1
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of stem cells in melanoma progression: hopes for a better treatment

&
Pages 191-201 | Published online: 10 Jan 2014

References

  • Kelly JW, Yeatman JM, Regalia C, Mason G, Henham AP. A high incidence of melanoma found in patients with multiple dysplastic naevi by photographic surveillance. Med. J. Aust.167, 191–194 (1997).
  • Berwick M, Wiggins C. The current epidemiology of cutaneous malignant melanoma. Front Biosci.11, 1244–1254 (2006).
  • Sharpe G. Skin cancer: prevalence, prevention and treatment. Clin. Med.6, 333–334 (2006).
  • Queirolo P, Acquati M, Kirkwood JM et al. Update: current management issues in malignant melanoma. Melanoma Res.15, 319–324 (2005).
  • Young SE, Martinez SR, Essner R. The role of surgery in treatment of stage IV melanoma. J. Surg. Oncol.94, 344–351 (2006).
  • Mutter N, Stupp R. Temozolomide: a milestone in neuro-oncology and beyond? Expert Rev. Anticancer Ther.6(8), 1187–1204 (2006).
  • Pilla L, Valenti R, Marrari A et al. Vaccination: role in metastatic melanoma. Expert Rev. Anticancer Ther.6(8), 1305–1318 (2006).
  • Herlyn M. Molecular targets in melanoma: strategies and challenges for diagnosis and therapy. Int. J. Cancer118, 523–526 (2006).
  • Meier F, Schittek B, Busch S et al. The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci.10, 2986–3001 (2005).
  • Brose MS, Volpe P, Feldman M et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res.62, 6997–7000 (2002).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417, 949–954 (2002).
  • Tsao H, Goel V, Wu H, Yang G, Haluska FG. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol.122, 337–341 (2004).
  • Stahl JM, Sharma A, Cheung M et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res.64, 7002–7010 (2004).
  • Flaherty KT. New molecular targets in melanoma. Curr. Opin. Oncol.16, 150–154 (2004).
  • Becker JC, Kirkwood JM, Agarwala SS et al. Molecularly targeted therapy for melanoma: current reality and future options. Cancer107, 2317–2327 (2006).
  • Haass NK, Smalley KS, Herlyn M. The role of altered cell–cell communication in melanoma progression. J. Mol. Histol.35, 309–318 (2004).
  • Hsu MY, Meier FE, Nesbit M et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am. J. Pathol.156, 1515–1525 (2000).
  • Hirobe T. Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment. Cell. Res.18, 2–12 (2005).
  • Berking C, Takemoto R, Satyamoorthy K et al. Induction of melanoma phenotypes in human skin by growth factors and ultraviolet B. Cancer Res.64, 807–811 (2004).
  • Fukunaga-Kalabis M, Martinez G, Liu ZJ et al. CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. J. Cell. Biol.175, 563–569 (2006).
  • Haass NK, Smalley KS, Li L, Herlyn M. Adhesion, migration and communication in melanocytes and melanoma. Pigment. Cell. Res.18, 150–159 (2005).
  • Bevona C, Goggins W, Quinn T, Fullerton J, Tsao H. Cutaneous melanomas associated with nevi. Arch. Dermatol.139, 1620–1624 (2003).
  • Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature441, 1068–1074 (2006).
  • Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell3, 397–409 (2002).
  • Cayouette M, Raff M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat. Neurosci.5, 1265–1269 (2002).
  • Siegrist SE, Doe CQ. Extrinsic cues orient the cell division axis in Drosophila embryonic neuroblasts. Development133, 529–536 (2006).
  • Zhang R, Zhang Z, Zhang C et al. Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J. Neurosci.24, 5810–5815 (2004).
  • Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA92, 10302–10306 (1995).
  • Nishimura EK, Jordan SA, Oshima H et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature416, 854–860 (2002).
  • Tumbar T, Guasch G, Greco V et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004).
  • Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc. Natl Acad. Sci. USA102, 5530–5534 (2005).
  • Yu H, Fang D, Kumar SM et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am. J. Pathol.168, 1879–1888 (2006).
  • Lang D, Lu MM, Huang L et al. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature433, 884–887 (2005).
  • Osawa M, Egawa G, Mak SS et al. Molecular characterization of melanocyte stem cells in their niche. Development132, 5589–5599 (2005).
  • Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science307, 720–724 (2005).
  • Mak SS, Moriyama M, Nishioka E, Osawa M, Nishikawa S. Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev. Biol.291, 144–153 (2006).
  • Moriyama M, Osawa M, Mak SS et al. Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J. Cell. Biol.173, 333–339 (2006).
  • Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell124, 1111–1115 (2006).
  • Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res.66, 1883–1890 (2006).
  • Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res.14, 213–222 (1961).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821–5828 (2003).
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007).
  • Prince ME, Sivanandan R, Kaczorowski A et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA104, 973–978 (2007).
  • O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007).
  • Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003).
  • Fang D, Nguyen TK, Leishear K et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res.65, 9328–9337 (2005).
  • Grichnik JM, Burch JA, Schulteis RD et al. Melanoma, a tumor based on a mutant stem cell? J. Invest. Dermatol.126, 142–153 (2006).
  • Clarke MF. Oncogenes, self-renewal and cancer. Pathol. Biol. (Paris)54, 109–111 (2006).
  • Molofsky AV, Pardal R, Iwashita T et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425, 962–967 (2003).
  • Park IK, Qian D, Kiel M et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423, 302–305 (2003).
  • Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423, 255–260 (2003).
  • Kim CF, Jackson EL, Woolfenden AE et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell121, 823–835 (2005).
  • Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature432, 324–331 (2004).
  • Dontu G, Jackson KW, McNicholas E et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res.6, R605–R615 (2004).
  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001).
  • Balint K, Xiao M, Pinnix CC et al. Activation of Notch1 signaling is required for β-catenin-mediated human primary melanoma progression. J. Clin. Invest.115, 3166–3176 (2005).
  • Li L, Xie T. Stem cell niche: structure and function. Annu. Rev. Cell. Dev. Biol.21, 605–631 (2005).
  • Lin H. The stem-cell niche theory: lessons from flies. Nat. Rev. Genet.3, 931–940 (2002).
  • Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature414, 98–104 (2001).
  • Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J.21, 3919–3926 (2002).
  • Scadden DT. The stem-cell niche as an entity of action. Nature441, 1075–1079 (2006).
  • Zhu AJ, Haase I, Watt FM. Signaling via β1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc. Natl Acad. Sci. USA96, 6728–6733 (1999).
  • Stier S, Ko Y, Forkert R et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med.201, 1781–1791 (2005).
  • Garcion E, Halilagic A, Faissner A, ffrench-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development131, 3423–3432 (2004).
  • Smalley KS, Brafford PA, Herlyn M. Selective evolutionary pressure from the tissue microenvironment drives tumor progression. Semin. Cancer Biol.15, 451–459 (2005).
  • Chiba S. Notch signaling in stem cell systems. Stem Cells24, 2437–2447 (2006).
  • Pozniak CD, Pleasure SJ. A tale of two signals: Wnt and Hedgehog in dentate neurogenesis. Sci. STKE2006, pe5 (2006).
  • Rattis FM, Voermans C, Reya T. Wnt signaling in the stem cell niche. Curr. Opin. Hematol.11, 88–94 (2004).
  • Ross J, Li L. Recent advances in understanding extrinsic control of hematopoietic stem cell fate. Curr. Opin. Hematol.13, 237–242 (2006).
  • Lowry WE, Blanpain C, Nowak JA et al. Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev.19, 1596–1611 (2005).
  • Silva-Vargas V, Lo Celso C, Giangreco A et al. β-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell9, 121–131 (2005).
  • Sun TT, Cotsarelis G, Lavker RM. Hair follicular stem cells: the bulge-activation hypothesis. J. Invest. Dermatol.96, 77S–78S (1991).
  • Smalley KS, Haass NK, Brafford PA et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol. Cancer Ther.5, 1136–1144 (2006).
  • Fan X, Matsui W, Khaki L et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res.66, 7445–7452 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.