90
Views
8
CrossRef citations to date
0
Altmetric
Review

Advances in the topical ocular drug delivery

, , &
Pages 309-323 | Published online: 09 Jan 2014

References

  • Urquhart J. Development of the ocusert pilocarpine ocular therapeutic systems – a case history in ophthalmic product development. In: Ophthalmic Drug Delivery Systems. Robinson JR (Ed.). American Pharmaceutical Association, DC, USA 105 (1980).
  • Liu JH, Kripke DF, Weinreb RN. Comparison of the nocturnal effects of once-daily timolol and latanoprost on intraocular pressure. Am. J. Ophthalmol.138(3), 389–395 (2004).
  • Grass GM, Wood RW, Robinson JR. Effects of calcium chelating agents on corneal permeability. Invest. Ophthalmol. Vis. Sci.26, 110–113 (1985).
  • Lee TWY, Robinson JR. Ocular penetration enhancers. In: Ophthalmic Drug Delivery Systems. (2nd Edition). Mitra AK (Ed.). Marcel Dekker, NY, USA 281–307 (2003).
  • Davies NM, Wang G, Tucker IG. Evaluation of a hydrocortisone/ hydroxypropyl-β-cyclodextrin solution for ocular drug delivery. Int. J. Pharm.156, 201–209 (1997).
  • Loftsson T, Stefansson E. Cyclodextrins in eye drop formulations: enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol. Scand.80(2), 144–150 (2002).
  • Tang-Liu DDS, Burke J. The effect of Azone® on ocular levobunolol absorption: calculating the area under the curve and its standard error using tissue sampling compartments. Pharm. Res.5, 238–241 (1988).
  • Pillion DJ, Amsden JA, Kensil CR, Recchia J. Structure-function relationship among Quillaja saponins serving as excipients for nasal and ocular delivery of insulin. J. Pharm. Sci.85, 518–524 (1996).
  • Chung YB, Han K, Nishiura A, Lee VHL. Ocular absorption of Pz-peptide and its effects on the ocular and systemic pharmacokinetics of topically applied drugs in the rabbit. Pharm. Res.15, 1882–1887 (1998).
  • Renard G, Bennani N, Lutaj P, Trinquand C. Comparative study of a collagen corneal shield and a subconjunctival injection at the end of cataract surgery. J. Cataract. Refract. Surg.19, 48–51 (1993).
  • Willoughby CE, Batterbury M, Kaye SB. Collagen corneal shields. Surv. Ophthalmol.47(2), 174–182 (2002).
  • Kleinmann G, Larson S, Neuhann IM et al. Intraocular concentrations of gatifloxacin and moxifloxacin in the anterior chamber via diffusion through the cornea using collagen shields. Cornea25(2), 209–213 (2006).
  • Hariprasad SM, Shah GK, Chi J, Prince RA. Determination of aqueous and vitreous concentration of moxifloxacin 0.5% after delivery via a dissolvable corneal collagen shield device. J. Cataract Refract. Surg.31(11), 2142–2146 (2005).
  • Myles ME, Loutsch JM, Higaki S, Hill JM. Ocular iontophoresis. In: Ophthalmic Drug Delivery Systems. (2nd Edition). Mitra AK (Ed.). Marcel Dekker, NY, USA 365–408 (2003).
  • Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv. Drug Deliv. Rev.57, 2063–2079 (2005).
  • Vollmer DL, Szlek MA, Kolb K, Lloyd LB, Parkinson TM. In vivo transscleral iontophoresis to rabbit eyes. J. Ocul. Pharmacol. Ther.18, 549–558 (2002).
  • Koevary SB, Nussey J, Lake S. Accumulation of topically applied porcine insulin in the retina and optic nerve in normal and diabetic rats. Invest. Ophthalmol. Vis. Sci.43, 797–804 (2002).
  • Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J. Control Release110(3), 479–489 (2006).
  • Eljarrat-Binstock E, Raiskup F, Frucht-Pery J, Domb AJ. Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J. Control Release106(3), 386–390 (2005).
  • Eljarrat-Binstock E, Raiskup F, Stepensky D, Domb AJ, Frucht-Pery J. Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Invest. Ophthalmol. Vis. Sci.45(8), 2543–2548 (2004).
  • Joshi A. Microparticulates as an ocular drug delivery system. In: Ocular Therapeutics and Drug Delivery. Reddy IK (Ed.). Technomic Publishing Co. Inc., Basel, Switzerland 441–457 (1996).
  • Schulman JA, Peyman GA. Intracameral, intravitreal and retinal drug delivery. In: Ophthalmic Drug Delivery Systems. (1st Edition). Mitra AK (Ed.). Marcel Dekker, NY, USA 383–425 (1993).
  • Lee VHK, Wood RW, Kreuter J, Harima T, Robinson JR.Ocular drug delivery of progesterone using nanoparticles. J. Microencapsul.3, 213 (1986).
  • Kothuri MK, Pinnamaneni S, Das NG, Das SK. Microparticles and nanoparticles in ocular drug delivery. In: Ophthalmic Drug Delivery Systems. (2nd Edition). Mitra AK (Ed.). Marcel Dekker, NY, USA 437–466 (2003).
  • Wood RW, Li VHK, Kreuter J, Robinson JR. Ocular disposition of poly-hexyl-2-cyano (3–14C) acrylate nanoparticles in albino rabbit. Int. J. Pharm.23, 175 (1985).
  • Kreuter J. Nanoparticles – preparation and applications. In: Microcapsules and Nanocapsules in Medicine and Pharmacy. Don Brow M (Ed.). CRC Press Inc., FL, USA 126–143 (1992).
  • Zimmer A, Kreuter J, Robinson JR. Studies on the transport pathway of PACA nanoparticles in ocular tissues. J. Microencapsul.8, 497 (1991).
  • Marchal-Haussler L, Fessi H, Devissaguet JP, Hoffman M, Maincent P. Colloidal drug delivery systems for the eye. A comparison of the efficacy of three different polymers: polyisobutylcyanoacrylate, polylactic-coglycolic acid, poly-epsilon-caprolactone. Pharm. Sci.2, 98 (1992).
  • Calvo P, Alonso MJ, Vila-Jato JL, Robinson JR. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J. Pharm. Pharmacol.48, 1147 (1996).
  • Cavalli R, Peira E, Caputo O, Gasco MR. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with β-cyclodextrins. Int. J. Pharm.182(1), 59–69 (1999).
  • Pignatello R, Ricupero N, Bucolo C, Maugeri F, Maltese A, Puglisi G. Preparation and characterization of eudragit retard nanosuspensions for the ocular delivery of cloricromene. AAPS Pharm. Sci. Tech.7(1), e27 (2006).
  • Bucolo C, Maltese A, Maugeri F, Busa B, Puglisi G, Pignatello R. Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromene. J. Pharm. Pharmacol.56(7), 841–846 (2004).
  • Pignatello R, Bucolo C, Puglisi G. Ocular tolerability of Eudragit RS100 and RL100 nanosuspensions as carriers for ophthalmic controlled drug delivery. J. Pharm. Sci.91(12), 2636–2641 (2002).
  • Bucolo C, Maltese A, Puglisi G, Pignatello R. Enhanced ocular anti-inflammatory activity of ibuprofen carried by a Eudragit RS100 nanoparticle suspension. Ophthalmic Res.34(5), 319–323 (2002).
  • Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur. J. Pharm. Sci.16(1–2), 53–61 (2002).
  • Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials23(15), 3247–3455 (2002).
  • Vega E, Egea MA, Valls O, Espina M, Garcia ML. Flurbiprofen loaded biodegradable nanoparticles for ophthalmic administration. J. Pharm. Sci.95(11), 393–405 (2006).
  • Gurtler F, Gurny R. Patent literature review of ophthalmic inserts. Drug Dev. Ind. Pharm.21(1) 1–18 (1995).
  • Refojo MF. Polymers in contact lenses: an overview. Curr. Eye Res.4, 719 (1985).
  • Maichuk YF. Ophthalmic drug inserts. Invest. Ophthalmol.14, 87–89 (1975).
  • Honorf M, Weyenberg W, Ludwig A, Bernkop-Schnurch A. Mucoadhesive ocular insert based on thiolated poly (acrylic acid): development and in vivo evaluation in humans. J. Control Release89(3), 419–428 (2003).
  • Mahe I, Mouly S, Jarrin I et al. Efficacy and safety of three ophthalmic inserts for topical anaesthesia of the cornea. An exploratory comparative dose-ranging, double-blind, randomized trial in healthy volunteers. Br. J. Clin. Pharmacol.59(2), 220–226 (2005).
  • Di Colo G, Zambito Y, Burgalassi S, Serafini A, Saettone MF. Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly (ethylene oxide). Int. J. Pharm.248(1–2), 115–22 (2002).
  • Di Colo G, Zambito Y. A study of release mechanisms of different ophthalmic drugs from erodible ocular inserts based on poly (ethylene oxide). Eur. J. Pharm. Biopharm.54(2), 193–199 (2002).
  • Di Colo G, Burgalassi S, Chetoni P, Fiaschi MP, Zambito Y, Saettone MF. Relevance of polymer molecular weight to the in vitro/in vivo performances of ocular inserts based on poly (ethylene oxide). Int. J. Pharm.220(1–2), 169–77 (2001).
  • Di Colo G, Burgalassi S, Chetoni P, Fiaschi MP, Zambito Y, Saettone MF. Gel-forming erodible inserts for ocular controlled delivery of ofloxacin. Int. J. Pharm.215(1–2), 101–111 (2001).
  • Weyenberg W, Bozdag S, Foreman P, Remon JP, Ludwig A. Characterization and in vivo evaluation of ocular minitablets prepared with different bioadhesive Carbopol-starch components. Eur. J. Pharm. Biopharm.62(2), 202–209 (2006).
  • Weyenberg W, Vermeire A, Dhondt MM et al. Ocular bioerodible minitablets as strategy for the management of microbial keratitis. Invest. Ophthalmol. Vis. Sci.45(9), 3229–3233 (2004).
  • Levet L, Touzeau O, Scheer S, Borderie V, Laroche L. A study of pupil dilation using the Mydriasert ophthalmic insert. J. Fr. Ophtalmol.10, 1099–1108 (2004).
  • Hiratani H, Fujiwara A, Tamiya Y, Mizutani Y, Alvarez-Lorenzo C. Ocular release of timolol from molecularly imprinted soft contact lenses. Biomaterials26(11), 1293–1298 (2005).
  • Hiratani H, Alvarez-Lorenzo C. The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems. Biomaterials25(6), 1105–1113 (2004).
  • Hiratani H, Alvarez-Lorenzo C. Timolol uptake and release by imprinted soft contact lenses made of N, N-diethylacrylamide and methacrylic acid. J. Control Release83(2), 223–230 (2002).
  • Alvarez-Lorenzo C, Hiratani H, Gomez-Amoza JL, Martinez-Pacheco R, Souto C, Concheiro A. Soft contact lenses capable of sustained delivery of timolol. J. Pharm. Sci.91(10), 2182–2192 (2002).
  • Gulsen D, Chauhan A. Ophthalmic drug delivery through contact lenses. Invest. Ophthalmol. Vis. Sci.45(7), 2342–2347 (2004).
  • Gulsen D, Li CC, Chauhan A. Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr. Eye Res.30(12), 1071–1080 (2005)
  • Johnston TP, Dias CS, Mitra AK, Alur H. Mucoadhesive polymers in ophthalmic drug delivery. In: Ophthalmic Drug Delivery Systems. (2nd Edition). Mitra AK (Ed.). Marcel Dekker, NY, USA 409–435 (2003).
  • Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Del. Rev.57, 1595–1639 (2005).
  • Smart JD.The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev.57(11), 1556–1568 (2005).
  • Meseguer G, Gurny R, Buri P, Rozier A, Plazonnet B. γ scintigraphic study of precorneal precorneal drainage and assessment of miotic response in rabbits of various ophthalmic formulations containing pilocarpine. Int. J. Pharm.95, 229–234 (1993).
  • Thermes F, Rozier A, Plazonnet B, Grove J. Bioadhesion: the effect of polyacrylic acid on the ocular bioavailability of timolol. Int. J. Pharm.81, 59–65 (1992).
  • Nelson JD, Farris L. Sodium hyaluronate and polyvinyl alcohol artificial tear preparations. A comparison in patients with keratoconjunctivitis sicca. Arch. Ophthalmol.106, 484–487 (1988).
  • Snibson GR, Greaves JL, Soper NDW, Tiffany JM, Wilson CG, Bron AJ. Ocular surface residence time of artificial tear solutions. Cornea11, 288–293 (1992).
  • Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and other natural polymers. Int. J. Pharm.78, 43–48 (1992).
  • Di Colo G, Zambito Y, Burgalassi S, Nardini I, Saettone MF. Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. Int. J. Pharm.273(1–2), 37–44 (2004).
  • Di Colo G, Burgalassi S, Zambito Y, Monti D, Chetoni P. Effects of different N-trimethyl chitosans on in vitro/in vivo ofloxacin transcorneal permeation. J. Pharm. Sci.93(11), 2851–2862 (2004).
  • Kao HJ, Lin HR, Lo YL, Yu SP. Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J. Pharm. Pharmacol.58(2), 179–186 (2006).
  • Felt O, Carrel A, Baehni P, Buri P, Gurny R. Chitosan as tear substitute: a wetting agent endowed with antimicrobial efficacy. J. Ocul. Pharmacol. Ther.16(3), 261–70 (2000).
  • Lele BS, Hoffman AS. Insoluble ionic complexes of polyacrylic acid with a cationic drug for use as a mucoadhesive, ophthalmic drug delivery system. J. Biomater. Sci. Polym. Ed.11(12), 1319–1331 (2000).
  • Sandri G, Bonferoni MC, Chetoni P et al. Ophthalmic delivery systems based on drug–polymer–polymer ionic ternary interaction: in vitro and in vivo characterization. Eur. J. Pharm. Biopharm.62(1), 59–69 (2006).
  • Burgalassi S, Chetoni P, Panichi L, Boldrini E, Saettone MF. Xyloglucan as a novel vehicle for timolol: pharmacokinetics and pressure lowering activity in rabbits. J. Ocul. Pharmacol. Ther.16, 497–509 (2000).
  • Ceulemans J, Vinckier I, Ludwig A. The use of xanthan gum in an ophthalmic dosage form: rheological characterization of the interaction with mucin. J. Pharm. Sci.91, 1117–1127 (2002).
  • Meseguer G, Buri P, Plazonnet B, Rozier A, Gurny R. γ scintigraphic comparison of eyedrops containing pilocarpine in healthy volunteers. J. Ocul. Pharmacol. Ther.12, 481–488 (1996).
  • Albasini M, Ludwig A. Evaluation of polysaccharides intended for ophthalmic use in ocular dosage forms. Farmaco50, 633–642 (1995).
  • Verschueren E, Van Santvliet L, Ludwig A. Evaluation of various carrageenans as ophthalmic viscolysers. STP Pharma. Sci.6, 203–210 (1996).
  • Saettone MF, Monti D, Torracca MT, Chetoni P. Mucoadhesive ophthalmic vehicles: evaluation of polymeric low-viscosity formulations. J. Ocul. Pharmacol.10(1), 83–92 (1994).
  • Rozier A, Maznel C, Grove J, Plazonnet B. Gelrite®: a novel, ion activated, in situ gelling polymer for ophthalmic vehicles – effect on bioavailability of timolol. Int. J. Pharm.57, 163–168 (1989).
  • Sultana Y, Ali A, Aqil M. Ion-activated, Gelrite® based in situ ophthalmic gels of pefloxacin mesylate: comparison with conventional eye drops. Drug Delivery13, 1–5 (2006).
  • Esposito P, Colombo I, Lovrecich M. Investigation of surface properties of some polymers by a thermodynamic and mechanical approach: possibility of predicting mucoadhesion and biocompatibility. Biomaterials15(3), 177–182 (1994).
  • Burgalassi S, Chetoni P, Panichi L, Boldrini E, Saettone MF. Xyloglucan as a novel vehicle for timolol: pharmacokinetics and pressure. J. Ocul. Pharmacol. Ther.16(6), 497–509 (2000).
  • Bernkop-Schnuerch A, Schwarz V, Steininger S. Polymers with thiol groups: a new generation of mucoadhesive polymers. Pharm. Res.16, 876–881 (1999).
  • Bernkop-Schnuerch A, Steininger S. Synthesis and characterization of mucoadhesive thiolated polymers. Int. J. Pharm.194, 239–247 (2000).
  • Bernkop-Schnuerch A, Scholler S, Biebel RG. Development of controlled release systems based on thiolated polymers. J. Control Release66, 39–48 (2000).
  • Kast CE, Bernkop-Schnuerch A. Thiolated polymers-thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials22, 2345–2352 (2001).
  • Bernkop-Schnuerch A, Kast CE, Guggi D. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer? GSH systems. J. Control Release93, 95–103 (2003).
  • Augustin AJ, Spitznas M, Kaviani N et al. Oxidative reactions in the tear film of patients suffering from dry eyes. Graefes Arch. Clin. Exp. Ophthamol.233, 694–698 (1995).
  • Ibrahim H, Buri P, Gurny R. Composition, structure et parameters physiologiques du systeme lacymal impliques dans la conception de formis ophthalmiques. Pharm. Acta Helv.63, 146 (1988).
  • Wesslau H. Zur Kenntnis von Acrlysaure entheltenden Copolymer- disdispersionen. II Die Verdichbarkeit Acrylsaure enthaltender Dispersionen. Makromol. Chem.69, 220 (1963).
  • Gurny R, Ibrahim H, Buri P. The development and use of in situ formed gels: triggered by pH. In: Biopharmaceutics Of Ocular Drug Delivery. Edman P (Ed.). CRC press, FL, USA 81–90 (1993).
  • Miller SC, Donovan MD. Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits. Int. J. Pharm.12, 147–152 (1982).
  • Balasubramaniam J, Kant S, Pandit JK. In vitro and in vivo evaluation of the Gelrite gellan gum-based ocular delivery system for indomethacin. Acta Pharm.53(4), 251–261 (2003).
  • Shibuya T, Kashiwagi K, Tsukahara S. Comparison of efficacy and tolerability between two gel-forming timolol maleate ophthalmic solutions in patients with glaucoma or ocular hypertension. Ophthalmologica217(1), 31–38 (2003).
  • Krauland AH, Leitner VM, Bernkop-Schnuerch A. Improvement in the in situ gelling properties of deacetylated gellan gum by the immobilization of thiol groups. J. Pharm. Sci.92, 1234–1241 (2003).
  • Cohen S, Lobel E, Trevgoda A, Peled Y. A novel in situ forming drug delivery system from alginates undergoing gelation in the eye. J. Control Release.44, 201–208 (1997).
  • Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J. Control Release15, 73(2–3), 205–211 (2001).
  • Sultana Y, Aqil M, Ali A, Zafar S. Evaluation of carbopol-methyl cellulose based sustained-release ocular delivery system for pefloxacin mesylate using rabbit eye model. Pharm. Dev. Tech.11, 313–319 (2006).
  • Lin HR, Sung KC, Vong WJ. In situ gelling of alginate/pluronic solutions for ophthalmic delivery of pilocarpine. Biomacromolecules5(6), 2358–2365 (2004).
  • Lin HR, Sung KC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J. Control Release69(3), 379–388 (2000).
  • Tomalia DA, Baker H, Dewald J et al. A new class of polymers: starburst-dendritic macromolecules. Polymer J.17, 117–132 (1985).
  • Tomalia DA, Naylor AM, Goddard WAI. Starburst dendrimers: molecular- level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl.29, 138–175 (1990).
  • Tomalia DA. Dendrimer molecules. Sci. Am.5, 42 (1995).
  • Loutsch JM, Ong D, Hill JM. Dendrimers: an innovative and enhanced ocular drug delivery system. In: Ophthalmic Drug Delivery Systems. (2nd Edition). Mitra AK (Ed.). Marcel Dekker, NY, USA 467–492 (2003).
  • Uppuluri S, Keinath SE, Tomalia DA, Dvornic PR. Rheology of dendrimers: I. Newtonian flow behaviour of medium and highly concentrated solutions of polyamidoamine (PAMAM) dendrimers in ethylenediamine (EDA) solvent. Macromolecules31, 4498–4510 (1998).
  • Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Control Release102, 23–38 (2005).
  • Reddy IK, Bodor NS. Novel approaches to design and deliver safe and effective anti-glaucoma agents to the eye. Adv. Drug Del. Rev.14, 251–267 (1994).
  • Bodor N, Simpkins JW. Redox delivery system for brain specific, sustained release of dopamine. Science221, 65–67 (1983).
  • Bodor N, Farag HH, Brewster ME. Site specific sustained release of drugs to the brain. Science214, 1370–1372 (1981).
  • Bodor N, Visor G. A site-specific chemical delivery system as a short-acting mydriatic agent. Pharm. Res.1, 168–173 (1984).
  • Bodor N, Farag HH. Improved delivery through biological membranes. Brain-specific delivery of dopamine with a dihydropyridine pyridinium salt type redox delivery system. J. Med. Chem.26, 528–534 (1983).
  • Bodor N. Soft drugs: priniciples and methods for the design of safe drugs. Med. Res. Rev.4, 449–469 (1984).
  • Bodor N, Elkoussi AA. Novel ‘soft’ β-blockers as potential safe antiglaucoma agents. Curr. Eye Res.7, 369–374 (1988).
  • Davis JL, Gilger BC, Robinson MR. Novel approaches to ocular drug delivery. Curr. Opin. Mol. Ther.6(2), 195–205 (2004).
  • Tirucherai GS, Dias C, Mitra AK. Corneal permeation of ganciclovir: mechanism of ganciclovir enhancement by acyl ester prodrug design. J. Ocul. Phamacol. Ther.18(6), 535–548 (2002).
  • Juntunen J, Jarvinen T, Niemi R. In-vitro corneal permeation of cannabinoids and their water-soluble phosphate ester prodrugs. J. Pharm. Pharmacol.57(9), 1153–1157 (2005).
  • Lallemand F, Perottet P, Felt-Baeyens O et al. A water-soluble prodrug of cyclosporine A for ocular application: a stability study. Eur. J. Pharm. Sci.26(1), 124–129 (2005).
  • Lallemand F, Furrer P, Felt-Baeyens O et al. A novel water-soluble cyclosporine A prodrug: ocular tolerance and in vivo kinetics. Int. J. Pharm.295(1–2), 7–14 (2005).
  • Tamilvanan S, Benita S. The potential of lipid emulsions for ocular delivery of lipophilic drugs. Eur. J. Pharm. Sci.58, 357–368 (2004).
  • Sasaki H, Yamamura K, Nishida K, Nakamura J, Ichikawa M. Delivery of drugs to the eye by topical application. Prog. Retin. Eye Res.15, 583–620 (1996).
  • Kaur IP, Garg A, Aggarwal D. Vesicular sytem in ocular drug delivery: an overview. Int J. Pharm.269(1), 1–14 (2004).
  • Cortesi R, Argnani R, Esposito E et al. Cationic liposomes as potential carriers for ocular administration of peptides with anti-herpetic activity. Int. J. Pharm.317(1), 90–100 (2006).
  • Chetoni P, Rossi S, Burgalassi S, Monti D, Mariotti S, Saettone MF. Comparison of liposome-encapsulated acyclovir with acyclovir ointment: ocular pharmacokinetics in rabbits. J. Ocul. Pharmacol. Ther.20(2), 169–77 (2004).
  • Monem AS, Ali FM, Ismail MW. Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int. J. Pharm.198(1), 29–38 (2000).
  • Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int. J. Pharm.290(1–2), 155–159 (2005).
  • Guinedi AS, Mortada ND, Mansour S, Hathout RM. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int. J. Pharm.306(1–2), 71–82 (2000).
  • Sakai Y, Yasueda S, Ohtori A. Stability of latanoprost in an ophthalmic lipid emulsion using polyvinyl alcohol. Int. J. Pharm.305(1–2), 176–179 (2005).
  • Lv FF, Li N, Zheng LQ, Tung CH. Studies on the stability of the chloramphenicol in the microemulsion free of alcohols. Eur. J. Pharm. Biopharm.62(3), 288–294 (2006).
  • Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM. W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J. Control Release111(1–2), 145–152 (2006).
  • Suverkrup R, Grunthal S, Krasichkova O et al. The ophthalmic lyophilisate carrier system (OLCS): development of a novel dosage form, freeze-drying technique, and in vitro quality control tests. Eur. J. Pharm. Biopharm.57(2), 269–277 (2004).
  • Dinslage S, Diestelhorst M, Weichselbaum A. Lyophilisates for drug delivery in ophthalmology. Pharmacokinetics of fluorescein in the human anterior segment. Br. J. Ophthalmol.86(10), 1114–1117 (2002).
  • Lux A, Dinslage S, Suverkrup R, Maier S, Diestelhorst M. Three conventional eye drops versus a single lyophilisate. A comparative bioavailability study. J. Fr. Ophtalmol.28(2), 185–189 (2005).
  • Steinfeld A, Lux A, Maier S, Suverkrup R, Diestelhorst M. Bioavailability of fluorescein from a new drug delivery system in human eyes. Br. J. Ophthalmol.88(1), 48–53 (2004).
  • Diestelhorst M, Grunthal S, Süverkrüp R. Dry drops: a new preservative-free drug delivery system. Graefes Arch. Clin. Exp. Ophthalmol.237, 394–398 (1999).
  • Pijls RT, Sonderkamp T, Daube GW et al. Studies on a new device for drug delivery to the eye. Eur. J. Pharm. Biopharm.59(2), 283–288 (2005).

Patent

  • Joshi A, Ding S, Himmelstein KJ. US Patent 5252318 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.