosis congenital protein (dyskerin): identification of a nuclear localization signal. Blood Cells Mol. Dis.25(5–6), 305–309 (1999).
  • Filipowicz W, Pogacic V. Biogenesis of small nucleolar ribonucleoproteins. Curr. Opin. Cell Biol.14(3), 319–327 (2002).
  • Meier UT. The many facets of H/ACA ribonucleoproteins. Chromosoma114(1), 1–14 (2005).
  • Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev.12(4), 527–537 (1998).
  • Zebarjadian Y, King T, Fournier MJ, Clarke L, Carbon J. Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol. Cell Biol.19(11), 7461–7472 (1999).
  • Marrone A, Walne A, Dokal I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr. Opin. Genet. Dev.15(3), 249–257 (2005).
  • Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol.9(3), 337–342 (1997).
  • Luzzatto L, Karadimitris A. Dyskeratosis and ribosomal rebellion. Nat. Genet.19(1), 6–7 (1998).
  • He J, Navarrete S, Jasinski M et al. Targeted disruption of Dkc1, the gene mutated in X-linked dyskeratosis congenita, causes embryonic lethality in mice. Oncogene21(50), 7740–7744 (2002).
  • Ruggero D, Grisendi S, Piazza F et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science299(5604), 259–262 (2003).
  • Mochizuki Y, He J, Kulkarni S, Bessler M, Mason PJ, Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Proc. Natl Acad. Sci. USA101(29), 10756–10761 (2004).
  • Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature402(6761), 551–555 (1999).
  • Montanaro L, Chilla A, Trere D et al. Increased mortality rate and not impaired ribosomal biogenesis is responsible for proliferative defect in dyskeratosis congenita cell lines. J. Invest. Dermatol.118(1), 193–198 (2002).
  • Rashid R, Liang B, Baker DL et al. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol. Cell21(2), 249–260 (2006).
  • Vulliamy T, Marrone A, Goldman F et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature413(6854), 432–435 (2001).
  • Blackburn EH. Structure and function of telomeres. Nature350(6319), 569–573 (1991).
  • Greider CW. Telomere length regulation. Ann. Rev. Biochem.65, 337–365 (1996).
  • Keith WN, Bilsland A, Evans TR, Glasspool RM. Telomerase-directed molecular therapeutics. Expert Rev. Mol. Med.22, 1–25 (2002).
  • Vulliamy T, Marrone A, Dokal I, Mason PJ. Association between aplastic anaemia and mutations in telomerase RNA. Lancet359(9324), 2168–2170 (2002).
  • Chen JL, Blasco MA, Greider CW, Secondary structure of vertebrate telomerase RNA. Cell100(5), 503–514 (2000).
  • Chen JL, Greider CW. Telomerase RNA structure and function: implications for dyskeratosis congenita. Trends Biochem. Sci.29(4), 183–192 (2004).
  • Theimer CA, Finger LD, Trantirek L, Feigon J. Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc. Natl Acad. Sci. USA100(2), 449–454 (2003).
  • Comolli LR, Smirnov I, Xu L, Blackburn EH, James TL. A molecular switch underlies a human telomerase disease. Proc. Natl Acad. Sci. USA99(26), 16998–17003 (2002).
  • Ly H, Blackburn EH, Parslow TG. Comprehensive structure-function analysis of the core domain of human telomerase RNA. Mol. Cell Biol.23(19), 6849–6856 (2003).
  • Fu D, Collins K. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol. Cell11(5), 1361–1372 (2003).
  • Ren X, Gavory G, Li H, Ying L, Klenerman D, Balasubramanian S. Identification of a new RNA.RNA interaction site for human telomerase RNA (hTR): structural implications for hTR accumulation and a dyskeratosis congenita point mutation. Nucleic Acids Res.31(22), 6509–6515 (2003).
  • Theimer CA, Finger LD, Feigon J. YNMG tetraloop formation by a dyskeratosis congenita mutation in human telomerase RNA. RNA9(12), 1446–1455 (2003).
  • Marrone A, Stevens D, Vulliamy T, Dokal I, Mason PJ. Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency. Blood104(13), 3936–3942 (2004).
  • Martin-Rivera L, Blasco MA. Identification of functional domains and dominant negative mutations in vertebrate telomerase RNA using an in vivo reconstitution system. J. Biol. Chem.276(8), 5856–5865 (2001).
  • Wilson DB, Ivanovich J, Whelan A, Goodfellow PJ, Bessler M. Human telomerase RNA mutations and bone marrow failure. Lancet361(9373), 1993–1994 (2003).
  • Yamaguchi H, Calado RT, Ly H et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N. Engl. J. Med.352(14), 1413–1424 (2005).
  • Vulliamy TJ, Walne A, Baskaradas A, Mason PJ, Marrone A, Dokal I. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol. Dis.34(3), 257–263 (2005).
  • Armanios M, Chen JL, Chang YP et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc. Natl Acad. Sci. USA102(44), 15960–15964 (2005).
  • Blackburn EH, Greider CW, Henderson E, Lee MS, Shampay J, Shippen-Lentz D. Recognition and elongation of telomeres by telomerase. Genome31(2), 553–560 (1989).
  • Shippen-Lentz D, Blackburn EH. Functional evidence for an RNA template in telomerase. Science247(4942), 546–552 (1990).
  • Autexier C, Greider CW. Functional reconstitution of wild-type and mutant Tetrahymena telomerase. Genes Dev.8(5), 563–575 (1994).
  • Walne AJ, Marrone A, Dokal I. Dyskeratosis congenita: a disorder of defective telomere maintenance? Int. J. Hematol.82(3), 184–189 (2005).
  • Devriendt K, Matthijs G, Legius E et al. Skewed X-chromosome inactivation in female carriers of dyskeratosis congenita. Am. J. Hum. Genet.60(3), 581–587 (1997).
  • Vulliamy TJ, Knight SW, Dokal I, Mason PJ. Skewed X-inactivation in carriers of X-linked dyskeratosis congenita. Blood90(6), 2213–2216 (1997).
  • Ben Porath I, Weinberg RA. When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest.113(1), 8–13 (2004).
  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature345(6274), 458–460 (1990).
  • Colgin LM, Reddel RR. Telomere maintenance mechanisms and cellular immortalization. Curr. Opin. Genet. Dev.9(1), 97–103 (1999).
  • Masutomi K, Yu EY, Khurts S et al. Telomerase maintains telomere structure in normal human cells. Cell114(2), 241–253 (2003).
  • Vulliamy TJ, Knight SW, Mason PJ, Dokal I. Very short telomeres in the peripheral blood of patients with X-linked and autosomal dyskeratosis congenita. Blood Cells Mol. Dis.27(2), 353–357 (2001).
  • Colvin BT, Baker H, Hibbin JA, Gordon-Smith EC, Gordon M. Haemopoietic progenitor cells in dyskeratosis congenita. Br. J. Haematol.56(3), 513–515 (1984).
  • Friedland M, Lutton JD, Spitzer R, Levere RD. Dyskeratosis congenita with hypoplastic anemia: a stem cell defect. Am. J. Hematol.20(1), 85–87 (1985).
  • Marley SB, Lewis JL, Davidson RJ et al. Evidence for a continuous decline in haemopoietic cell function from birth: application to evaluating bone marrow failure in children. Br. J. Haematol.106(1), 162–166 (1999).
  • Marsh JC, Will AJ, Hows JM et al. “Stem cell” origin of the hematopoietic defect in dyskeratosis congenita. Blood79(12), 3138–3144 (1992).
  • Hathcock KS, Hemann MT, Opperman KK, Strong MA, Greider CW, Hodes RJ. Haploinsufficiency of mTR results in defects in telomere elongation. Proc. Natl Acad. Sci. USA99(6), 3591–3596 (2002).
  • Chiang YJ, Hemann MT, Hathcock KS et al. Expression of telomerase RNA template, but not telomerase reverse transcriptase, is limiting for telomere length maintenance in vivo. Mol. Cell Biol.24(16), 7024–7031 (2004).
  • Blasco MA, Lee HW, Hande MP et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell91(1), 25–34 (1997).
  • Lee HW, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature392(6676), 569–574 (1998).
  • Rudolph KL, Chang S, Lee HW et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell96(5), 701–712 (1999).
  • Yui J, Chiu CP, Lansdorp PM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood91(9), 3255–3262 (1998).
  • Allsopp RC, Weissman IL. Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role? Oncogene21(21), 3270–3273 (2002).
  • Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat. Genet.36(5), 447–449 (2004).
  • Artandi SE, Chang S, Lee SL et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature406(6796), 641–645 (2000).
  • Scappaticci S, Fraccaro M, Cerimele D. Chromosome abnormalities in dyskeratosis congenita. Am. J. Med. Genet.34(4), 609–610 (1989).
  • Dokal I, Bungey J, Williamson P, Oscier D, Hows J, Luzzatto L. Dyskeratosis congenita fibroblasts are abnormal and have unbalanced chromosomal rearrangements. Blood80(12), 3090–3096 (1992).
  • Kehrer H, Krone W, Schindler D, Kaufmann R, Schrezenmeier H. Cytogenetic studies of skin fibroblast cultures from a karyotypically normal female with dyskeratosis congenita. Clin. Genet.41(3), 129–134 (1992).
  • Demiroglu H, Alikasifoglu M, Dundar S. Dyskeratosis congenita with an unusual chromosomal abnormality. Br. J. Haematol.97(1), 243–244 (1997).
  • Dror Y, Shwachman-Diamond syndrome. Pediatr. Blood Cancer45(7), 892–901 (2005).
  • Ball SE, Gibson FM, Rizzo S, Tooze JA, Marsh JC, Gordon-Smith EC. Progressive telomere shortening in aplastic anemia. Blood91(10), 3582–3592 (1998).
  • Brummendorf TH, Rufer N, Holyoake TL et al. Telomere length dynamics in normal individuals and in patients with hematopoietic stem cell-associated disorders. Ann. NY Acad. Sci.938, 293–303 (2001).
  • Hofmann WK, Koeffler HP. Myelodysplastic syndrome. Ann. Rev. Med.56, 1–16 (2005).
  • Saba HI, Wijermans PW. Decitabine in myelodysplastic syndromes. Semin Hematol.42(3 Suppl. 2), S23–S31 (2005).
  • Odero MD, Vizmanos JL, Roman JP et al. A novel gene, MDS2, is fused to ETV6/TEL in a t(1;12)(p36.1;p13) in a patient with myelodysplastic syndrome. Genes Chrom. Cancer35(1), 11–19 (2002).
  • Song WJ, Sullivan MG, Legare RD et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet.23(2), 166–175 (1999).
  • Ganly P, Walker LC, Morris CM. Familial mutations of the transcription factor RUNX1 (AML1, CBFA2) predispose to acute myeloid leukemia. Leuk. Lymphoma45(1), 1–10 (2004).
  • Matsuno N, Osato M, Yamashita N et al. Dual mutations in the AML1 and FLT3 genes are associated with leukemogenesis in acute myeloblastic leukemia of the M0 subtype. Leukemia17(12), 2492–2499 (2003).
  • Zhang A, Zheng C, Hou M et al. Deletion of the telomerase reverse transcriptase gene and haploinsufficiency of telomere maintenance in Cri du chat syndrome. Am. J. Hum. Genet.72(4), 940–948 (2003).
  • Gazda HT, Zhong R, Long L et al. RNA and protein evidence for haplo-insufficiency in Diamond-Blackfan anaemia patients with RPS19 mutations. Br. J. Haematol.127(1), 105–113 (2004).
  • Puzianowska-Kuznicka M, Kuznicki J. Genetic alterations in accelerated ageing syndromes. Do they play a role in natural ageing? Int. J. Biochem. Cell Biol.37(5), 947–960 (2005).
  • Kitao S, Shimamoto A, Goto M et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat. Genet.22(1), 82–84 (1999).
  • Wang LL, Gannavarapu A, Kozinetz CA et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J. Natl Cancer Inst.95(9), 669–674 (2003).
  • Johnson FB, Lombard DB, Neff NF et al. Association of the Bloom syndrome protein with topoisomerase IIIα in somatic and meiotic cells. Cancer Res.60(5), 1162–1167 (2000).
  • Hu P, Beresten SF, van Brabant AJ et al. Evidence for BLM and topoisomerase IIIα interaction in genomic stability. Hum. Mol. Genet.10(12), 1287–1298 (2001).
  • Shiratori M, Sakamoto S, Suzuki N et al. Detection by epitope-defined monoclonal antibodies of Werner DNA helicases in the nucleoplasm and their upregulation by cell transformation and immortalization. J. Cell Biol.144(1), 1–9 (1999).
  • Kruk PA, Rampino NJ, Bohr VA. DNA damage and repair in telomeres: relation to aging. Proc. Natl Acad. Sci. USA92(1), 258–262 (1995).
  • Wyllie FS, Jones CJ, Skinner JW et al. Telemorase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat. Genet.24(1), 16–17 (2000).
  • Eriksson M, Brown WT, Gordon LB et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature423(6937), 293–298 (2003).
  • De Sandre-Giovannoli A, Bernard R, Cau P et al. Lamin a truncation in Hutchinson-Gilford progeria. Science300(5628), 2055 (2003).
  • Cao H, Hegele RA. LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). J. Hum. Genet.48(5), 271–274 (2003).
  • Mu D, Sancar A. Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. J. Biol. Chem.272(12), 7570–7573 (1997).
  • Thompson LH, Hinz JM, Yamada NA, Jones NJ. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. Environ. Mol. Mutagen45(2–3), 128–142 (2005).
  • McKenzie SB. Advances in understanding the biology and genetics of acute myelocytic leukemia. Clin. Lab. Sci.18(1), 28–37 (2005).
  • Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res.72, 141–196 (1998).
  • Melki JR, Clark SJ. DNA methylation changes in leukaemia. Semin. Cancer Biol.12(5), 347–357 (2002).
  • Silverman LR, Demakos EP, Peterson BL et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group Br. J. Clin. Oncol.20(10), 2429–2440 (2002).
  • Silverman LR, Holland JF, Weinberg RS et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia7(Suppl. 1), 21–29 (1993).
  • Zagonel V, Lo RG, Marotta G et al. 5-Aza-2´-deoxycytidine (Decitabine) induces trilineage response in unfavourable myelodysplastic syndromes. Leukemia7(Suppl. 1), 30–35 (1993).
  • Knight SW, Heiss NS, Vulliamy TJ et al. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am. J. Hum. Genet.65(1), 50–58 (1999).
  • Safa WF, Lestringant GG, Frossard PM. X-linked dyskeratosis congenita: restrictive pulmonary disease and a novel mutation. Thorax56(11), 891–894 (2001).
  • Kanegane H, Kasahara Y, Okamura J et al. Identification of DKC1 gene mutations in Japanese patients with X-linked dyskeratosis congenita. Br. J. Haematol.129(3), 432–434 (2005).
  • Wong JM, Kyasa MJ, Hutchins L, Collins K. Telomerase RNA deficiency in peripheral blood mononuclear cells in X-linked dyskeratosis congenita. Hum. Genet.115(5), 448–455(2004).
  • Cossu F, Vulliamy TJ, Marrone A, Badiali M, Cao A, Dokal I. A novel DKC1 mutation, severe combined immunodeficiency (T+B-NK- SCID) and bone marrow transplantation in an infant with Hoyeraal-Hreidarsson syndrome. Br. J. Haematol.119(3), 765–768 (2002).
  • Heiss NS, Megarbane A, Klauck SM et al. One novel and two recurrent missense DKC1 mutations in patients with dyskeratosis congenita (DKC). Genet. Couns.12(2), 129–136 (2001).
  • Knight SW, Heiss NS, Vulliamy TJ et al. Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal-Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. Br. J. Haematol.107(2), 335–339 (1999).
  • Sznajer Y, Baumann C, David A et al. Further delineation of the congenital form of X-linked dyskeratosis congenita (Hoyeraal-Hreidarsson syndrome). Eur. J. Pediatr.162(12), 863–867 (2003).
  • Knight SW, Vulliamy TJ, Morgan B, Devriendt K, Mason PJ, Dokal I. Identification of novel DKC1 mutations in patients with dyskeratosis congenita: implications for pathophysiology and diagnosis. Hum. Genet.108(4), 299–303 (2001).
  • Rostamiani K, Heiss N, Poustka A, Metzenberg A. Novel missense mutations in the DKC1 gene in patients with dyskeratosis congenita. Am. J. Hum. Genet.65, A488 (1999).
  • Kraemer DM, Goebeler M. Missense mutation in a patient with X-linked dyskeratosis congenita. Haematologica88(4), ECR11 (2003).
  • Yaghmai R, Kimyai-Asadi A, Rostamiani K et al. Overlap of dyskeratosis congenita with the Hoyeraal-Hreidarsson syndrome. J. Pediatr.136(3), 390–393 (2000).
  • Lin JH, Lee JY, Tsao CJ, Chao SC. DKC1 gene mutation in a Taiwanese kindred with X-linked dyskeratosis congenita. Kaohsiung J. Med. Sci.18(11), 573–577 (2002).
  • Viprakasit V, Tanphaichitr VS. Recurrent A353V mutation in a Thai family with X-linked dyskeratosis congenita. Haematologica86(8), 871–872 (2001).
  • Hiramatsu H, Fujii T, Kitoh T et al. A novel missense mutation in the DKC1 gene in a Japanese family with X-linked dyskeratosis congenita. Pediatr. Hematol. Oncol.19(6), 413–419 (2002).
  • Ding YG, Zhu TS, Jiang W et al. Identification of a novel mutation and a de novo mutation in DKC1 in two Chinese pedigrees with dyskeratosis congenita. J. Invest. Dermatol.123(3), 470–473 (2004).
  • Vulliamy TJ, Knight SW, Heiss NS et al. Dyskeratosis congenita caused by a 3´ deletion: germline and somatic mosaicism in a female carrier. Blood94(4), 1254–1260 (1999).
  • Ly H, Schertzer M, Jastaniah W et al. Identification and functional characterization of 2 variant alleles of the telomerase RNA template gene (TERC) in a patient with dyskeratosis congenita. Blood106(4), 1246–1252 (2005).
  • Yamaguchi H, Baerlocher GM, Lansdorp PM et al. Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome. Blood102(3), 916–918 (2003).
  • Ly H, Calado RT, Allard P et al. Functional characterization of telomerase RNA variants found in patients with hematologic disorders. Blood105(6), 2332–2339 (2005).
  • Fogarty PF, Yamaguchi H, Wiestner A et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet362(9396), 1628–1630 (2003).
  • Bryan TM, Marusic L, Bacchetti S, Namba M, Reddel RR. The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit. Hum. Mol. Genet.6(6), 921–926 (1997).
  • Savage SA, Stewart BJ, Eckert A, Kiley M, Liao JS, Chanock SJ. Genetic variation, nucleotide diversity, and linkage disequilibrium in seven telomere stability genes suggest that these genes may be under constraint. Hum. Mutat.26(4), 343–350 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.