21
Views
5
CrossRef citations to date
0
Altmetric
Key Paper Evaluation

Ribosomal stress, p53 activation and the tanning response

&
Pages 649-656 | Published online: 10 Jan 2014

References

  • Ziegler A, Jonason AS, Leffell DJ et al. Sunburn and p53 in the onset of skin cancer. Nature372(6508), 773–776 (1994).
  • Caswell M. The kinetics of the tanning response to tanning bed exposures. Photodermatol. Photoimmunol. Photomed.16(1), 10–14 (2000).
  • Sheehan JM, Potten CS, Young AR. Tanning in human skin types II and III offers modest photoprotection against erythema. Photochem. Photobiol.68(4), 588–592 (1998).
  • Sheehan JM, Young AR. The sunburn cell revisited: an update on mechanistic aspects. Photochem. Photobiol. Sci.1(6), 365–377 (2002).
  • Quevedo WC Jr, Szabo G, Virks J, Sinesi S. Melanocyte populations in UV-irradiated human skin. J. Invest. Dermatol.45(4), 295–298 9 (1965).
  • Scott GA, Haake AR. Keratinocytes regulate melanocyte number in human fetal and neonatal skin equivalents. J. Invest. Dermatol.97(5), 776–781 (1991).
  • Stierner U, Rosdahl I, Augustsson A, Kagedal B. UVB irradiation induces melanocyte increase in both exposed and shielded human skin. J. Invest. Dermatol.92(4), 561–564 (1989).
  • Yamaguchi Y, Coelho SG, Zmudzka BZ et al. Cyclobutane pyrimidine dimer formation and p53 production in human skin after repeated UV irradiation. Exp. Dermatol.17(11), 916–924 (2008).
  • Rosdahl I, Szabo G. Mitotic activity of epidermal melanocytes in UV-irradiated mouse skin. J. Invest. Dermatol.70(3), 143–148 (1978).
  • Quevedo W, Fleischmann R. Developmental biology of mammalian melanocytes. J. Invest. Dermatol.75(1), 116–120 (1980).
  • Walker G, Kimlin M, Hacker E et al. Murine neonatal melanocytes exhibit a heightened proliferative response to ultraviolet radiation and migrate to the epidermal basal layer. J. Invest. Dermatol. (Epub ahead of print) (2008).
  • Jimbow K, Uesugi T. New melanogenesis and photobiological processes in activation and proliferation of precursor melanocytes after UV-exposure: ultrastructural differentiation of precursor melanocytes from Langerhans cells. J. Invest. Dermatol.78(2), 108–115 (1982).
  • van Schanke A, Jongsma MJ, Bisschop R, van Venrooij GM, Rebel H, de Gruijl FR. Single UVB overexposure stimulates melanocyte proliferation in murine skin, in contrast to fractionated or UVA-1 exposure. J. Invest. Dermatol.124, 241–247 (2005).
  • Billingham R, Silvers W. Studies on the migratory behaviour of melanocytes in guinea pig skin. J. Exp. Med.131(1), 101–117 (1970).
  • Horikawa T, Mishima Y, Nishino K, Ichihashi M. Horizontal and vertical pigment spread into surrounding piebald epidermis and hair follicles after suction blister epidermal grafting. Pigment Cell Res.12(3), 175–180 (1999).
  • Nishimura EK, Jordan SA, Oshima H et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature416(6883), 854–860 (2002).
  • Yonetani S, Moriyama M, Nishigori C, Osawa M, Nishikawa S. In vitro expansion of immature melanoblasts and their ability to repopulate melanocyte stem cells in the hair follicle. J. Invest. Dermatol.128(2), 408–420 (2008).
  • Hirobe T. Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res.18(1), 2–12 (2005).
  • Lin J, Fisher DE. Melanocyte biology and skin pigmentation. Nature445(7130), 843–850 (2007).
  • Cui R, Widlund HR, Feige E et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell128(5), 853–886 (2007).
  • McGowan KA, Li JZ, Park CY et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet.40(8), 963–970 (2008).
  • Fitch KR, McGowan KA, van Raamsdonk CD et al. Genetics of dark skin in mice. Genes Dev.17(2), 214–212 (2003).
  • Van Raamsdonk CD, Fitch KR, Fuchs H, de Angelis MH, Barsh GS. Effects of G-protein mutations on skin color. Nat. Genet.36(9), 961–968 (2004).
  • Thomas G. An encore for ribosome biogenesis in the control of cell proliferation. Nat. Cell Biol.2(5), E71–E72 (2000).
  • Gani R. The nucleoli of cultured human lymphocytes. I. Nucleolar morphology in relation to transformation and the DNA cycle. Exp. Cell Res.97(2), 249–258 (1976).
  • Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ. The ribosomal L5 protein is associated with mdm-2 and mdm-2–p53 complexes. Mol. Cell Biol.14(11), 7414–7420 (1994).
  • Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J. Biol. Chem.279(43), 44475–44482 (2004).
  • Castro ME, Leal JF, Lleonart ME, Ramon Y Cajal S, Carnero A. Loss-of-function genetic screening identifies a cluster of ribosomal proteins regulating p53 function. Carcinogenesis29(7), 1343–1350 (2008).
  • Bhat KP, Itahana K, Jin A, Zhang Y. Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J.23(12), 2402–2412 (2004).
  • Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell Biol.23(23), 8902–8912 (2003).
  • Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell3(6), 577–587 (2003).
  • Anderson SJ, Lauritsen JP, Hartman MG et al. Ablation of ribosomal protein L22 selectively impairs αβ T cell development by activation of a p53-dependent checkpoint. Immunity26(6), 759–772 (2007).
  • Jin A, Itahana K, O’Keefe K, Zhang Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol. Cell Biol.24(17), 7669–7680 (2004).
  • Takagi M, Absalon MJ, McLure KG, Kastan MB.Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell123(1), 49–63 (2005).
  • Sulic S, Panic L, Barkic M, Mercep M, Uzelac M, Volarevic S. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev.19(24), 3070–3082 (2005).
  • Panic L, Tamarut S, Sticker-Jantscheff M et al. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol. Cell Biol.26(23), 8880–8891 (2006).
  • Panic L, Montagne J, Cokaric M, Volarevic S. S6-haploinsufficiency activates the p53 tumor suppressor. Cell Cycle6(1), 20–24 (2007).
  • Chen D, Zhang Z, Li M, Wang W et al. Ribosomal protein S7 as a novel modulator of p53–MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene26(35), 5029–5037 (2007).
  • Kunisada T, Lu SZ, Yoshida H et al. Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor. J. Exp. Med.187(10), 1565–1573 (1998).
  • Grichnik JM, Burch JA, Burchette J, Shea CR. The SCF/Kit pathway plays a critical role in control of normal human melanocyte homeostasis. J. Invest. Dermatol.111(2), 233–238 (1998).
  • Box NF, Terzian T. The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res.21(5), 525–533 (2008).
  • Wei CL, Wu Q, Vega VB, Chiu KP et al. A global map of p53 transcription-factor binding sites in the human genome. Cell124(1), 207–219 (2006).
  • Imokawa G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res.17(2), 96–110 (2004).
  • Kawaguchi Y, Mori N, Nakayama A. Kit+ melanocytes seem to contribute to melanocyte proliferation after UV exposure as precursor cells. J. Invest. Dermatol.116(6), 920–925 (2001).
  • Hosaka E, Soma Y, Kawa Y et al. Effects of ultraviolet light on melanocyte differentiation: studies with mouse neural crest cells and neural crest-derived cell lines. Pigment Cell Res.17(2), 150–157 (2004).
  • Metcalfe AM, Dixon RM, Radda GK. Wild-type but not mutant p53 activates the hepatocyte growth factor/scatter factor promoter. Nucl. Acids Res.25(5), 983–986 (1997).
  • Seol DW, Chen Q, Smith ML, Zarnegar R. Regulation of the c-met proto-oncogene promoter by p53. J. Biol. Chem.274(6), 3565–3572 (1999).
  • Hasegawa J, Goto Y, Murata H, Takata M, Saida T, Imokawa G. Downregulated melanogenic paracrine cytokine linkages in hypopigmented palmoplantar skin. Pigment Cell Melanoma Res.18(1), 5–16 (2008).
  • Garcia RJ, Ittah A, Mirabal S et al. Endothelin 3 induces skin pigmentation in a keratin-driven inducible mouse model. J. Invest. Dermatol.128(1), 131–142 (2008).
  • Yamaguchi Y, Passeron T, Hoashi et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/β-catenin signaling in keratinocytes. FASEB J.22(4), 1009–1020 (2008).
  • Bardeesy N, Bastian B, Hezel A et al. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol. Cell. Biol.21(6), 2144–2153 (2001).
  • Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol.24(26), 4340–4346 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.