3
Views
1
CrossRef citations to date
0
Altmetric
Review

Langerhans’ cells: unique character in dendritic cells

, &
Pages 293-306 | Published online: 10 Jan 2014

References

  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature449, 419–426 (2007).
  • Asahina A, Tamaki K. Role of Langerhans cells in cutaneous protective immunity: is the reappraisal necessary? J. Dermatol. Sci.44, 1–9 (2006).
  • Kissenpfennig A, Malissen B. Langerhans cells – revisiting the paradigm using genetically engineered mice. Trends Immunol.27, 132–139 (2006).
  • Romani N, Ebner S, Tripp CH, Flacher V, Koch F, Stoitzner P. Epidermal Langerhans cells – changing views on their function in vivo.Immunol. Lett.106, 119–125 (2006).
  • Mathers AR, Larregina AT. Professional antigen-presenting cells of the skin. Immunol. Res.36, 127–136 (2006).
  • Larrengina AT, Falo LD. Changing paradigms in cutaneous immunology: adapting with dendritic cells. J. Invest. Dermatol.124, 1–12 (2005).
  • Valladeau J, Saeland S. Cutaneous dendritic cells. Semin. Immunol.17, 273–283 (2005).
  • Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J. Exp. Med.204, 3119–3131 (2007).
  • Ginhoux F, Collin MP, Bogunovic M et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med.204, 3133–3146 (2007).
  • Bursch LS, Wang L, Igyarto B et al. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med.204, 3147–3156 (2007).
  • Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature282, 324–326 (1979).
  • Saint-Mezard P, Chavagnac C, Vocanson M et al. Deficient contact hypersensitivity reaction in CD4-/- mice is because of impaired hapten-specific CD8+ T cell functions. J. Invest. Dermatol.124, 562–569 (2005).
  • Stoitzner P, Tripp CH, Eberhart A et al. Langerhans cells cross-present antigen derived from skin. Proc. Natl Acad. Sci. USA103, 7783–7788 (2006).
  • Neijssen J, Herberts C, Drijfhout JW, Reits E, Janssen L, Neefjes J. Cross-presentation by intercellular peptide transfer through gap junctions. Nature434, 83–88 (2005).
  • Zimmerli SC, Masson F, Cancela J, Meda P, Hauser C. Cutting edge: lack of evidence for connexin-43 expression in human epidermal Langerhans cells. J. Immunol.179, 4318–4321 (2007).
  • Molinero LL, Zhou P, Wang Y et al. Epidermal Langerhans cells promote skin allograft rejection in mice with NF-κB-impaired T cells. Am. J. Transplant.8, 21–31 (2008).
  • Ito T, Seo N, Yagita H, Tsujimura K, Takigawa M, Tokura Y. Alterations of immune functions in barrier disrupted skin by UVB irradiation. J. Dermatol. Sci.33, 151–159 (2003).
  • Stoitzner P, Pfaller K, Stossel H, Romani N. A close-up view of migrating Langerhans cells in the skin. J. Invest. Dermatol.118, 117–125 (2002).
  • Ratzinger G, Stoitzner P, Ebner S et al. Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J. Immunol.168, 4361–4371 (2002).
  • Nishibu A, Ward BR, Jester JV, Ploegh HL, Boes M, Takashima A. Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J. Invest. Dermatol.126, 787–796 (2006).
  • Riedl E, Stockl J, Majdic O, Scheinecker C, Knapp W, Strobl H. Ligation of E-cadherin on in vitro-generated immature Langerhans-type dendritic cells inhibits their maturation. Blood96, 4276–4284 (2000).
  • Fuijita H, Asahina A, Tamaki K. Ligation of E-cadherin molecules on murine resident Langerhans cells inhibits their maturation and chemokine production. J. Dermatol. Sci.43, 152–155 (2006).
  • Griffiths CE, Dearman RJ, Cumberbatch M, Kimber I. Cytokines and Langerhans cell mobilisation in mouse and man. Cytokine32, 67–70 (2005).
  • Kabashima K, Sakata D, Nagamachi M, Miyachi Y, Inaba K, Narumiya S. Prostaglandin E2–EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat. Med.9, 744–749 (2003).
  • Uchi H, Terao H, Koga T, Furue M. Cytokines and chemokines in the epidermis. J. Dermatol. Sci.24(Suppl. 1), S29–S38 (2000).
  • Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol.5, 617–628 (2005).
  • Kabashima K, Shiraishi N, Sugita K et al. CXCL12–CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol.171, 1249–1257 (2007).
  • Caux C, Massacrier C, Dubois B et al. Respective involvement of TGF-β and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+ progenitors. J. Leukoc. Biol.66, 781–791 (1999).
  • Tacke F, Randolph GJ. Migratory fate and differentiation of blood monocyte subsets. Immunobiology211, 609–618 (2006).
  • Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O. Transforming growth factor-β1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J. Exp. Med.187, 961–966 (1998).
  • Borkowski TA, Letterio JJ, Farr AG, Udey MC. A role for endogenous transforming growth factor-β 1 in Langerhans cell biology: the skin of transforming growth factor-β 1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med.184, 2417–2422 (1996).
  • Larregina AT, Morelli AE, Spencer LA et al. Dermal-resident CD14+ cells differentiate into Langerhans cells. Nat. Immunol.2, 1151–1158 (2001).
  • Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ. Autocrine/paracrine TGF-β1 is required for the development of epidermal Langerhans cells. J. Exp. Med.204, 2545–2552 (2007).
  • Hacker C, Kirsch RD, Ju XS et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol.4, 380–386 (2003).
  • Iwama A, Osawa M, Hirasawa R et al. Reciprocal roles for CCAAT/enhancer binding protein (C/EBP) and PU.1 transcription factors in Langerhans cell commitment. J. Exp. Med.195, 547–558 (2002).
  • Heinz LX, Platzer B, Reisner PM et al. Differential involvement of PU.1 and Id2 downstream of TGF-β1 during Langerhans-cell commitment. Blood107, 1445–1453 (2006).
  • Vishwanath M, Nishibu A, Saeland S et al. Development of intravital intermittent confocal imaging system for studying Langerhans cell turnover. J. Invest. Dermatol.126, 2452–2457 (2006).
  • Merad M, Manz MG, Karsunky H et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol.3, 1135–1141 (2002).
  • Merad M, Hoffmann P, Ranheim E et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nat. Med.10, 510–517 (2004).
  • Ginhoux F, Tacke F, Angeli V, Bogunovic M et al. Langerhans cells arise from monocytes in vivo.Nat. Immunol.7, 265–273 (2006).
  • Schaerli P, Willimann K, Ebert LM, Walz A, Moser B. Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity23, 331–342 (2005).
  • Kissenpfennig A, Henri S, Dubois B et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity22, 643–54 (2005).
  • Bennett CL, Noordegraaf M, Martina CA, Clausen BE. Langerhans cells are required for efficient presentation of topically applied hapten to T cells. J. Immunol.179, 6830–6835 (2007).
  • Bennett CL, van Rijn E, Jung S et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol.169, 569–576 (2005).
  • Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity23, 611–620 (2005).
  • Zhao X, Deak E, Soderberg K et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med.197, 153–162 (2003).
  • Allan RS, Smith CM, Belz GT et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science301, 1925–1928 (2003).
  • Allan RS, Waithman J, Bedoui S et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity25, 153–162 (2006).
  • Fausch SC, Fahey LM, Da Silva DM, Kast WM. Human papillomavirus can escape immune recognition through Langerhans cell phosphoinositide 3-kinase activation. J. Immunol.174, 7172–7178 (2005).
  • Ritter U, Meissner A, Scheidig C, Korner H. CD8-α- and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis. Eur. J. Immunol.34, 1542–1550 (2004).
  • Iezzi G, Fröhlich A, Ernst B et al. Lymph node resident rather than skin-derived dendritic cells initiate specific T cell responses after Leishmania major infection. J. Immunol.177, 1250–1256 (2006).
  • Larregina AT, Watkins SC, Erdos G et al. Direct transfection and activation of human cutaneous dendritic cells. Gene Ther.8, 608–617 (2001).
  • Morita A, Ariizumi K, Ritter R 3rd et al. Development of a Langerhans cell-targeted gene therapy format using a dendritic cell-specific promoter. Gene Ther.8, 1729–1737 (2001).
  • Stoecklinger A, Grieshuber I, Scheiblhofer S et al. Epidermal langerhans cells are dispensable for humoral and cell-mediated immunity elicited by gene gun immunization. J. Immunol.179, 886–893 (2007).
  • Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood108, 1435–1440 (2006).
  • Wraith DC. Avidity and the art of self non-self discrimination. Immunity25, 191–193 (2006).
  • George TC, Bilsborough J, Viney JL, Norment AM. High antigen dose and activated dendritic cells enable Th cells to escape regulatory T cell-mediated suppression in vitro. Eur. J. Immunol.33, 502–511 (2003).
  • Mizumoto N, Kumamoto T, Robson SC et al. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat. Med.8, 358–365 (2002).
  • von Bubnoff D, Bausinger H, Matz H et al. Human epidermal langerhans cells express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. J. Invest. Dermatol.123, 298–304 (2004).
  • Berger CL, Vasquez JG, Shofner J, Mariwalla K, Edelson RL. Langerhans cells: mediators of immunity and tolerance. Int. J. Biochem. Cell Biol.38, 1632–1636 (2006).
  • Mahnke K, Johnson TS, Ring S, Enk AH. Tolerogenic dendritic cells and regulatory T cells: a two-way relationship. J. Dermatol. Sci.46, 159–167 (2007).
  • Morelli AE, Rubin JP, Erdos G et al. CD4+ T cell responses elicited by different subsets of human skin migratory dendritic cells. J. Immunol.175, 7905–7915 (2005).
  • Flacher V, Bouschbacher M, Verronèse E et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J. Immunol.177, 7959–7967 (2006).
  • Bieber T. The pro- and anti-inflammatory properties of human antigen-presenting cells expressing the high affinity receptor for IgE (Fce RI). Immunobiology212, 499–503 (2007).
  • Stoitzner P, Tripp CH, Douillard P, Saeland S, Romani N. Migratory Langerhans cells in mouse lymph nodes in steady state and inflammation. J. Invest. Dermatol.125, 116–125 (2005).
  • Hemmi H, Yoshino M, Yamazaki H et al. Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-β1-dependent cells. Int. Immunol.13, 695–704 (2001).
  • Mayerova D, Parke EA, Bursch LS, Odumade OA, Hogquist KA. Langerhans cells activate naive self-antigen-specific CD8 T cells in the steady state. Immunity21, 391–400 (2004).
  • Mayerova D, Wang L, Bursch LS, Hogquist KA. Conditioning of Langerhans cells induced by a primary CD8 T cell response to self-antigen in vivo.J. Immunol.176, 4658–4665 (2006).
  • Waithman J, Allan RS, Kosaka H et al. Skin-derived dendritic cells can mediate deletional tolerance of class I-restricted self-reactive T cells. J. Immunol.179, 4535–4541 (2007).
  • Geissmann F, Dieu-Nosjean MC, Dezutter C et al. Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J. Exp. Med.196, 417–430 (2002).
  • Sporri R, Reis e Sousa C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol.6, 163–170 (2005).
  • Mahnke K, Qian Y, Knop J, Enk AH. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood101, 4862–4869 (2003).
  • Loser K, Mehling A, Loeser S et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat. Med.12, 1372–1379 (2006).
  • Allam JP, Peng WM, Appel T et al. Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J. Allergy Clin. Immunol.121, 368–374 (2008).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5, 987–995 (2004).
  • Foti M, Granucci F, Ricciardi-Castagnoli P. A central role for tissue-resident dendritic cells in innate responses. Trends Immunol.25, 650–654 (2004).
  • Nickoloff BJ. Cutaneous dendritic cells in the crossfire between innate and adaptive immunity. J. Dermatol. Sci.29, 159–165 (2002).
  • Cambi A, Koopman M, Figdor CG. How C-type lectins detect pathogens. Cell. Microbiol.7, 481–488 (2005).
  • Figdor CG, van Kooyk Y, Adema GJ. C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol.2, 77–84 (2002).
  • Mitsui H, Watanabe T, Saeki H et al. Differential expression and function of Toll-like receptors in Langerhans cells: comparison with splenic dendritic cells. J. Invest. Dermatol.122, 95–102 (2004).
  • Tada Y, Asahina A, Fujita H et al. Differential effects of LPS and TGF-β on the production of IL-6 and IL-12 by Langerhans cells, splenic dendritic cells, and macrophages. Cytokine25, 155–161 (2004).
  • Fujita H, Asahina A, Mitsui H, Tamaki K. Langerhans cells exhibit low responsiveness to double-stranded RNA. Biochem. Biophys. Res. Commun.319, 832–839 (2004).
  • Takeuchi J, Watari E, Shinya E et al. Down-regulation of Toll-like receptor expression in monocyte-derived Langerhans cell-like cells: implications of low-responsiveness to bacterial components in the epidermal Langerhans cells. Biochem. Biophys. Res. Commun.306, 674–679 (2003).
  • Ebner S, Ehammer Z, Holzmann S et al. Expression of C-type lectin receptors by subsets of dendritic cells in human skin. Int. Immunol.16, 877–887 (2004).
  • Kissenpfennig A, Aït-Yahia S, Clair-Moninot V et al. Disruption of the langerin/CD207 gene abolishes Birbeck granules without a marked loss of Langerhans cell function. Mol. Cell. Biol.25, 88–99 (2005).
  • Tada Y, Riedl E, Lowenthal MS et al. Identification and characterization of endogenous Langerin ligands in murine extracellular matrix. J. Invest. Dermatol.126, 1549–1558 (2006).
  • Mizumoto N, Takashima A. CD1a and langerin: acting as more than Langerhans cell markers. J. Clin. Invest.113, 658–660 (2004).
  • Hunger RE, Sieling PA, Ochoa MT et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Invest.113, 701–708 (2004).
  • Kawamura T, Kurtz SE, Blauvelt A, Shimada S. The role of Langerhans cells in the sexual transmission of HIV. J. Dermatol. Sci.40, 147–155 (2005).
  • de Witte L, Nabatov A, Pion M et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med.13, 367–371 (2007).
  • Tada Y, Asahina A, Fujita H, Sugaya M, Tamaki K. Langerhans cells do not produce interferon-γ. J. Invest. Dermatol.120, 891–892 (2003).
  • Fujita H, Asahina A, Sugaya M et al. Differential production of Th1- and Th2-type chemokines by mouse Langerhans cells and splenic dendritic cells. J. Invest. Dermatol.124, 343–350 (2005).
  • Fujita H, Asahina A, Tada Y, Fujiwara H, Tamaki K. Type I interferons inhibit maturation and activation of mouse Langerhans cells. J. Invest. Dermatol.125, 126–133 (2005).
  • Fujita H, Asahina A, Gao P, Fujiwara H, Tamaki K. Expression and regulation of RANTES/CCL5, MIP-1α/CCL3, and MIP-1β/CCL4 in mouse Langerhans cells. J. Invest. Dermatol.122, 1331–1333 (2004).
  • Fujita H, Asahina A, Komine M, Tamaki K. The direct action of 1α,25(OH)2-vitamin D3 on purified mouse Langerhans cells. Cell. Immunol.245, 70–79 (2007).
  • Guttman-Yassky E, Lowes MA, Fuentes-Duculan J et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J. Allergy Clin. Immunol.119, 1210–1217 (2007).
  • Callard RE, Harper JI. The skin barrier, atopic dermatitis and allergy: a role for Langerhans cells? Trends Immunol.28, 294–298 (2007).
  • Novak N, Valenta R, Bohle B et al. FceRI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro.J. Allergy Clin. Immunol.113, 949–957 (2004).
  • Soumelis V, Reche PA, Kanzler H et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol.3, 673–680 (2002).
  • Wang YH, Ito T, Wang YH et al. Maintenance and polarization of human TH2 central memory T cells by thymic stromal lymphopoietin-activated dendritic cells. Immunity24, 827–838 (2006).
  • Ebner S, Nguyen VA, Forstner M et al. Thymic stromal lymphopoietin converts human epidermal Langerhans cells into antigen-presenting cells that induce proallergic T cells. J. Allergy Clin. Immunol.119, 982–990 (2007).
  • Cumberbatch M, Singh M, Dearman RJ, Young HS, Kimber I, Griffiths CE. Impaired Langerhans cell migration in psoriasis. J. Exp. Med.203, 953–960 (2006).
  • Berger CL, Tigelaar R, Cohen J et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood105, 1640–1647 (2005).
  • Ding W, Wagner JA, Granstein RD. CGRP, PACAP, and VIP modulate Langerhans cell function by inhibiting NF-κB activation. J. Invest. Dermatol.127, 2357–2367 (2007).
  • Kleyn CE, Schneider L, Saraceno R et al. The effects of acute social stress on epidermal langerhans’ cell frequency and expression of cutaneous neuropeptides. J. Invest. Dermatol.128, 1273–1279 (2008).
  • Stoitzner P, Green LK, Jung JY et al. Tumor immunotherapy by epicutaneous immunization requires Langerhans cells. J. Immunol.180, 1991–1998 (2008).
  • Kumamoto T, Huang EK, Paek HJ et al. Induction of tumor-specific protective immunity by in situ Langerhans cell vaccine. Nat. Biotechnol.20, 64–69 (2002).
  • Chen D, Payne LG. Targeting epidermal Langerhans cells by epidermal powder immunization. Cell Res.12, 97–104 (2002).
  • Yagi H, Hashizume H, Horibe T et al. Induction of therapeutically relevant cytotoxic T lymphocytes in humans by percutaneous peptide immunization. Cancer Res.66, 10136–10144 (2006).
  • Seo N, Takigawa M. The current status and future direction of percutaneous peptide immunization against melanoma. J. Dermatol. Sci.48, 77–85 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.