84
Views
93
CrossRef citations to date
0
Altmetric
Review

Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma

, , , , &
Pages 451-469 | Published online: 10 Jan 2014

References

  • Slominski A, Pawelek J. Animals under the sun: effects of UV radiation on mammalian skin. Clin. Dermatol.16, 503–515 (1998).
  • Brenner M, Degitz K, Besch R, Berking C. Differential expression of melanoma-associated growth factors in keratinocytes and fibroblasts by ultraviolet A and ultraviolet B radiation. Br. J. Dermatol.153(4), 733–739 (2005).
  • Norval M. The mechanisms and consequences of ultraviolet-induced immunosuppression. Prog. Biophys. Mol. Biol.92(1), 108–118 (2006).
  • Jhappan C, Noonan FP, Merlino G. Ultraviolet radiation and cutaneous malignant melanoma. Oncogene22(20), 3099–3112 (2003).
  • Mariutti G, Matzeu M. Measurement of ultraviolet radiation emitted from welding arcs. Health Phys.54(5), 529–532 (1988).
  • Kohen E, Santus R, Hirschberg JG. Photobiology. Academic Press Inc., CA, USA (1995).
  • Gambichler T, Breuckmann F, Boms S, Altmeyer P, Kreuter A. Narrowband UVB phototherapy in skin conditions beyond psoriasis. J. Am. Acad. Dermatol.52(4), 660–670 (2005).
  • Barbagallo J, Spann CT, Tutrone WD, Weinberg JM. Narrowband UVB phototherapy for the treatment of psoriasis: a review and update. Cutis68(5), 345–347 (2001).
  • Ledo E, Ledo A. Phototherapy, photochemotherapy, and photodynamic therapy: unapproved uses or indications. Clin. Dermatol.18(1), 77–86 (2000).
  • Gasparro FP. The role of PUVA in the treatment of psoriasis. Photobiology issues related to skin cancer incidence. Am. J. Clin. Dermatol.1(6), 337–348 (2000).
  • Breuckmann F, Gambichler T, Altmeyer P, Kreuter A. UVA/UVA1 phototherapy and puva photochemotherapy in connective tissue diseases and related disorders: a research based review. BMC Dermatol.4(1), 11 (2004).
  • Scheinfeld N, Deleo V. A review of studies that have utilized different combinations of psoralen and ultraviolet B phototherapy and ultraviolet A phototherapy. Dermatol. Online J.9(5), 7 (2003).
  • Lee E, Koo J, Berger T. UVB phototherapy and skin cancer risk: a review of the literature. Int. J. Dermatol.44(5), 355–360 (2005).
  • Douki T, Reynaud-Angelin A, Cadet J, Sage E. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry42(30), 9221–9226 (2003).
  • Courdavault S, Baudouin C, Charveron M et al. Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations. DNA Repair (Amst.)4(7), 836–844 (2005).
  • Agar NS, Halliday GM, Barnetson RS, Ananthaswamy HN, Wheeler M, Jones AM. The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc. Natl Acad. Sci. USA101(14), 4954–4959 (2004).
  • Brash DE. Roles of the transcription factor p53 in keratinocyte carcinomas. Br. J. Dermatol.154(Suppl. 1), 8–10 (2006).
  • Heck DE, Vetrano AM, Mariano TM, Laskin JD. UVB light stimulates production of reactive oxygen species: unexpected role for catalase. J. Biol. Chem.278(25), 22432–22436 (2003).
  • Drobetsky EA, Turcotte J, Chateauneuf A. A role for ultraviolet A in solar mutagenesis. Proc. Natl Acad. Sci. USA92(6), 2350–2354 (1995).
  • Besaratinia A, Synold TW, Xi B, Pfeifer GP. G-to-T transversions and small tandem base deletions are the hallmark of mutations induced by ultraviolet A radiation in mammalian cells. Biochemistry43(25), 8169–8177 (2004).
  • Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature411(6835), 366–374 (2001).
  • Giglia G, Dumaz N, Drougard C, Avril MF, Daya-Grosjean L, Sarasin A. p53 mutations in skin and internal tumors of xeroderma pigmentosum patients belonging to the complementation group C. Cancer Res.58(19), 4402–4409 (1998).
  • Carlson JA, Slominski A, Linette GP et al. Malignant melanoma 2003: predisposition, diagnosis, prognosis, and staging. Am. J. Clin. Pathol.120(Suppl.), S101–S127 (2003).
  • Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev.84(4), 1155–1228 (2004).
  • Wood SR, Berwick M, Ley RD, Walter RB, Setlow RB, Timmins GS. UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proc. Natl Acad. Sci. USA103(11), 4111–4115 (2006).
  • Tsai T, Vu C, Henson DE. Cutaneous, ocular and visceral melanoma in African Americans and Caucasians. Melanoma Res.15(3), 213–217 (2005).
  • Hu DN, Yu GP, McCormick SA, Schneider S, Finger PT. Population-based incidence of uveal melanoma in various races and ethnic groups. Am. J. Ophthalmol.140(4), 612–617 (2005).
  • Eide MJ, Weinstock MA. Association of UV index, latitude, and melanoma incidence in nonwhite populations-US Surveillance, Epidemiology, and End Results (SEER) program, 1992 to 2001. Arch. Dermatol.141(4), 477–481 (2005).
  • Elwood JM, Gallagher RP. Body site distribution of cutaneous malignant melanoma in relationship to patterns of sun exposure. Int. J. Cancer78(3), 276–280 (1998).
  • Slominski A, Wortsman J, Carlson A, Matsuoka L, Balch CM, Mihm M. Malignant melanoma: an update. Arch. Pathol. Lab. Med.125, 1295–1306 (2001).
  • Gandini S, Sera F, Cattaruzza MS et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer41(1), 45–60 (2005).
  • Purdue MP, From L, Armstrong BK et al. Etiologic and other factors predicting nevus-associated cutaneous malignant melanoma. Cancer Epidemiol. Biomarkers Prev.14(8), 2015–2022 (2005).
  • Bulliard JL, Cox Belwood JM. Comparison of the site distribution of melanoma in New Zealand and Canada. Int. J. Cancer72(2), 231–235 (1997).
  • Oliveria SA, Saraiya M, Geller AC, Heneghan MK, Jorgensen C. Sun exposure and risk of melanoma. Arch. Dis. Child.91(2), 131–138 (2006).
  • Hocker T, Tsao H. Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum. Mutat.28(6), 578–588 (2007).
  • Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol.24(26), 4340–4346 (2006).
  • Bataille V, Bishop JA, Sasieni P et al. Risk of cutaneous melanoma in relation to the numbers, types and sites of naevi: a case-control study. Br. J. Cancer73(12), 1605–1611 (1996).
  • Gefeller O, Tarantino J, Lederer P, Uter W, Pfahlberg AB. The relation between patterns of vacation sun exposure and the development of acquired melanocytic nevi in German children 6–7 years of age. Am. J. Epidemiol.165(10), 1162–1169 (2007).
  • Naldi L, Altieri A, Imberti GL, Gallus S, Bosetti C, La Vecchia C. Sun exposure, phenotypic characteristics, and cutaneous malignant melanoma. An analysis according to different clinico-pathological variants and anatomic locations (Italy). Cancer Causes Control16(8), 893–899 (2005).
  • Carli P, Naldi L, Lovati S, La Vecchia C. The density of melanocytic nevi correlates with constitutional variables and history of sunburns: a prevalence study among Italian schoolchildren. Int. J. Cancer101(4), 375–379 (2002).
  • Monestier S, Gaudy C, Gouvernet J, Richard MA, Grob JJ. Multiple senile lentigos of the face, a skin ageing pattern resulting from a life excess of intermittent sun exposure in dark-skinned caucasians: a case–control study. Br. J. Dermatol.154(3), 438–444 (2006).
  • Bastiaens M, Hoefnagel J, Westendorp R, Vermeer BJ, Bouwes Bavinck JN. Solar lentigines are strongly related to sun exposure in contrast to ephelides. Pigment Cell. Res.17(3), 225–229 (2004).
  • Kossard S. Atypical lentiginous junctional naevi of the elderly and melanoma. Australas. J. Dermatol.43(2), 93–101 (2002).
  • Solomon CC, White E, Kristal AR, Vaughan T. Melanoma and lifetime UV radiation. Cancer Causes Control15(9), 893–902 (2004).
  • Barlow JO, Maize J Sr, Lang PG. The density and distribution of melanocytes adjacent to melanoma and nonmelanoma skin cancers. Dermatol. Surg.33(2), 199–207 (2007).
  • Hendi A, Brodland DG, Zitelli JA. Melanocytes in long-standing sun-exposed skin: quantitative analysis using the ART-1 immunostain. Arch. Dermatol.142(7), 871–876 (2006).
  • Cohen LM. Lentigo maligna and lentigo maligna melanoma. J. Am. Acad. Dermatol.33(6), 923–940 (1995).
  • Giehl KA, Nagele U, Volkenandt M, Berking C. Protein expression of melanocyte growth factors (bFGF, SCF) and their receptors (FGFR-1, c-kit) in nevi and melanoma. J. Cutan. Pathol.34(1), 7–14 (2007).
  • Massi D, Carli P, Franchi A, Santucci M. Naevus-associated melanomas: cause or chance? Melanoma Res.9(1), 85–91 (1999).
  • Whiteman DC, Stickley M, Watt P, Hughes MC, Davis MB, Green AC. Anatomic site, sun exposure, and risk of cutaneous melanoma. J. Clin. Oncol.24(19), 3172–3177 (2006).
  • Ley RD, Applegate LA, Padilla RS, Stuart TD. Ultraviolet radiation-induced malignant melanoma in monodelphis domestica. Photochem. Photobiol.50(1), 1–5 (1989).
  • Atillasoy ES, Seykora JT, Soballe PW et al. UVB induces atypical melanocytic lesions and melanoma in human skin. Am. J. Pathol.152(5), 1179–1186 (1998).
  • Setlow RB, Grist E, Thompson K, Woodhead AD. Wavelengths effective in induction of malignant melanoma. Proc. Natl Acad. Sci. USA90(14), 6666–6670 (1993).
  • de Laat A, van der Leun JC, de Gruijl FR. Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice. Carcinogenesis18(5), 1013–1020 (1997).
  • Husain Z, Pathak MA, Flotte T, Wick MM. Role of ultraviolet radiation in the induction of melanocytic tumors in hairless mice following 7,12-dimethylbenz(a)anthracene application and ultraviolet irradiation. Cancer Res.51(18), 4964–4970 (1991).
  • van Schanke A, Jongsma MJ, Bisschop R, van Venrooij GM, Rebel H, de Gruijl FR. Single UVB overexposure stimulates melanocyte proliferation in murine skin, in contrast to fractionated or UVA-1 exposure. J. Invest. Dermatol.124(1), 241–247 (2005).
  • Klein-Szanto AJ, Silvers WK, Mintz B. Ultraviolet radiation-induced malignant skin melanoma in melanoma-susceptible transgenic mice. Cancer Res.54(17), 4569–4572 (1994).
  • Noonan FP, Dudek J, Merlino G, De Fabo EC. Animal models of melanoma: an HGF/SF transgenic mouse model may facilitate experimental access to UV initiating events. Pigment Cell Res.16(1), 16–25 (2003).
  • van Schanke A, van Venrooij GM, Jongsma MJ et al. Induction of nevi and skin tumors in Ink4a/Arf XPA knockout mice by neonatal, intermittent, or chronic UVB exposures. Cancer Res.66(5), 2608–2615 (2006).
  • Recio JA, Noonan FP, Takayama H et al. Ink4a/Arf deficiency promotes ultraviolet radiation-induced melanomagenesis. Cancer Res.62(22), 6724–6730 (2002).
  • Hanawalt PC. Revisiting the rodent repairadox. Environ. Mol. Mutagen.38(2–3), 89–96 (2001).
  • Kunisada T, Lu SZ, Yoshida H et al. Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor. J. Exp. Med.187(10), 1565–1573 (1998).
  • Berking C, Takemoto R, Binder RL et al. Photocarcinogenesis in human adult skin grafts. Carcinogenesis23(1), 181–187 (2002).
  • Hussain SP, Harris CC. p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis. J. Nippon. Med. Sch.73(2), 54–64 (2006).
  • Jonason AS, Kunala S, Price GJ et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl Acad. Sci. USA93(24), 14025–14029 (1996).
  • Backvall H, Asplund A, Gustafsson A, Sivertsson A, Lundeberg J, Ponten F. Genetic tumor archeology: microdissection and genetic heterogeneity in squamous and basal cell carcinoma. Mutat. Res.571(1–2), 65–79 (2005).
  • Ren ZP, Ahmadian A, Ponten F et al. Benign clonal keratinocyte patches with p53 mutations show no genetic link to synchronous squamous cell precancer or cancer in human skin. Am. J. Pathol.150(5), 1791–1803 (1997).
  • Carlson JA, Scott D, Wharton J, Sell S. Incidental histopathologic patterns: possible evidence of ‘field cancerization’ surrounding skin tumors. Am. J. Dermatopathol.23(5), 494–496 (2001).
  • Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu. Rev. Genomics Hum. Genet.3, 101–128 (2002).
  • Giglia-Mari G, Sarasin A. TP53 mutations in human skin cancers. Hum. Mutat.21(3), 217–228 (2003).
  • Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc. Natl Acad. Sci. USA99(16), 10567–10570 (2002).
  • Backvall H, Wolf O, Hermelin H, Weitzberg E, Ponten F. The density of epidermal p53 clones is higher adjacent to squamous cell carcinoma in comparison with basal cell carcinoma. Br. J. Dermatol.150(2), 259–266 (2004).
  • Franco AV, Zhang XD, Van Berkel E et al. The role of NF-κB in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J. Immunol.166(9), 5337–5345 (2001).
  • Potten CS, Booth C. Keratinocyte stem cells: a commentary. J. Invest. Dermatol.119(4), 888–899 (2002).
  • Zerp SF, van Elsas A, Peltenburg LT, Schrier PI. p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis. Br. J. Cancer79(5–6), 921–926 (1999).
  • Jiang HW, Wortsman J, Matsuoka L et al. Molecular spectrum of pigmented skin lesions: from nevus to melanoma. Expert Rev. Dermatol.1(5), 679–700 (2006).
  • Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development126(11), 2409–2418 (1999).
  • Berg RJ, van Kranen HJ, Rebel HG et al. Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proc. Natl Acad. Sci. USA93(1), 274–278 (1996).
  • Asplund A, Guo Z, Hu X, Wassberg C, Ponten F. Mosaic pattern of maternal and paternal keratinocyte clones in normal human epidermis revealed by analysis of X-chromosome inactivation. J. Invest. Dermatol.117(1), 128–131 (2001).
  • Hartmann A, Blaszyk H, Cunningham JS et al. Overexpression and mutations of p53 in metastatic malignant melanomas. Int. J. Cancer67(3), 313–317 (1996).
  • Zhang H. p53 plays a central role in UVA and UVB induced cell damage and apoptosis in melanoma cells. Cancer Lett.244(2), 229–238 (2006).
  • Spatz A, Giglia-Mari G, Benhamou S, Sarasin A. Association between DNA repair-deficiency and high level of p53 mutations in melanoma of Xeroderma pigmentosum.Cancer Res.61(6), 2480–2486 (2001).
  • Purdue MP, From L, Kahn HJ et al. Etiologic factors associated with p53 immunostaining in cutaneous malignant melanoma. Int. J. Cancer117(3), 486–493 (2005).
  • Carlson JA, Slominski A, Linette GP, Mihm MC Jr, Ross JS. Biomarkers in melanoma: predisposition, screening and diagnosis. Expert Rev. Mol. Diagn.3(2), 163–184 (2003).
  • Wang JL, Zheng BY, Li XD et al. p16INK4A and p14ARF expression pattern by immunohistochemistry in human papillomavirus-related cervical neoplasia. Mod. Pathol.18(5), 629–637 (2005).
  • Soufir N, Moles JP, Vilmer C et al. p16 UV mutations in human skin epithelial tumors. Oncogene18(39), 5477–5481 (1999).
  • Sarkar-Agrawal P, Vergilis I, Sharpless NE, DePinho RA, Runger TM. Impaired processing of DNA photoproducts and ultraviolet hypermutability with loss of p16INK4A or p19ARF. J. Natl Cancer Inst.96(23), 1790–1793 (2004).
  • Gray-Schopfer VC, Karasarides M, Hayward R, Marais R. Tumor necrosis factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res.67(1), 122–129 (2007).
  • Thomas NE, Edmiston SN, Alexander A et al. Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma. Cancer Epidemiol. Biomarkers Prev.16(5), 991–997 (2007).
  • Gill M, Celebi JT. B-RAF and melanocytic neoplasia. J. Am. Acad. Dermatol.53(1), 108–114 (2005).
  • Thomas NE, Berwick M, Cordeiro-Stone M. Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation? J. Invest. Dermatol.126(8), 1693–1696 (2006).
  • Lang J, MacKie RM. Prevalence of exon 15 BRAF mutations in primary melanoma of the superficial spreading, nodular, acral, and lentigo maligna subtypes. J. Invest. Dermatol.125(3), 575–579 (2005).
  • Papp T, Schipper H, Kumar K, Schiffmann D, Zimmermann R. Mutational analysis of the BRAF gene in human congenital and dysplastic melanocytic naevi. Melanoma Res.15(5), 401–407 (2005).
  • Herlyn M, Berking C, Li G, Satyamoorthy K. Lessons from melanocyte development for understanding the biological events in naevus and melanoma formation. Melanoma Res.10(4), 303–312 (2000).
  • Hung CF, Chiang HS, Lo HM, Jian JS, Wu WB. E-cadherin and its downstream catenins are proteolytically cleaved in human HaCaT keratinocytes exposed to UVB. Exp. Dermatol.15(4), 315–321 (2006).
  • Nakazawa K, Nakazawa H, Bonnard M, Damour O, Collombel C. Ca2+ and UVB radiation have no effect on E-cadherin-mediated melanocyte-keratinocyte adhesion. Pigment Cell Res.8(5), 255–262 (1995).
  • Pastila R, Leszczynski D. Ultraviolet A exposure alters adhesive properties of mouse melanoma cells. Photodermatol. Photoimmunol. Photomed.21(5), 234–241 (2005).
  • Krengel S, Stark I, Geuchen C et al. Selective down-regulation of the α6-integrin subunit in melanocytes by UVB light. Exp. Dermatol.14(6), 411–419 (2005).
  • Shellman YG, Makela M, Norris DA. Induction of secreted matrix metalloproteinase-9 activity in human melanoma cells by extracellular matrix proteins and cytokines. Melanoma Res.16(3), 207–211 (2006).
  • Oh JH, Kim A, Park JM, Kim SH, Chung AS. Ultraviolet B-induced matrix metalloproteinase-1 and -3 secretions are mediated via PTEN/Akt pathway in human dermal fibroblasts. J. Cell. Physiol.209(3), 775–785 (2006).
  • Poser I, Tatzel J, Kuphal S, Bosserhoff AK. Functional role of MIA in melanocytes and early development of melanoma. Oncogene23(36), 6115–6124 (2004).
  • Bauer R, Humphries M, Fassler R, Winklmeier A, Craig SE, Bosserhoff AK. Regulation of integrin activity by MIA. J. Biol. Chem.281(17), 11669–11677 (2006).
  • Marr DG, Poser I, Shellman YG, Bosserhoff AK, Norris DA. Ultraviolet radiation induces release of MIA: a new mechanism for UVR-induced progression of melanoma. Int. J. Oncol.25(1), 105–111 (2004).
  • Dotto GP, Moellmann G, Ghosh S, Edwards M, Halaban R. Transformation of murine melanocytes by basic fibroblast growth factor cDNA and oncogenes and selective suppression of the transformed phenotype in a reconstituted cutaneous environment. J. Cell. Biol.109(6 Pt 1), 3115–3128 (1989).
  • Wang T, Yang M, Chen J, Watkins T, Xiuyun C. Inhibition of B16 melanoma growth in vivo by retroviral vector-mediated human ribonuclease inhibitor. Angiogenesis8(1), 73–81 (2005).
  • Berking C, Takemoto R, Satyamoorthy K et al. Induction of melanoma phenotypes in human skin by growth factors and ultraviolet B. Cancer Res.64(3), 807–811 (2004).
  • Wu CS, Yu CL, Wu CS, Lan CC, Yu HS. Narrow-band ultraviolet-B stimulates proliferation and migration of cultured melanocytes. Exp. Dermatol.13(12), 755–763 (2004).
  • Hirobe T, Osawa M, Nishikawa S. Hepatocyte growth factor controls the proliferation of cultured epidermal melanoblasts and melanocytes from newborn mice. Pigment Cell Res.17(1), 51–61 (2004).
  • Moretti S, Pinzi C, Spallanzani A et al. Immunohistochemical evidence of cytokine networks during progression of human melanocytic lesions. Int. J. Cancer84(2), 160–168 (1999).
  • Dissanayake NS, Mason RS. Modulation of skin cell functions by transforming growth factor-β1 and ACTH after ultraviolet irradiation. J. Endocrinol.159(1), 153–163 (1998).
  • Kadono S, Manaka I, Kawashima M, Kobayashi T, Imokawa G. The role of the epidermal endothelin cascade in the hyperpigmentation mechanism of lentigo senilis. J. Invest. Dermatol.116(4), 571–577 (2001).
  • Jamal S, Schneider RJ. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J. Clin. Invest.110(4), 443–452 (2002).
  • Trompezinski S, Pernet I, Mayoux C, Schmitt D, Viac J. Transforming growth factor-beta1 and ultraviolet A1 radiation increase production of vascular endothelial growth factor but not endothelin-1 in human dermal fibroblasts. Br. J. Dermatol.143(3), 539–545 (2000).
  • Yano K, Kadoya K, Kajiya K, Hong YK, Detmar M. Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1. Br. J. Dermatol.152(1), 115–121 (2005).
  • Kosmadaki MG, Yaar M, Arble BL, Gilchrest BA. UV induces VEGF through a TNF-α independent pathway. FASEB J.17(3), 446–448 (2003).
  • Shellman YG, Park YL, Marr DG et al. Release of vascular endothelial growth factor from a human melanoma cell line, WM35, is induced by hypoxia but not ultraviolet radiation and is potentiated by activated Ras mutation. J. Invest. Dermatol.121(4), 910–917 (2003).
  • Kim EJ, Park HY, Yaar M, Gilchrest BA. Modulation of vascular endothelial growth factor receptors in melanocytes. Exp. Dermatol.14(8), 625–633 (2005).
  • Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr. Rev.21(5), 457–487 (2000).
  • Slominski A, Wortsman J, Pisarchik A et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J.15(10), 1678–1693 (2001).
  • Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, Wortsman J. CRH functions as a growth factor/cytokine in the skin. J. Cell Physiol.206(3), 780–791 (2006).
  • Zbytek B, Wortsman J, Slominski A. Characterization of a ultraviolet B-induced corticotropin-releasing hormone-proopiomelanocortin system in human melanocytes. Mol. Endocrinol.20(10), 2539–2547 (2006).
  • Chakraborty AK, Funasaka Y, Slominski A et al. UV light and MSH receptors. Ann. NY Acad. Sci.885, 100–116 (1999).
  • Im S, Moro O, Peng F et al. Activation of the cyclic AMP pathway by α-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res.58(1), 47–54 (1998).
  • Slominski A, Zbytek B, Szczesniewski A et al. CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am. J. Physiol. Endocrinol. Metab.288(4), E701–E706 (2005).
  • Slominski A, Wortsman J, Tuckey RC, Paus R. Differential expression of HPA axis homolog in the skin. Mol. Cell. Endocrinol.265–266, 143–149 (2007).
  • Slominski A, Zbytek B, Szczesniewski A, Wortsman J. Cultured human dermal fibroblasts do produce cortisol. J. Invest. Dermatol.126(5), 1177–1178 (2006).
  • Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev.80(3), 979–1020 (2000).
  • Zbytek B, Pfeffer LM, Slominski AT. CRH inhibits NF-κB signaling in human melanocytes. Peptides27(12), 3276–3283 (2006).
  • Zbytek B, Slominski AT. CRH mediates inflammation induced by lipopolysaccharide in human adult epidermal keratinocytes. J. Invest. Dermatol.127(3), 730–732 (2007).
  • Abdel-Malek Z, Swope VB, Suzuki I et al. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl Acad. Sci. USA92(5), 1789–1793 (1995).
  • Lunec J, Pieron C, Thody AJ. MSH receptor expression and the relationship to melanogenesis and metastatic activity in B16 melanoma. Melanoma Res.2(1), 5–12 (1992).
  • Osman AM, Jansen PW, Smets LA, Benckhuijsen C. Glucocorticoid receptors and cell cycle progression in human melanoma cell lines. J. Cell Physiol.125(2), 306–312 (1985).
  • Kimura M, Nishihira T, Kasai M, Sato H. Differentiative and proliferative effects of (But)2cAMP, N-butyric acid and prednisolone on the malignant melanoma cell line (TM-1) in vitro and in vivo.Tohoku J. Exp. Med.131(1), 29–35 (1980).
  • Nathan C, Sporn M. Cytokines in context. J. Cell. Biol.113(5), 981–986 (1991).
  • Polsky D, Young AZ, Busam KJ, Alani RM. The transcriptional repressor of p16/Ink4a, Id1, is up-regulated in early melanomas. Cancer Res.61(16), 6008–6011 (2001).
  • Zhang H, Rosdahl I. Ultraviolet A and B differently induce intracellular protein expression in human skin melanocytes – a speculation of separate pathways in initiation of melanoma. Carcinogenesis24(12), 1929–1934 (2003).
  • Vile GF, Tanew-Ilitschew A, Tyrrell RM. Activation of NF-κB in human skin fibroblasts by the oxidative stress generated by UVA radiation. Photochem. Photobiol.62(3), 463–468 (1995).
  • Larsson P, Ollinger K, Rosdahl I. Ultraviolet (UV)A- and UVB-induced redox alterations and activation of nuclear factor-κB in human melanocytes-protective effects of α-tocopherol. Br. J. Dermatol.155(2), 292–300 (2006).
  • Ivanov VN, Ronai Z. p38 protects human melanoma cells from UV-induced apoptosis through down-regulation of NF-κB activity and Fas expression. Oncogene19(26), 3003–3012 (2000).
  • Holick MF, MacLaughlin JA, Clark MB et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science210(4466), 203–205 (1980).
  • Bikle DD. Vitamin D regulated keratinocyte differentiation. J. Cell. Biochem.92(3), 436–444 (2004).
  • Mason J, Mason AR, Cork MJ. Topical preparations for the treatment of psoriasis: a systematic review. Br. J. Dermatol.146(3), 351–364 (2002).
  • Sirulnik LA, Stone RM. Acute promyelocytic leukemia: current strategies for the treatment of newly diagnosed disease. Clin. Adv. Hematol. Oncol.3(5), 391–397, 429 (2005).
  • James SY, Mercer E, Brady M, Binderup L, Colston KW. EB1089, a synthetic analogue of vitamin D, induces apoptosis in breast cancer cells in vivo and in vitro.Br. J. Pharmacol.125(5), 953–962 (1998).
  • Evans TR, Colston KW, Lofts FJ et al. A Phase II trial of the vitamin D analogue seocalcitol (EB1089) in patients with inoperable pancreatic cancer. Br. J. Cancer86(5), 680–685 (2002).
  • Dalhoff K, Dancey J, Astrup L et al. A phase II study of the vitamin D analogue seocalcitol in patients with inoperable hepatocellular carcinoma. Br. J. Cancer89(2), 252–257 (2003).
  • Berwick M, Armstrong BK, Ben-Porat L et al. Sun exposure and mortality from melanoma. J. Natl Cancer Inst.97(3), 195–199 (2005).
  • Li C, Liu Z, Zhang Z et al. Genetic variants of the vitamin D receptor gene alter risk of cutaneous melanoma. J. Invest. Dermatol.127(2), 276–280 (2007).
  • Barker JN, Mitra RS, Griffiths CE, Dixit VM, Nickoloff BJ. Keratinocytes as initiators of inflammation. Lancet337(8735), 211–214 (1991).
  • Karalis KP, Venihaki M, Zhao J, van Vlerken LE, Chandras C. NF-κB participates in the corticotropin-releasing, hormone-induced regulation of the pituitary proopiomelanocortin gene. J. Biol. Chem.279(12), 10837–10840 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.