11
Views
3
CrossRef citations to date
0
Altmetric
Review

Update on the immunology of UV and visible radiation therapy: phototherapy, photochemotherapy and photodynamic therapy

&
Pages 85-98 | Published online: 10 Jan 2014

References

  • Krutmann J, Morita A. Mechanisms of ultraviolet (UV) B and UVA phototherapy. J. Investig. Dermatol. Symp. Proc.4(1), 70–72 (1999).
  • Hanneman KK, Cooper KD, Baron ED. Ultraviolet immunosuppression: mechanisms and consequences. Dermatol. Clin.24(1), 19–25 (2006).
  • Cooper KD, Baron ED, Matsui MS. Implications of UV-induced inflammation and immunomodulation. Cutis72(3 Suppl.), 11–16 (2003).
  • Granstein RD, Matsui MS. UV radiation-induced immunosuppression and skin cancer. Cutis74(5 Suppl.), 4–9 (2004).
  • Dumay O, Karam A, Vian L et al. Ultraviolet AI exposure of human skin results in langerhans cell depletion and reduction of epidermal antigen-presenting cell function: partial protection by a broad- spectrum sunscreen. Br. J. Dermatol.144(6), 1161–1168 (2001).
  • Garssen J, van Loveren H. Effects of ultraviolet exposure on the immune system. Crit. Rev. Immunol.21(4), 359–397 (2001).
  • Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol.2(212), 965–972 (2002).
  • Bennett CL, van Rijn E, Jung S et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol.169(4), 569–576 (2005).
  • Kissenpfennig A, Henri S, Dubois B et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity22(5), 643–654 (2005).
  • Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity.23(6), 611–620 (2005).
  • Berneburg M, Krutmann J. Photoimmunology, DNA repair and photocarcinogenesis. J. Photochem. Photobiol. B, Biol.54(2–3), 87–93 (2000).
  • De Rie MA, Bos JD. Photo(chemo)therapeutic modulation of the skin immune system. In: Skin Immune System. Bos JD (Ed.). CRC Press, FL, USA 771–788 (2005).
  • Schmitt DA, Owen-Schaub L, Ullrich SE. Effect of IL-12 on immune suppression and suppressor cell induction by ultraviolet radiation. J. Immunol.154(10), 5114–5120 (1995).
  • Ullrich SE. The role of epidermal cytokines in the generation of cutaneous immune reactions and ultraviolet radiation-induced immune suppression. Photochem. Photobiol.62(3), 389–401(1995).
  • Kimber I, Cumberbatch M, Dearman RJ, Bhushan M, Griffiths CE. Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br. J. Dermatol.142(3), 401–412 (2000).
  • Schwarz A, Bhardwaj R, Aragane Y et al. Ultraviolet-B-induced apoptosis of keratinocytes: evidence for partial involvement of tumor necrosis factor-α in the formation of sunburn cells. J. Invest. Dermatol.104(6), 922–927 (1995).
  • Wlaschek M, Heinen G, Poswig A, Schwarz A, Krieg T, Scharffetter-Kochanek K. UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6. Photochem. Photobiol.59(5), 550–556 (1994).
  • Stege H, Berneburg M, Humke S et al. High-dose UVA1 radiation therapy for localized scleroderma. J. Am. Acad. Dermatol.36(6 Pt 1), 938–944 (1997).
  • Grewe M, Klammer M, Stege H, Krutmann J. Involvement of direct and indirect mechanisms in ultraviolet B radiation (UVBR)-induced inhibition of ICAM-1 expression in human antigen presenting cells. J. Invest. Dermatol.106(4), 933 (1996).
  • Godar DE. UVA1 radiation triggers two different final apoptotic pathways. J. Invest. Dermatol.112(1), 3–12 (1999).
  • Schwarz A, Beissert S, Grosse-Heitmeyer K et al. Evidence for functional relevance of CTLA-4 in ultraviolet-radiation-induced tolerance. J. Immunol.165(4), 1824–1831 (2000).
  • Schwarz A, Maeda A, Wild MK et al. Ultraviolet radiation-induced regulatory T cells not only inhibit the induction but can suppress the effector phase of contact hypersensitivity. J. Immunol.172(2), 1036–1043 (2004).
  • Aragane Y, Maeda A, Schwarz A, Tezuka T, Ariizumi K, Schwarz T. Involvement of dectin-2 in ultraviolet radiation-induced tolerance. J. Immunol.171(7), 3801–3807 (2003).
  • Moodycliffe AM, Ngheim D, Clydesdale G, Ullrich SE. Immune suppression and skin cancer development: regulation by NKT cells. Nat. Immunol.1(6), 521–525 (2000).
  • Böhm M, Luger TA, Schneider M, Schwarz T, Kuhn A. New insight into immunosuppression and treatment of autoimmune diseases. Clin. Exp. Rheumatol.24(1 Suppl. 40), S67–S71 (2006).
  • Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol.3(3), 199–210 (2003).
  • Zheng SG, Wang JH, Koss MN, Quismorio F Jr, Gray JD, Horwitz DA. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-β suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J. Immunol.172, 1531–1539 (2004).
  • Yamauchi R, Morita A, Yasuda Y et al. Different susceptibility of malignant versus nonmalignant human T cells toward ultraviolet A-1 radiation-induced apoptosis. J. Invest. Dermatol.122(2), 477–483 (2004).
  • Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science285(5429), 898–900 (1999).
  • Morita A, Werfel T, Stege H et al. Evidence that singlet oxygen-induced human T helper cell apoptosis is the basic mechanism of ultraviolet-A radiation phototherapy. J. Exp. Med.186(10), 1763–1768 (1997).
  • Burren R, Scaletta C, Frenk E, Panizzon RG, Applegate LA. Sunlight and carcinogenesis : expression of p53 and pyrimidine dimers in human skin following UVA I, UVA I + II and solar simulating radiations. Int. J. Cancer76(2), 201–206 (1998).
  • Katiyar SK, Matsui MS, Mukhtar H. Kinetics of UV light-induced cyclobutane pyrimidine dimers in human skin in vivo: an immunohistochemical analysis of both epidermis and dermis.Photochem. Photobiol.72(6), 788–793 (2000).
  • Sheehan JM, Cragg N, Chadwick CA, Potten CS, Young AR. Repeated ultraviolet exposure affords the same protection against DNA photodamage and erythema in human skin types II and IV but is associated with faster DNA repair in skin type IV. J. Invest. Dermatol.118(5), 825–829 (2002).
  • Vink AA, Strickland FM, Bucana C et al. Localization of DNA damage and its role in altered antigen-presenting cell function in ultraviolet-irradiated mice. J. Exp. Med.183(4), 1491–1500 (1996).
  • Abboussekhra A, Biggerstaff M, Shivji MK et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell80(6), 859–868 (1995).
  • Petit-Frere C, Clingen PH, Grewe M et al. Induction of interleukin-6 production by ultraviolet radiation in normal human epidermal keratinocytes and in a human keratinocyte cell line is mediated by DNA damage. J. Immunol.111(3), 354–359 (1998).
  • O’Connor A, Nishigori C, Yarosh D et al. DNA double strand breaks in epidermal cells cause immune suppression in vivo and cytokine production in vitro. J. Immunol.157(1), 271–278 (1996).
  • Kammeyer A, Teunissen MB, Pavel S, de Rie MA, Bos JD. Photoisomerization spectrum of urocanic acid in human skin and in vitro: effects of simulated solar and artificial ultraviolet radiation. Br. J. Dermatol.132(6), 884–891 (1995).
  • Walterscheid JP, Nghiem DX, Kazimi N et al. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc. Natl Acad. Sci. USA103(46), 17420–17425 (2006).
  • Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis18(4), 811–816 (1997).
  • Nakamura T, Pinnell SR, Darr D et al. Vitamin C abrogates the deleterious effect of UVB radiation on cutaneous immunity by a mechanism that does not depend on TNF. J. Invest. Dermatol.109(1), 20–24 (1997).
  • Weichenthal M, Schwarz T. Phototherapy: how does UV work? Photodermatol. Photoimmunol. Photomed.21(5), 260–266 (2005).
  • Ständer H, Schiller M, Schwarz T et al. UVA1 therapy for sclerodermic graft-versus-host disease of the skin. J. Am. Acad. Dermatol.46, 799–800 (2002).
  • Alard P, Niizeki H, Hanninen L et al. Local ultraviolet B irradiation impairs contact hypersensitivity induction by triggering release of tumor necrosis factor-α from mast cells. Involvement of mast cells and Langerhans cells in susceptibility to ultraviolet B.J. Invest. Dermatol.113(6), 983–990 (1999).
  • Garrsen J, Buckley TL, van Loveren H. A role for neuropeptides in UVB-induced systemic immunosuppression. Photochem. Photobiol.68(2), 205–210 (1998).
  • Fischer T, Alsins J, Berne B. Ultraviolet action spectrum and evaluation of ultraviolet lamps for psoriasis healing. Br. J. Dermatol.23(10), 633–637 (1984).
  • Guckian M, Jones CD, Vestey JP et al. Immunomodulation at the initiation of phototherapy and photochemotherapy. Photodermatol. Photoimmunol. Photomed.11(4), 163–169 (1995).
  • El-Ghorr AA, Norval M. Biological effects of narrow-band (311 nm TL01) UVB irradiation: a review. Photochem. Photobiol.38(2–3), 99–106 (1997).
  • Krutmann J, Morita A. Therapeutic photomedicine: phototherapy. In: Fitzpatrick’s Dermatology in General Medicine. Freedberg IM, Eisen AZ, Wolff K et al. (Eds). McGraw-Hill, NY, USA 2469–2476 (2003).
  • Krueger JG, Wolfe JT, Nabeja RT et al. Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of intraepidermal T cells. J. Exp. Med.182(6), 2057–2068 (1995).
  • Ozawa M, Ferenczi K, Kikuchi T et al. 312-nanometer ultraviolet B light (narrow-band UVB) induces apoptosis of T cells within psoriatic lesions. J. Exp. Med.189(4), 711–718 (1999).
  • Dawe RS. A quantitative review of studies comparing the efficacy of narrow-band and broad-band ultraviolet B for psoriasis. Br. J. Dermatol.149(3), 669–672 (2003).
  • Reynolds NJ, Franklin V, Gray JC, Diffey BL, Farr PM. Narrow-band ultraviolet B and broad-band ultraviolet A phototherapy in adult atopic eczema: a randomized controlled trial. Lancet357, 2012–2016 (2001).
  • Der-Petrossian M, Seeber A, Hönigsmann H et al. Half-side comparison study on the efficacy of 8-methoxypsoralen bath–PUVA versus narrow-band ultraviolet B phototherapy in patients with severe chronic atopic dermatitis. Br. J. Dermatol.142(1), 39–43 (2000).
  • Nicolaidou E, Antoniou C, Stratigos AJ, Stefanaki C, Katsambas AD. Efficacy, predictors of response, and long-term follow-up in patients with vitiligo treated with narrowband UVB phototherapy. J. Am. Acad. Dermatol.56(2), 274–278 (2007).
  • Tjioe M, Gerritsen MJP, Juhlin L, van de Kerkhof PC. Treatment of vitiligo vulgaris with narrow band UVB (311 nm) for one year and the effect of addition of folic acid and vitamin B12. Acta Derm. Venereol.82(5), 369–372 (2002).
  • Njoo D, Westerhof W. Vitiligo . Pathogenesis and treatment. Am. J. Clin. Dermatol.2, 167–181 (2001).
  • Scherschun L, Kim JJ, Lim HW. Narrow-band ultraviolet B is a useful and well-tolerated treatment of vitiligo. J. Am. Acad. Dermatol.44(6), 999–1003 (2001).
  • Ibbotson SH. Topical 5-aminolaevulinic acid photodynamic therapy for the treatment of skin conditions other than non-melanoma skin cancer. Br. J. Dermatol.146(2), 178–188 (2002).
  • Clark C, Dawe RS, Evans AT, Lowe G, Ferguson J. Narrowband TL-01 phototherapy for patch-stage mycosis fungoides. Arch. Dermatol.136(6), 748–752 (2000).
  • Hofer A, Cerroni L, Kerl H, Wolf P. Narrowband (311 nm) UV-B therapy for small plaque parapsoriasis and early-stage mycosis fungoides. Arch. Dermatol.135, 1377–1380 (1999).
  • Diederen PV, van Weelden H, Sanders CJ, Toonstra J, van Vloten WA. Narrowband UVB and psoralen-UVA in the treatment of early -stage mycosis fungoides: a retrospective study. J. Am. Acad. Dermatol.48(2), 215–219 (2003).
  • Trautinger F, Knobler R, Willemze R et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome. Eur. J. Cancer42(8), 1014–1030 (2006).
  • Ibbotson SH, Bilsland D, Cox NH et al. An update and guidance on narrowband ultraviolet B phototherapy: a British Photodermatology Group Workshop Report. Br. J. Dermatol.151(2), 283–297 (2004).
  • Mang R, Krutmann J. UVA-1 phototherapy . Photodermatol. Photoimmunol. Photomed.21(2), 103–108 (2005).
  • Plettenberg H, Stege H, Megahed M et al. Ultraviolet A1 (340–400 nm) phototherapy for cutaneous T-cell lymphoma. J. Am. Acad. Dermatol.41(1), 47–50 (1999).
  • Zane C, Leali C, Airo P, De Panfilis G, Pinton PC. “High-dose” UVA1 therapy of widespread plaque-type, nodular, and erythrodermic mycosis fungoides. J. Am. Acad. Dermatol.44(4), 629–633 (2001).
  • von Kobyletzki G, Dirschka T, Freitag M, Hoffman K, Altmeyer P. Ultraviolet-A1 phototherapy improves the status of the skin in cutaneous T-cell lymphoma. Br. J. Dermatol.140(4), 768–769 (1999).
  • Gobello T, Mazzanti C, Sordi D et al. Medium-versus high-dose ultraviolet A1 therapy for urticaria pigmentosa: a pilot study. J. Am. Acad. Dermatol.49(4), 679–684 (2003).
  • Stege H, Schöpf E, Ruzicka T, Krutmann J. High-dose UVA1 for urticaria pigmentosa. Lancet347(8993), 64 (1996).
  • Morita A, Kobayashi K, Isomura I et al. Ultraviolet A1 (340–400 nm) phototherapy for scleroderma in systemic sclerosis. J. Am. Acad. Dermatol.43, 670–674 (2000).
  • Grundmann-Kollmann M, Behrens S, Gruss C, Gottlöber P, Peter RU, Kerscher M. Chronic sclerodermic graft-versus-host disease refractory to immunosuppressive treatment responds to UVA1 phototherapy. J. Am. Acad. Dermatol.42(1 Pt 1), 134–136 (2000).
  • Polderman MC, Govaert JC, Le Cessie S, Pavel S. A double-blind placebo-controlled trial of UVA-1 in the treatment of dyshidrotic eczema. Clin. Exp. Dermatol.28(6), 584–587 (2003).
  • Petering H, Breuer C, Herbst R, Kapp A, Werfel T. Comparison of localized high-dose UVA1 irradiation versus topical cream psoralen-UVA for treatment of chronic vesicular dyshidrotic eczema. J. Am. Acad. Dermatol.50(1), 68–72 (2004).
  • von Kobyletzki G, Kreuter JA, Nordmeier R, Stücker M, Altmeyer P. Treatment of idiopathic mucinosis follicularis with UVA1 cold light phototherapy. Dermatology201(1), 76–77 (2000).
  • Pinton PC, Capezzera R, Zane C, De Panfilis G. Medium-dose ultraviolet A1 therapy for pityriasis lichenoides et varioliformis acuta and pityriasis lichenoides chronica. J. Am. Acad. Dermatol.47(3), 410–414 (2002).
  • Herbst RA, Vogelbruch M, Ehnis A, Kiehl P, Kapp A, Weiss J. Combined ultraviolet A1 radiation and acitretin therapy as a treatment option for pityriasis rubra pilaris. Br. J. Dermatol.142(3), 574–575 (2000).
  • Muchenberger S, Schöpf E, Simon JC. Phototherapy with UV-A-I for generalized granuloma annulare. Arch. Dermatol.133, 1605 (1997).
  • Grabbe J, Welker P, Humke S et al. High-dose ultraviolet A1 (UVA1), but not UVA/UVB therapy, decreases IgE-binding cells in lesional skin of patients with atopic eczema. J. Invest. Dermatol.107(3), 419–422 (1996).
  • Laskin JD, Lee E, Yurkow EJ, Gallo MA. A possible mechanism of psoralen phototoxicity not involving direct interaction with DNA. Proc. Natl Acad. Sci. USA82(18), 6158–6162 (1985).
  • Averbeck D. Recent advances in psoralen phototoxicity mechanism. Photochem. Photobiol.50(6), 859–882 (1989).
  • Hönigsmann H. Phototherapy for psoriasis. Clin. Exp. Dermatol.26(4), 343–350 (2001).
  • Gordon PM, Diffey BL, Matthews JNS, Farr PM. A randomized comparison of narrow-band TL-01 phototherapy and PUVA photochemotherapy for psoriasis. J. Am. Acad. Dermatol.41(5 Pt 1), 728–732 (1999).
  • Tanew A, Radakovic-Fijan S, Schemper M, Hönigsmann H. Narrowband UV-B phototherapy vs. photochemotherapy in the treatment of chronic plaque-type psoriasis. Arch. Dermatol.135(5), 519–524 (1999).
  • Efferth T, Fabry U, Osieka R. Induction of apoptosis, depletion of glutathione, and DNA damage by extracorporeal photochemotherapy and psoralen with exposure to UV light in vitro. Anticancer Res.21(4A), 2777–2783 (2001).
  • Cox NH, Turbitt ML, Ashworth J, Mackie RM. Distribution of T cell subsets and Langerhans cells in mycosis fungoides, and the effect of PUVA therapy. Clin. Exp. Dermatol.11(6), 564–568 (1986).
  • Okamolo H, Takigawea M, Horio T. Alteration of lymphocyte functions by 8-methoxypsoralen and longwave ultraviolet radiation: suppressive effects of PUVA on T-lymphocyte migration in vitro. J. Invest. Dermatol.84(3), 203–205 (1985).
  • Hawk JL, Le Grice P. The efficacy of localized PUVA therapy for chronic hand and foot dermatoses. Clin. Exp. Dermatol.19(6), 479–482 (1994).
  • Schempp CM, Muller H, Czech W et al. Treatment of chronic palmoplantar eczema with local bath–PUVA therapy. J. Am. Acad. Dermatol.36(5 Pt 1), 733–737 (1997).
  • Sheehan-Dare RA, Goodfield MJ, Rowell NR. Topical psoralen photochemotherapy (PUVA) and superficial radiotherapy in the treatment of chronic hand eczema. Br. J. Dermatol.121(1), 65–69 (1989).
  • British Photodermatology Group guidelines for PUVA. Br. J. Dermatol.130(2), 246–255 (1994).
  • Halpern SM, Anstey AV, Dawe RS et al. Guidelines for topical PUVA: a report of a workshop of the British Photodermatology Group. Br. J. Dermatol.142(1), 22–31 (2000).
  • Morison WL, Baughman RD, Day RM et al. Consensus workshop on the toxic effects of long-term PUVA therapy. Arch. Dermatol.134(5), 595–598 (1998).
  • Enomoto DN, Schellekens PT, Yong SL, ten Berge IJ, Mekkes JR, Bos JD. Extracorporeal photochemotherapy (photopheresis) induces apoptosis in lymphocytes: a possible mechanism of action of PUVA therapy. Photochem. Photobiol.65(1), 177–180 (1997).
  • Maeda A, Schwarz A, Kernebeck K et al. Intravenous infusion of syngeneic apoptotic cells by photopheresis induces antigen-specific regulatory T cells. J. Immunol.174(10), 5968–5976 (2005).
  • Bladon J, Tylor PC. Extracorporeal photopheresis: a focus on apoptosis and cytokines. J. Dermatol. Sci.43(2), 85–94 (2006).
  • Berger CL, Xu A-L, Hanlon D et al. Induction of human tumor-loaded dendritic cells. Int. J. Cancer91(4), 438–447 (2001).
  • Richardson SK, McGinnis KS, Shapiro M et al. Extracorporeal photopheresis and multimodality immunomodulatory therapy in the treatment of cutaneous T-cell lymphoma. J. Cutan. Med. Surg.7(4 Suppl.), 8–12 (2003).
  • Rook AH, Suchin KR, Kao DM et al. Photopheresis: clinical applications and mechanism of action. J. Investig. Dermatol. Symp. Proc.4(1), 85–90 (1999).
  • McKenna KE, Whittaker S, Rhodes LE et al. Evidence-based practice of photopheresis 1987–2001: a report of a workshop of the British Photodermatology Group and the U.K. Skin Lymphoma group. Br. J. Dermatol.154(1), 7–20 (2006).
  • Heald P, Rook M, Perez M et al. Treatment of erythrodermic cutaneous T-cell lymphoma with extracorporeal photochemotherapy. J. Am. Acad. Dermatol.27(3), 427–433 (1992).
  • Edelson R, Berger C, Gasparro F et al. Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy: preliminary results. N. Engl. J. Med.316(6), 297–303 (1987).
  • Vonderheid EC. Photopheresis: current and future perspectives. J. Cutan. Med. Surg.7(4 Suppl.), 1–2 (2003).
  • Di Renzo M, Rubegni P, De Aloe G et al. Extracorporeal photochemotherapy restores Th1/Th2 imbalance in patients with early stage cutaneous T cell lymphoma. Immunology92(1), 99–103 (1997).
  • Alcindor T, Gorgun G, Miller KB et al. Immunomodulatory effects of extracorporeal photochemotherapy in patients with extensive chronic graft-versus-host disease. Blood98(5), 1622–1625 (2001).
  • Foss FM. Extracorporeal photopheresis in the treatment of graft-vs-host disease. J. Cutan. Med. Surg.7(4 Suppl.), S13–S17 (2003).
  • Child FJ, Ratnavel R, Watkins P et al. Extracorporeal photopheresis (ECP) in the treatment of chronic graft-versus-host disease (GVHD). Bone Marrow Transplant.23(9), 881–887 (1999).
  • Greinix HT, Volc–Platzer B, Rabitsch W et al. Successful use of extracorporeal photochemotherapy in the treatment of severe acute and chronic graft-versus-host disease. Blood92(9), 3098–3104 (1998).
  • Sharman W, Allen C, Van Lier J. Photodynamic therapeutics basic principles and clinical applications. Drug Discov. Today4(11), 507–517 (1999).
  • Gold M, Goldman M. 5-aminolevulinic acid photodynamic therapy: where we have been and where we are going. Dermatol. Surg.30(8), 1077–1084 (2004).
  • Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem. Photobiol. Sci.1, 1–21 (2002).
  • Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer6(7), 535–543 (2006).
  • Stapleton M, Rhodes LE. Photosensitizers for photodynamic therapy for cutaneous disease. J. Dermatol. Treat.14(2), 107–112 (2003).
  • Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol.5(8), 497–508 (2004).
  • Grebenova D, Cajthamlova H, Bartosova J et al. Selective destruction of leukaemic cells by photoactivation of 5-aminolaevulinic acid-induced protoporphyrin-IX. J. Photochem. Photobiol. B47(1), 74–81(1998).
  • Boehncke WH, Ruck A, Naumann J, Sterry W, Kaufmann R. Comparison of sensitivity towards photodynamic therapy of cutaneous resident and infiltrating cell types in vitro. Lasers Surg. Med.19(4), 451–457 (1996).
  • Gold MH. Photodynamic therapy in dermatology: the next five years. Dermatol. Clin.25(1), 119–120 (2007).
  • Gold MH. Introduction to photodynamic therapy: early experience. Dermatol. Clin.25(1), 1–4 (2007).
  • Bablias P, Landthaler M, Szeimies RM. Photodynamic therapy in dermatology. Eur. J. Dermatol.16(4), 340–348 (2006).
  • Fijan S, Hönigsmann H, Ortel B. Photodynamic therapy of epithelial skin tumours using δ-aminolaevulinic acid and desferrioxamine. Br. J. Dermatol.133(2), 282–288 (1995).
  • Zeitouni NC, Shieh S, Oseroff AR. Laser and photodynamic therapy in the management of cutaneous malignancies. Clin. Dermatol.19(3), 328–338 (2001).
  • Cox NH, Eedy DJ, Morton CA; Therapy Guidelines and Audit Subcommittee, British Association of Dermatologists. Guidelines for management of Bowen’s disease: 2006 update. Br. J. Dermatol.156(1), 11–21 (2007).
  • Morton CA. 5-ALA matches 5-FU in Tx of Bowen’s disease. Dermatol. Times21, 23 (2000).
  • Braathen LR, Szeimies RM, Basset-Seguin N et al. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. J. Am. Acad. Dermatol.56(1), 125–143 (2007).
  • Lui H, Salasche S, Kollias N et al. Photodynamic therapy of nonmelanoma skin cancer with topical aminolevulinic acid: a clinical and histologic study. Arch. Dermatol.131(6), 737–738 (1995).
  • Kubler AC, Haase T, Staff C, Kahle B, Rheinwald M, Muhling J. Photodynamic therapy of primary nonmelanomatous skin tumours of the head and neck. Lasers Surg. Med.25(1), 60–68 (1999).
  • Taub AF. Photodynamic therapy: other uses. Dermatol. Clin.25(1), 101–109 (2007).
  • Fritsch C, Goerz G, Ruzicka T. Photodynamic therapy in dermatology. Arch. Dermatol.134(2), 207–214 (1998).
  • Nootheti PK, Goldman MP. Aminolevulinic acid-photodynamic therapy for rejuvenation. Dermatol. Clin.25(1), 35–45 (2007).
  • Touma DJ, Gilchrest BA. Topical photodynamic therapy : a new tool in cosmetic dermatology. Semin. Cutan. Med. Surg.22(2), 124–130 (2003).
  • Goldman MP, Boyce SM. A single - center study of aminolevulinic acid and 417 nm photodynamic therapy in the treatment of moderate to severe acne vulgaris. J. Drugs Dermatol.2(4), 393–396 (2003).
  • Hongcharu W, Taylor CR, Chang Y, Aghassi D, Suthamjariya K, Anderson RR. Topical ALA- photodynamic the rapy for the treatment of acne vulgaris. J. Invest. Dermatol.115(2), 183–192 (2000).
  • Taub AF. Photodynamic the rapy for the treatment of acne : a pilot study. J. Drugs Dermatol.3(6 Suppl.), S10–S14 (2004).
  • Divaris DX, Kennedy JC, Pottier RH. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence. Am. J. Pathol.136(4), 891–897 (1990).
  • Stender IM, Na R, Fogh H, Gludd C, Wulf HC. Photodynamic therapy with 5-aminolaevulinic acid or placebo for recalcitrant foot and hand warts: randomised double-blind trial. Lancet355(9208), 963–966 (2000).
  • Morton CA, Brown SB, Collins S et al. Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group. Br. J. Dermatol.146(4), 552–567 (2002).
  • Frank RG, Bos JD. Photodynamic therapy for condylomata acuminata with local application of 5-aminolaevulinic acid. Genitourin. Med.72(1), 70–71 (1996).
  • Rivard J, Ozog D. Henry Ford Hospital Dermatology experience with levulan kerastick and blue light photodynamic therapy. J. Drugs Dermatol.5(6), 556–561 (2006).
  • Gold MH, Bradshaw VL, Boring MM, Bridges TM, Biron JA, Lewis TL. Treatment of sebaceous gland hyperplasia by photodynamic therapy with 5-aminolevulinic acid and a blue light source or intense pulsed light source. J. Drugs Dermatol.3(6 Suppl.), S6–S9 (2004).
  • Dierickx CC, Goldenhersh M, Dwyer P, Stratigos A, Mihm M, Anderson RR. Photodynamic therapy for nevus sebaceus with topical δ aminolevulinic acid. Arch. Dermatol.135(6), 637–40 (1999).
  • Radakovic-Fijan S, Blecha-Thalhammer U, Schleyer V. Topical aminolaevulinic acid-based photodynamic therapy as a treatment option for psoriasis? Results of a randomized, observer-blinded study. Br. J. Dermatol.152(2), 279–283 (2005).
  • Bissonnette R, Tremblay JF, Juzenas P, Boushira M, Lui H. Systemic photodynamic therapy with aminolevulinic acid induces apoptosis in lesional T lymphocytes of psoriatic plaques. J. Invest. Dermatol.119(1), 77–83 (2002).
  • Aghahosseini F, Arbabi-Kalati F, Fashtami LA, Djavid GE, Fateh M, Beitollahi JM. Methylene blue-mediated photodynamic therapy: a possible alternative treatment for oral lichen planus. Lasers Surg. Med.38(1), 33–38 (2006).
  • Wulf HC, Pavel S, Stender I, Bakker-Wensveen CA. Topical photodynamic therapy for prevention of new skin lesions in renal transplant recipients. Acta Derm. Venereol.86(1), 25–28 (2006).
  • Wennberg AM, Keohane S, Lear JT et al. A multicenter, study of photodynamic therapy with methyl aminolevulinate (MAL-PDT) cream in immuno-compromised organ transplant recipients with non-melanoma skin cancer. Presented at: 10th World Congress on Cancers of the Skin, Vienna, Austria, 13–16 May, 2005.
  • Itkin A, Gilchrest BA. δ-aminolevulinic acid and blue light photodynamic therapy for treatment of multiple basal cell carcinomas in two patients with nevoid basal cell carcinoma syndrome. Dermatol. Surg.30(7), 1054–1061 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.