32
Views
10
CrossRef citations to date
0
Altmetric
Review

Hair follicles and their role in skin health

, , , , &
Pages 855-871 | Published online: 10 Jan 2014

References

  • Goldsmith LA. My organ is bigger than your organ. Arch. Dermatol.126(3), 301–302 (1990).
  • Chuong CM, Nickoloff BJ, Elias PM et al. What is the 'true' function of skin? Exp. Dermatol.11(2), 159–187 (2002).
  • Hardy MH. The secret life of the hair follicle. Trends Genet.8(2), 55–61 (1992).
  • Chuong CM, Hou L, Chen PJ, Wu P, Patel N, Chen Y. Dinosaur's feather and chicken's tooth? Tissue engineering of the integument. Eur. J. Dermatol.11(4), 286–292 (2001).
  • Freinkel RK, Woodley DT. The Biology of Skin. Parthenon Publishing, NY, USA (2001).
  • Kauffman AS, Paul MJ, Butler MP, Zucker I. Huddling, locomotor, and nest-building behaviors of furred and furless Siberian hamsters. Physiol. Behav.79(2), 247–256 (2003).
  • Dixson AF, Halliwell G, East R, Wignarajah P, Anderson MJ. Masculine somatotype and hirsuteness as determinants of sexual attractiveness to women. Arch. Sex. Behav.32(1), 29–39 (2003).
  • Komarova SV. A moat around castle walls. The role of axillary and facial hair in lymph node protection from mutagenic factors. Med. Hypotheses67(4), 698–701 (2006).
  • Ferezou I, Bolea S, Petersen CC. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron50(4), 617–629 (2006).
  • Szabo G. The regional anatomy of the human integument with special reference to hair follicles, sweat glands and melanocytes. Phil. Trans. Roy. Soc. (Londn)252(779), 447–485 (1967).
  • Paus R, Cotsarelis G. The biology of hair follicles. N. Engl. J. Med.341(7), 491–497 (1999).
  • Chase HB. The physiology and histochemistry of hair growth. J. Soc. Cosmetic Chem.6, 9–14 (1955).
  • Sengel P. Epidermal-dermal interactions during formation of skin and cutaneous appendages. In: Biochemistry and Physiology of the Skin. Goldsmith LA (Ed.). Oxford University Press, NY, USA, 102–131 (1983).
  • McElwee K, Hoffmann R. Growth factors in early hair follicle morphogenesis. Eur. J. Dermatol.10(5), 341–350 (2000).
  • Millar SE. Molecular mechanisms regulating hair follicle. Development J. Invest. Dermatol.118(2), 216–225 (2002).
  • Oro AE, Scott MP. Splitting hairs: dissecting roles of signaling systems in epidermal development. Cell95(5), 575–578 (1998).
  • DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development126(20), 4557–4568 (1999).
  • Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. β-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105(4), 533–545 (2001).
  • Reddy S, Andl T, Bagasra A et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev.107(1–2), 69–82 (2001).
  • Zhou P, Byrne C, Jacobs J, Fuchs E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev.9(6), 700–713 (1995).
  • Gat U, DasGupta R, Degenstein L, Fuchs E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell95(5), 605–614 (1998).
  • Headon DJ, Overbeek PA. Involvement of a novel Tnf receptor homologue in hair follicle induction. Nat. Genet.22(4), 370–374 (1999).
  • Foitzik K, Paus R, Doetschman T, Dotto GP. The TGF-β2 isoform is both a required and sufficient inducer of murine hair follicle morphogenesis. Dev Biol.212(2), 278–289 (1999).
  • Karlsson L, Bondjers C, Betsholtz C. Roles for PDGF-α and sonic hedgehog in development of mesenchymal components of the hair follicle. Development126(12), 2611–2621 (1999).
  • St-Jacques B, Dassule HR, Karavanova I et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol.8(19), 1058–1068 (1998).
  • Botchkarev VA, Paus R. Molecular biology of hair morphogenesis: development and cycling. J. Exp. Zoolog. B. Mol. Dev. Evol.298(1), 164–180 (2003).
  • Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61(7), 1329–1337 (1990).
  • Gharzi A, Reynolds AJ, Jahoda CA. Plasticity of hair follicle dermal cells in wound healing and induction. Exp. Dermatol.12(2), 126–136 (2003).
  • Alonso LC, Rosenfield RL. Molecular genetic and endocrine mechanisms of hair growth. Horm. Res.60(1), 1–13 (2003).
  • Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessay27(3), 247–261 (2005).
  • Kere J, Srivastava AK, Montonen O et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat. Genet.13(4), 409–416 (1996).
  • MacDermot KD, Winter RM, Malcolm S. Gene localisation of X-linked hypohidrotic ectodermal dysplasia (C-S-T syndrome). Hum. Genet.74(2), 172–173 (1986).
  • Chassaing N, Bourthoumieu S, Cossee M, Calvas P, Vincent MC. Mutations in EDAR account for one-quarter of non-ED1-related hypohidrotic ectodermal dysplasia. Hum. Mutat.27(3), 255–259 (2006).
  • Zlotogorski A, Panteleyev AA, Aita VM, Christiano AM. Clinical and molecular diagnostic criteria of congenital atrichia with papular lesions. J. Invest. Dermatol.118(5), 887–890 (2002).
  • Miller J, Djabali K, Chen T et al. Atrichia caused by mutations in the vitamin D receptor gene is a phenocopy of generalized atrichia caused by mutations in the hairless gene. J. Invest. Dermatol.117(3), 612–617 (2001).
  • Muller-Rover S, Handjiski B, van der Veen C et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol.117(1), 3–15 (2001).
  • Stenn K. Exogen is an active, separately controlled phase of the hair growth cycle. J. Am. Acad. Dermatol.52(2), 374–375 (2005).
  • Oliver RF, Jahoda CA. Dermal–epidermal interactions. Clin. Dermatol.6(4), 74–82 (1988).
  • Millar SE, Willert K, Salinas PC et al. WNT signaling in the control of hair growth and structure. Dev Biol.207(1), 133–149 (1999).
  • Stenn KS, Paus R. Controls of hair follicle cycling. Physiol. Rev.81(1), 449–494 (2001).
  • Sato N, Leopold PL, Crystal RG. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J. Clin. Invest.104(7), 855–864 (1999).
  • Beaudoin GM 3rd, Sisk JM, Coulombe PA, Thompson CC. Hairless triggers reactivation of hair growth by promoting Wnt signaling. Proc. Natl Acad. Sci USA102(41), 14653–14658 (2005).
  • Saitoh M, Uzuka M, Sakamoto M. Human hair cycle. J. Invest. Dermatol.54(1), 65–81 (1970).
  • Hebert JM, Rosenquist T, Gotz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell78(6), 1017–1025 (1994).
  • Parakkal PF. Role of macrophages in collagen resorption during hair growth cycle. J. Ultrastruct. Res.29(3), 210–217 (1969).
  • Paus R, Christoph T, Muller-Rover S. Immunology of the hair follicle: a short journey into terra incognita. J. Investig. Dermatol. Symp. Proc.4(3), 226–234 (1999).
  • Maurer M, Handjiski B, Paus R. Hair growth modulation by topical immunophilin ligands: induction of anagen, inhibition of massive catagen development, and relative protection from chemotherapy-induced alopecia. Am. J. Pathol.150(4), 1433–1441 (1997).
  • Chase HB. Growth of the hair. Physiol. Rev.34(1), 113–126 (1954).
  • Sun TT, Cotsarelis G, Lavker RM. Hair follicular stem cells: the bulge-activation hypothesis. J. Invest. Dermatol.96(5), S77–S78 (1991).
  • Panteleyev AA, Jahoda CA, Christiano AM. Hair follicle predetermination. J. Cell Sci.114(Pt 19), 3419–3431 (2001).
  • Ma L, Liu J, Wu T et al. 'Cyclic alopecia' in Msx2 mutants: defects in hair cycling and hair shaft differentiation. Development130(2), 379–389 (2003).
  • Paus R, Foitzik K. In search of the "hair cycle clock": a guided tour. Differentiation72(9–10), 489–511 (2004).
  • Stenn KS, Paus R. What controls hair follicle cycling? Exp. Dermatol.8(4), 229–233; discussion 233–226 (1999).
  • Paus R, Stenn KS, Link RE. Telogen skin contains an inhibitor of hair growth. Br. J. Dermatol.122(6), 777–784 (1990).
  • Johnson E, Ebling FJ. The effect of plucking hairs during different phases of the follicular cycle. J. Embryol. Exp. Morphol.12, 465–474 (1964).
  • Shafir R, Tsur H. Local hirsutism at the periphery of burned skin. Br. J. Plast. Surg.32(2), 93 (1979).
  • Ravin N. New hair growth over fracture sites. N. Engl. J. Med.323(5), 350 (1990).
  • Gobe GC, Strutton GM. An experimental study evaluating the effect of minoxidil on the growth cycle of hair follicles. Acta Derm. Venereol.69(3), 190–194 (1989).
  • Danilenko DM, Ring BD, Yanagihara D et al. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am. J. Pathol.147(1), 145–154 (1995).
  • Gafter-Gvili A, Sredni B, Gal R, Gafter U, Kalechman Y. Cyclosporin A-induced hair growth in mice is associated with inhibition of calcineurin-dependent activation of NFAT in follicular keratinocytes. Am. J. Physiol. Cell Physiol.284(6), C1593–C1603 (2003).
  • Jindo T, Tsuboi R, Takamori K, Ogawa H. Local injection of hepatocyte growth factor/scatter factor (HGF/SF) alters cyclic growth of murine hair follicles. J. Invest. Dermatol.110(4), 338–342 (1998).
  • McElwee KJ, Huth A, Kissling S, Hoffmann R. Macrophage-stimulating protein promotes hair growth ex vivo and induces anagen from telogen stage hair follicles in vivo. J. Invest. Dermatol.123(1), 34–40 (2004).
  • McElwee KJ, Freyschmidt-Paul P, Hoffmann R et al. Transfer of CD8(+) cells induces localized hair loss whereas CD4(+)/CD25(-) cells promote systemic alopecia areata and CD4(+)/CD25(+) cells blockade disease onset in the C3H/HeJ mouse model. J. Invest. Dermatol.124(5), 947–957 (2005).
  • Pennycuik PR, Raphael KA. The angora locus (go) in the mouse: hair morphology, duration of growth cycle and site of action. Genet. Res.44(3), 283–291 (1984).
  • Rudolph KL, Chang S, Lee HW et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell96(5), 701–712 (1999).
  • Headington JT. Telogen effluvium. New concepts and review. Arch. Dermatol.129(3), 356–363 (1993).
  • Hendrix S, Handjiski B, Peters EM, Paus R. A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J. Invest. Dermatol.125(1), 42–51 (2005).
  • Van Neste D. Natural scalp hair regression in preclinical stages of male androgenetic alopecia and its reversal by finasteride. Skin Pharmacol. Physiol.19(3), 168–176 (2006).
  • Cotsarelis G, Millar SE. Towards a molecular understanding of hair loss and its treatment. Trends Mol. Med.7(7), 293–301 (2001).
  • Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J. Investig. Dermatol. Symp. Proc.8(1), 46–55 (2003).
  • Lee YR, Yamazaki M, Mitsui S, Tsuboi R, Ogawa H. Hepatocyte growth factor (HGF) activator expressed in hair follicles is involved in in vitro HGF-dependent hair follicle elongation. J. Dermatol. Sci.25(2), 156–163 (2001).
  • Brown GL, Nanney LB, Griffen J et al. Enhancement of wound healing by topical treatment with epidermal growth factor. N. Engl. J. Med.321(2), 76–79 (1989).
  • Detmar M. Molecular regulation of angiogenesis in the skin. J. Invest. Dermatol.106(2), 207–208 (1996).
  • Stouffer RL, Martinez-Chequer JC, Molskness TA, Xu F, Hazzard TM. Regulation and action of angiogenic factors in the primate ovary. Arch. Med. Res.32(6), 567–575 (2001).
  • Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Otsuka J. Pregnancy and lactation affect the microvasculature of the mammary gland in mice. J. Vet. Med. Sci.54(5), 937–943 (1992).
  • Montagna W, Parakkal PF. The Structure and Function of Skin. Academic Press, NY, USA (1974).
  • Durward A, Rudall KM. The vascularity and pattern of growth of hair follicles. In: The Biology of Hair Growth. Montagna W, Ellis RA (Eds). Academic Press, NY, USA, 189–217 (1958).
  • Stenn KS, Fernandez LA, Tirrell SJ. The angiogenic properties of the rat vibrissa hair follicle associate with the bulb. J. Invest. Dermatol.90(3), 409–411 (1988).
  • Kozlowska U, Blume-Peytavi U, Kodelja V et al. Expression of vascular endothelial growth factor (VEGF) in various compartments of the human hair follicle. Arch. Dermatol. Res.290(12), 661–668 (1998).
  • Lachgar S, Charveron M, Gall Y, Bonafe JL. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. Br. J. Dermatol.138(3), 407–411 (1998).
  • Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Invest.107(4), 409–417 (2001).
  • Sholley MM, Cotran RS. Endothelial DNA synthesis in themicrovasculature of rat skin during the hair growth cycle. Am. J. Anat.147(2), 243–254 (1976).
  • Mecklenburg L, Tobin DJ, Muller-Rover S et al. Active hair growth (anagen) is associated with angiogenesis. J. Invest. Dermatol.114(5), 909–916 (2000).
  • Christoph T, Muller-Rover S, Audring H et al. The human hair follicle immune system: cellular composition and immune privilege. Br. J. Dermatol.142(5), 862–873 (2000).
  • Paus R, Slominski A, Czarnetzki BM. Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J. Biol. Med.66(6), 541–554 (1993).
  • Paus R, Ito N, Takigawa M, Ito T. The hair follicle and immune privilege. J. Investig. Dermatol. Symp. Proc.8(2), 188–194 (2003).
  • Brocker EB, Echternacht-Happle K, Hamm H, Happle R. Abnormal expression of Class I and Class II major histocompatibility antigens in alopecia areata: modulation by topical immunotherapy. J. Invest. Dermatol.88(5), 564–568 (1987).
  • Westgate GE, Craggs RI, Gibson WT. Immune privilege in hair growth. J. Invest. Dermatol.97(3), 417–420 (1991).
  • Zhang JG, Oliver RF. Immunohistological study of the development of the cellular infiltrate in the pelage follicles of the DEBR model for alopecia areata. Br. J. Dermatol.130(4), 405–414 (1994).
  • McElwee KJ, Hoffmann R, Freyschmidt-Paul P et al. Resistance to alopecia areata in C3H/HeJ mice is associated with increased expression of regulatory cytokines and a failure to recruit CD4+ and CD8+ cells. J. Invest. Dermatol.119(6), 1426–1433 (2002).
  • Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science270(5239), 1189–1192 (1995).
  • Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J. Clin. Invest.99(3), 396–402 (1997).
  • Freyschmidt-Paul P, McElwee KJ, Botchkarev V et al. Fas-deficient C3.MRL-Tnfrsf6(lpr) mice and Fas ligand-deficient C3H/HeJ-Tnfsf6(gld) mice are relatively resistant to the induction of alopecia areata by grafting of alopecia areata-affected skin from C3H/HeJ mice. J. Investig. Dermatol. Symp. Proc.8(1), 104–108 (2003).
  • Streilein JW. Immunologic privilege of the eye. Springer Semin. Immunopathol.21(2), 95–111 (1999).
  • Ito T, Ito N, Bettermann A, Tokura Y, Takigawa M, Paus R. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. Am. J. Pathol.164(2), 623–634 (2004).
  • McElwee KJ, Yu M, Park SW, Ross EK, Finner A, Shapiro J. What can we learn from animal models of Alopecia areata? Dermatology211(1), 47–53 (2005).
  • Schmitt A, Rochat A, Zeltner R et al. The primary target cells of the high-risk cottontail rabbit papillomavirus colocalize with hair follicle stem cells. J. Virol.70(3), 1912–1922 (1996).
  • Boxman IL, Berkhout RJ, Mulder LH et al. Detection of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J. Invest. Dermatol.108(5), 712–715 (1997).
  • Boxman IL, Hogewoning A, Mulder LH, Bouwes Bavinck JN, ter Schegget J. Detection of human papillomavirus types 6 and 11 in pubic and perianal hair from patients with genital warts. J. Clin. Microbiol.37(7), 2270–2273 (1999).
  • Adachi A, Suzuki T, Tomita Y. Detection of human papillomavirus type 56 DNA, belonging to a mucous high-risk group, in hair follicles in the genital area of a woman no longer suffering from viral warts. Br. J. Dermatol.151(1), 212–215 (2004).
  • Walsh N, Boutilier R, Glasgow D, Shaffelburg M. Exclusive involvement of folliculosebaceous units by herpes: a reflection of early herpes zoster. Am. J. Dermatopathol.27(3), 189–194 (2005).
  • Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr. Rev.21(5), 457–487 (2000).
  • Ito N, Ito T, Kromminga A et al. Human hair follicles display a functional equivalent of the hypothalamic–pituitary–adrenal axis and synthesize cortisol. FASEB J.19(10), 1332–1334 (2005).
  • Arck PC, Slominski A, Theoharides TC, Peters EM, Paus R. Neuroimmunology of stress: skin takes center stage. J. Invest. Dermatol.126(8), 1697–1704 (2006).
  • Hoath SB, Leahy DG. The organization of human epidermis: functional epidermal units and phi proportionality. J. Invest. Dermatol.121(6), 1440–1446 (2003).
  • Silva-Vargas V, Lo Celso C, Giangreco A et al. β-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell9(1), 121–131 (2005).
  • Rzepka K, Schaarschmidt G, Nagler M, Wohlrab J. Epidermal stem cells. J. Dtsch Dermatol. Ges.3(12), 962–973 (2005).
  • McPhaul MJ. Factors that mediate and modulate androgen action. J. Investig. Dermatol. Symp. Proc.8(1), 1–5 (2003).
  • Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell102(4), 451–461 (2000).
  • Oliver RF. Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J. Embryol. Exp. Morphol.15(3), 331–347 (1966).
  • Horne KA, Jahoda CA. Restoration of hair growth by surgical implantation of follicular dermal sheath. Development116(3), 563–571 (1992).
  • Oliver RF. Histological studies of whisker regeneration in the hooded rat. J. Embryol. Exp. Morphol.16(2), 231–244 (1966).
  • Oliver RF. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J. Embryol. Exp. Morphol.18(1), 43–51 (1967).
  • Hashimoto T, Kazama T, Ito M et al. Histologic study of the regeneration process of human hair follicles grafted onto SCID mice after bulb amputation. J. Investig. Dermatol. Symp. Proc.6(1), 38–42 (2001).
  • McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J. Invest. Dermatol.121(6), 1267–1275 (2003).
  • Lako M, Armstrong L, Cairns PM, Harris S, Hole N, Jahoda CA. Hair follicle dermal cells repopulate the mouse haematopoietic system. J. Cell Sci.115(Pt 20), 3967–3974 (2002).
  • Hoogduijn MJ, Gorjup E, Genever PG. Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells Dev.15(1), 49–60 (2006).
  • Kumamoto T, Shalhevet D, Matsue H et al. Hair follicles serve as local reservoirs of skin mast cell precursors. Blood102(5), 1654–1660 (2003).
  • Nishimura EK, Jordan SA, Oshima H et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature416(6883), 854–860 (2002).
  • Peters EM, Tobin DJ, Botchkareva N, Maurer M, Paus R. Migration of melanoblasts into the developing murine hair follicle is accompanied by transient c-Kit expression. J. Histochem. Cytochem.50(6), 751–766 (2002).
  • Osawa M, Egawa G, Mak SS et al. Molecular characterization of melanocyte stem cells in their niche. Development132(24), 5589–5599 (2005).
  • Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science307(5710), 720–724 (2005).
  • Jahoda CA, Oliver RF, Reynolds AJ, Forrester JC, Horne KA. Human hair follicle regeneration following amputation and grafting into the nude mouse. J. Invest. Dermatol.107(6), 804–807 (1996).
  • Inaba M, Anthony J, McKinstry C. Histologic study of the regeneration of axillary hair after removal with subcutaneous tissue shaver. J. Invest. Dermatol.72(5), 224–231 (1979).
  • Montagna W, Chase HB. Redifferentiation of sebaceous glands in the mouse after total extirpation with methylcholanthrene. Anat. Rec.107, 83–92 (1950).
  • Eisen AZ, Holyoke JB, Lobitz WC. Responses of the superficial portion of the human pilosebaceous apparatus to controlled injury. J. Invest. Dermatol.25, 145–156 (1955).
  • Lenoir MC, Bernard BA, Pautrat G, Darmon M, Shroot B. Outer root sheath cells of human hair follicle are able to regenerate a fully differentiated epidermis in vitro. Dev Biol.130(2), 610–620 (1988).
  • Zawacki BE, Jones RJ. Standard depth burns in the rat: the importance of the hair growth cycle. Br. J. Plast. Surg.20(4), 347–354 (1967).
  • Matsumura H, Yoshizawa N, Kimura T, Watanabe K, Gibran NS, Engrav LH. A burn wound healing model in the hairless descendant of the Mexican hairless dog. J. Burn Care Rehabil.18(4), 306–312 (1997).
  • Barman JM, Astore I, Pecoraro V. The normal trichogram of the adult. J. Invest. Dermatol.44, 233–236 (1965).
  • Martinot V, Mitchell V, Fevrier P, Duhamel A, Pellerin P. Comparative study of split thickness skin grafts taken from the scalp and thigh in children. Burns20(2), 146–150 (1994).
  • Jahoda CA, Reynolds AJ, Chaponnier C, Forester JC, Gabbiani G. Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. J. Cell Sci.99(Pt 3), 627–636 (1991).
  • Keith WN. From stem cells to cancer: balancing immortality and neoplasia. Oncogene23(29), 5092–5094 (2004).
  • Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA. The new stem cell biology: something for everyone. Mol. Pathol.56(2), 86–96 (2003).
  • Gibbs CP, Kukekov VG, Reith JD et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia7(11), 967–976 (2005).
  • Marx J. Cancer research. Mutant stem cells may seed cancer. Science301(5638), 1308–1310 (2003).
  • Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104(2), 233–245 (2001).
  • Soltysova A, Altanerova V, Altaner C. Cancer stem cells. Neoplasma52(6), 435–440 (2005).
  • Schier S, Wright NA. Stem cell relationships and the origin of gastrointestinal cancer. Oncology69(Suppl. 1), 9–13 (2005).
  • Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif.36(Suppl. 1), 59–72 (2003).
  • Trosko JE, Chang CC, Upham BL, Tai MH. Ignored hallmarks of carcinogenesis: stem cells and cell-cell communication. Ann. NY Acad. Sci.1028, 192–201 (2004).
  • Wulf GG, Wang RY, Kuehnle I et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood98(4), 1166–1173 (2001).
  • Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene23(43), 7274–7282 (2004).
  • Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines. Cell Cycle3(4), 414–415 (2004).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Brash DE, Ponten J. Skin precancer. Cancer Surv.32, 69–113 (1998).
  • Jahoda C, Reynolds A. Skin stem cells – a hairy issue. Nat. Med.6(10), 1095–1097 (2000).
  • Morris RJ, Liu Y, Marles L et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol.22(4), 411–417 (2004).
  • Cotsarelis G. Gene expression profiling gets to the root of human hair follicle stem cells. J. Clin. Invest.116(1), 19–22 (2006).
  • Lo Celso C, Prowse DM, Watt FM. Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development131(8), 1787–1799 (2004).
  • Holbrook KA, Smith LT, Kaplan ED, Minami SA, Hebert GP, Underwood RA. Expression of morphogens during human follicle development in vivo and a model for studying follicle morphogenesis in vitro. J. Invest. Dermatol.101(Suppl. 1), S39–S49 (1993).
  • Kaplan ED, Holbrook KA. Dynamic expression patterns of tenascin, proteoglycans, and cell adhesion molecules during human hair follicle morphogenesis. Dev. Dyn.199(2), 141–155 (1994).
  • Perez-Losada J, Balmain A. Stem-cell hierarchy in skin cancer. Nat. Rev. Cancer3(6), 434–443 (2003).
  • Donjacour AA, Cunha GR. Stromal regulation of epithelial function. Cancer Treat Res.53, 335–364 (1991).
  • Gudjonsson T, Magnusson MK. Stem cell biology and the cellular pathways of carcinogenesis. Apmis113(11–12), 922–929 (2005).
  • Ruiz i Altaba A, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat. Rev. Cancer2(5), 361–372 (2002).
  • Saldanha G, Shaw JA, Fletcher A. Evidence that superficial basal cell carcinoma is monoclonal from analysis of the Ptch1 gene locus. Br. J. Dermatol.147(5), 931–935 (2002).
  • Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature411(6835), 349–354 (2001).
  • McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol.53, 1–114 (2003).
  • Bale AE, Yu KP. The hedgehog pathway and basal cell carcinomas. Hum. Mol. Genet.10(7), 757–762 (2001).
  • Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer3(12), 903–911 (2003).
  • Hahn H, Wicking C, Zaphiropoulous PG et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85(6), 841–851 (1996).
  • Johnson RL, Rothman AL, Xie J et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science272(5268), 1668–1671 (1996).
  • Xie J, Murone M, Luoh SM et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature391(6662), 90–92 (1998).
  • Tilli CM, Van Steensel MA, Krekels GA, Neumann HA, Ramaekers FC. Molecular aetiology and pathogenesis of basal cell carcinoma. Br. J. Dermatol.152(6), 1108–1024 (2005).
  • Gailani MR, Stahle-Backdahl M, Leffell DJ et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet.14(1), 78–81 (1996).
  • Nilsson M, Unden AB, Krause D et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl Acad. Sci USA97(7), 3438–3443 (2000).
  • Tabs S, Avci O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur. J. Dermatol.14(2), 96–102 (2004).
  • Athar M, Li C, Tang X, Chi S et al. Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res.64(20), 7545–7552 (2004).
  • Jih DM, Lyle S, Elenitsas R, Elder DE, Cotsarelis G. Cytokeratin 15 expression in trichoepitheliomas and a subset of basal cell carcinomas suggests they originate from hair follicle stem cells. J. Cutan. Pathol.26(3), 113–118 (1999).
  • Hutchin ME, Kariapper MS, Grachtchouk M et al. Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev.19(2), 214–223 (2005).
  • Ziegler A, Leffell DJ, Kunala S et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc. Natl Acad. Sci USA90(9), 4216–4220 (1993).
  • Reifenberger J, Wolter M, Knobbe CB et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol.152(1), 43–51 (2005).
  • Saldanha G, Ghura V, Potter L, Fletcher A. Nuclear β-catenin in basal cell carcinoma correlates with increased proliferation. Br. J. Dermatol.151(1), 157–164 (2004).
  • Bennett DC. Human melanocyte senescence and melanoma susceptibility genes. Oncogene22(20), 3063–3069 (2003).
  • Hussein MR. Genetic pathways to melanoma tumorigenesis. J. Clin. Pathol.57(8), 797–801 (2004).
  • Clark WH Jr, Elder DE, Guerry Dt, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum. Pathol.15(12), 1147–1165 (1984).
  • Herlyn M, Thurin J, Balaban G et al. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res.45(11 Pt 2), 5670–5676 (1985).
  • Herlyn M, Clark WH, Rodeck U, Mancianti ML, Jambrosic J, Koprowski H. Biology of tumor progression in human melanocytes. Lab. Invest.56(5), 461–474 (1987).
  • Grichnik JM, Burch JA, Schulteis RD et al. Melanoma, a tumor based on a mutant stem cell? J. Invest. Dermatol.126(1), 142–153 (2006).
  • Grichnik JM, Ali WN, Burch JA et al. KIT expression reveals a population of precursor melanocytes in human skin. J. Invest. Dermatol.106(5), 967–971 (1996).
  • Tumbar T, Guasch G, Greco V et al. Defining the epithelial stem cell niche in skin. Science303(5656), 359–363 (2004).
  • Li L, Mignone J, Yang M et al. Nestin expression in hair follicle sheath progenitor cells. Proc. Natl Acad. Sci USA100(17), 9958–9961 (2003).
  • Amoh Y, Yang M, Li L et al. Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res.65(12), 5352–5357 (2005).
  • Amoh Y, Li L, Yang M et al. Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells. Proc. Natl Acad. Sci USA101(36), 13291–13295 (2004).
  • Amoh Y, Li L, Yang M et al. Hair follicle-derived blood vessels vascularize tumors in skin and are inhibited by dxorubicin. Cancer Res.65(6), 2337–2343 (2005).
  • Minami Y, Uede K, Sagawa K, Kimura A, Tsuji T, Furukawa F. Immunohistochemical staining of cutaneous tumours with G-81, a monoclonal antibody to dermcidin. Br. J. Dermatol.151(1), 165–169 (2004).
  • Unden AB, Holmberg E, Lundh-Rozell B et al. Mutations in the human homologue of Drosophila patched (PTCH) in basal cell carcinomas and the Gorlin syndrome: different in vivo mechanisms of PTCH inactivation. Cancer Res.56(20), 4562–4565 (1996).
  • Shapiro J, Price VH. Hair regrowth. Therapeutic agents. Dermatol. Clin.16(2), 341–356 (1998).
  • Duvic M, Lemak NA, Valero V et al. A randomized trial of minoxidil in chemotherapy-induced alopecia. J. Am. Acad. Dermatol.35(1), 74–78 (1996).
  • Price VH. Topical minoxidil (3%) in extensive alopecia areata, including long-term efficacy. J. Am. Acad. Dermatol.16(3 Pt 2), 737–744 (1987).
  • Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U. Follicular targeting – romising tool in selective dermatotherapy. J. Investig. Dermatol. Symp. Proc.10(3), 252–255 (2005).
  • Lademann J, Richter H, Schaefer UF et al. Hair follicles – a long-term reservoir for drug delivery. Skin Pharmacol. Physiol.19(4), 232–236 (2006).
  • Navsaria HA, Ojeh NO, Moiemen N, Griffiths MA, Frame JD. Reepithelialization of a full-thickness burn from stem cells of hair follicles micrografted into a tissue-engineered dermal template (Integra). Plast. Reconstr. Surg.113(3), 978–981 (2004).
  • Amoh Y, Li L, Campillo R et al. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc. Natl Acad. Sci USA102(49), 17734–17738 (2005).
  • Tarter TH, Vaughan ED Jr. Inhibitors of 5α-reductase in the treatment of benign prostatic hyperplasia. Curr. Pharm. Des.12(7), 775–783 (2006).
  • Paladini RD, Saleh J, Qian C, Xu GX, Rubin LL. Modulation of hair growth with small molecule agonists of the hedgehog signaling pathway. J. Invest. Dermatol.125(4), 638–646 (2005).
  • Stenn KS, Cotsarelis G. Bioengineering the hair follicle: fringe benefits of stem cell technology. Curr. Opin. Biotechnol16(5), 493–497 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.