16
Views
0
CrossRef citations to date
0
Altmetric
Review

Gene therapy for corneal graft survival

&
Pages 409-417 | Published online: 09 Jan 2014

References

  • Marshall E. Gene therapy death prompts review of adenovirus vector. Science286(5448), 2244–2245 (1999).
  • Hacein-Bey-Abina S, von Kalle C, Schmidt M et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med.348(3), 255–256 (2003).
  • Lu PY, Xie F, Woodle MC. In vivo application of RNA interference: from functional genomics to therapeutics. Adv. Genet.54, 117–142 (2005).
  • Goessler UR, Riedel K, Hormann K, Riedel F. Perspectives of gene therapy in stem cell tissue engineering. Cells Tissues Organs183(4), 169–179 (2006).
  • Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin. Med. Res.4(3), 218–227 (2006).
  • Jun AS, Larkin DF. Prospects for gene therapy in corneal disease. Eye17(8), 906–911 (2003).
  • The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch. Ophthalmol.110(10), 1392–1403 (1992).
  • Niederkorn JY. Immune privilege and immune regulation in the eye. Adv. Immunol.48, 191–226 (1990).
  • Niederkorn JY. The immune privilege of corneal allografts. Transplantation67(12), 1503–1508 (1999).
  • Streilein JW. Tissue barriers, immunosuppressive microenvironments, and privileged sites: the eye’s point of view. Reg. Immunol.5(5), 253–268 (1993).
  • Cursiefen C, Cao J, Chen L et al. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest. Ophthalmol. Vis. Sci.45(8), 2666–2673 (2004).
  • Streilein JW. New thoughts on the immunology of corneal transplantation. Eye17(8), 943–948 (2003).
  • Claerhout I, Beele H, De Bacquer D, Kestelyn P. Factors influencing the decline in endothelial cell density after corneal allograft rejection. Invest. Ophthalmol. Vis. Sci.44(11), 4747–4752 (2003).
  • Bourne WM. Biology of the corneal endothelium in health and disease. Eye17(8), 912–918 (2003).
  • Ohguro N, Matsuda M, Shimomura Y, Inoue Y, Tano Y. Effects of penetrating keratoplasty rejection on the endothelium of the donor cornea and the recipient peripheral cornea. Am. J. Ophthalmol.129(4), 468–471 (2000).
  • Hori J, Streilein JW. Dynamics of donor cell persistence and recipient cell replacement in orthotopic corneal allografts in mice. Invest. Ophthalmol. Vis. Sci.42(8), 1820–1828 (2001).
  • Musch DC, Schwartz AE, Fitzgerald-Shelton K, Sugar A, Meyer RF. The effect of allograft rejection after penetrating keratoplasty on central endothelial cell density. Am. J. Ophthalmol.111(6), 739–742 (1991).
  • Larkin DF, Alexander RA, Cree IA. Infiltrating inflammatory cell phenotypes and apoptosis in rejected human corneal allografts. Eye11(Pt 1), 68–74 (1997).
  • Albon J, Tullo AB, Aktar S, Boulton ME. Apoptosis in the endothelium of human corneas for transplantation. Invest. Ophthalmol. Vis. Sci.41(10), 2887–2893 (2000).
  • Gardlik R, Palffy R, Hodosy J, Lukacs J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med. Sci. Monit.11(4), RA110–RA121 (2005).
  • Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science247(4949 Pt 1), 1465–1468 (1990).
  • Li S, Ma Z. Nonviral gene therapy. Curr. Gene Ther.1(2), 201–226 (2001).
  • Wang X, Liang HD, Dong B, Lu QL, Blomley MJ. Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of mice: comparison between commercially available microbubble contrast agents. Radiology237(1), 224–229 (2005).
  • Nabel GJ, Nabel EG, Yang ZY et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc. Natl Acad. Sci. USA90(23), 11307–11311 (1993).
  • Gill DR, Southern KW, Mofford KA et al. A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther.4(3), 199–209 (1997).
  • Li SD, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther.13(18), 1313–1319 (2006).
  • Liu G, Li D, Pasumarthy MK et al. Nanoparticles of compacted DNA transfect postmitotic cells. J. Biol. Chem.278(35), 32578–32586 (2003).
  • Ziady AG, Gedeon CR, Muhammad O et al. Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung. Mol. Ther.8(6), 948–956 (2003).
  • Konstan MW, Davis PB, Wagener JS et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther.15(12), 1255–1269 (2004).
  • Mancheno-Corvo P, Martin-Duque P. Viral gene therapy. Clin. Transl. Oncol.8(12), 858–867 (2006).
  • Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc. Natl Acad. Sci. USA97(13), 7482–7487 (2000).
  • Flotte TR. Recombinant adeno-associated virus vectors for cystic fibrosis gene therapy. Curr. Opin. Mol. Ther.3(5), 497–502 (2001).
  • Acland GM, Aguirre GD, Ray J et al. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet.28(1), 92–95 (2001).
  • Wright JF, Qu G, Tang C, Sommer JM. Recombinant adeno-associated virus: formulation challenges and strategies for a gene therapy vector. Curr. Opin. Drug Discov. Devel.6(2), 174–178 (2003).
  • Latchman DS. Gene delivery and gene therapy with herpes simplex virus-based vectors. Gene264(1), 1–9 (2001).
  • Stechschulte SU, Joussen AM, von Recum HA et al. Rapid ocular angiogenic control via naked DNA delivery to cornea. Invest. Ophthalmol. Vis. Sci.42(9), 1975–1979 (2001).
  • Yu WZ, Li XX, She HC et al. Gene transfer of kringle 5 of plasminogen by electroporation inhibits corneal neovascularization. Ophthalmic Res.35(5), 239–246 (2003).
  • Sakamoto T, Oshima Y, Nakagawa K, Ishibashi T, Inomata H, Sueishi K. Target gene transfer of tissue plasminogen activator to cornea by electric pulse inhibits intracameral fibrin formation and corneal cloudiness. Hum. Gene Ther.10(15), 2551–2557 (1999).
  • Tan PH, King WJ, Chen D et al. Transferrin receptor-mediated gene transfer to the corneal endothelium. Transplantation71(4), 552–560 (2001).
  • Sonoda S, Tachibana K, Uchino E et al. Gene transfer to corneal epithelium and keratocytes mediated by ultrasound with microbubbles. Invest. Ophthalmol. Vis. Sci.47(2), 558–564 (2006).
  • Oshima Y, Sakamoto T, Hisatomi T et al. Targeted gene transfer to corneal stroma in vivo by electric pulses. Exp. Eye Res.74(2), 191–198 (2002).
  • Tanelian DL, Barry MA, Johnston SA, Le T, Smith G. Controlled gene gun delivery and expression of DNA within the cornea. Biotechniques23(3), 484–488 (1997).
  • Zagon IS, Sassani JW, Malefyt KJ, McLaughlin PJ. Regulation of corneal repair by particle-mediated gene transfer of opioid growth factor receptor complementary DNA. Arch. Ophthalmol.124(11), 1620–1624 (2006).
  • Klebe S, Stirling JW, Williams KA. Corneal endothelial cell nuclei are damaged after DNA transfer using a gene gun. Clin. Experiment. Ophthalmol.28(1), 58–59 (2000).
  • Konig Merediz SA, Zhang EP, Wittig B, Hoffmann F. Ballistic transfer of minimalistic immunologically defined expression constructs for IL4 and CTLA4 into the corneal epithelium in mice after orthotopic corneal allograft transplantation. Graefes Arch. Clin. Exp. Ophthalmol.238(8), 701–707 (2000).
  • Muller A, Zhang EP, Schroff M, Wittig B, Hoffmann F. Influence of ballistic gene transfer on antigen-presenting cells in murine corneas. Graefes Arch. Clin. Exp. Ophthalmol.240(10), 851–859 (2002).
  • Zhang EP, Muller A, Schulte F et al. Minimizing side effects of ballistic gene transfer into the murine corneal epithelium. Graefes Arch. Clin. Exp. Ophthalmol.240(2), 114–119 (2002).
  • Collins L, Fabre JW. A synthetic peptide vector system for optimal gene delivery to corneal endothelium. J. Gene Med.6(2), 185–194 (2004).
  • Hudde T, Rayner SA, Comer RM et al. Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther.6(5), 939–943 (1999).
  • Masuda I, Matsuo T, Yasuda T, Matsuo N. Gene transfer with liposomes to the intraocular tissues by different routes of administration. Invest. Ophthalmol. Vis. Sci.37(9), 1914–1920 (1996).
  • Pleyer U, Dannowski H. Delivery of genes via liposomes to corneal endothelial cells. Drug News Perspect.15(5), 283–289 (2002).
  • Mohan RR, Schultz GS, Hong JW, Mohan RR, Wilson SE. Gene transfer into rabbit keratocytes using AAV and lipid-mediated plasmid DNA vectors with a lamellar flap for stromal access. Exp. Eye Res.76(3), 373–383 (2003).
  • Bertelmann E, Ritter T, Vogt K, Reszka R, Hartmann C, Pleyer U. Efficiency of cytokine gene transfer in corneal endothelial cells and organ-cultured corneas mediated by liposomal vehicles and recombinant adenovirus. Ophthalmic Res.35(2), 117–124 (2003).
  • Tan PH, Manunta M, Ardjomand N et al. Antibody targeted gene transfer to endothelium. J. Gene Med.5(4), 311–323 (2003).
  • Kuo CN, Yang LC, Wu PC, Kuo HK, Kuo CJ, Tai MH. Dehydrated form of plasmid expressing basic fibroblast growth factor-polyethylenimine complex is a novel and accurate method for gene transfer to the cornea. Curr. Eye Res.30(11), 1015–1024 (2005).
  • Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE1, E38 (2006).
  • Hudde T, Rayner SA, De Alwis M et al. Adeno-associated and herpes simplex viruses as vectors for gene transfer to the corneal endothelium. Cornea19(3), 369–373 (2000).
  • Qian Y, Leong FL, Kazlauskas A, Dana MR. Ex vivo adenovirus-mediated gene transfer to corneal graft endothelial cells in mice. Invest. Ophthalmol. Vis. Sci.45(7), 2187–2193 (2004).
  • Arancibia-Carcamo CV, Oral HB, Haskard DO, Larkin DF, George AJ. Lipoadenofection-mediated gene delivery to the corneal endothelium: prospects for modulating graft rejection. Transplantation65(1), 62–67 (1998).
  • Chen Z, Mok H, Pflugfelder SC, Li DQ, Barry MA. Improved transduction of human corneal epithelial progenitor cells with cell-targeting adenoviral vectors. Exp. Eye Res.83(4), 798–806 (2006).
  • Comer RM, King WJ, Ardjomand N, Theoharis S, George AJ, Larkin DF. Effect of administration of CTLA4-Ig as protein or cDNA on corneal allograft survival. Invest. Ophthalmol. Vis. Sci.43(4), 1095–1103 (2002).
  • Gong N, Pleyer U, Yang J et al. Influence of local and systemic CTLA4Ig gene transfer on corneal allograft survival. J. Gene Med.8(4), 459–467 (2006).
  • Klebe S, Coster DJ, Sykes PJ et al. Prolongation of sheep corneal allograft survival by transfer of the gene encoding ovine IL-12-p40 but not IL-4 to donor corneal endothelium. J. Immunol.175(4), 2219–2226 (2005).
  • Klebe S, Sykes PJ, Coster DJ, Bloom DC, Williams KA. Gene transfer to ovine corneal endothelium. Clin. Experiment. Ophthalmol.29(5), 316–322 (2001).
  • Rayner SA, Larkin DF, George AJ. TNF receptor secretion after ex vivo adenoviral gene transfer to cornea and effect on in vivo graft survival. Invest. Ophthalmol. Vis. Sci.42(7), 1568–1573 (2001).
  • Lai YK, Shen WY, Brankov M, Lai CM, Constable IJ, Rakoczy PE. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther.9(12), 804–813 (2002).
  • Tsai ML, Chen SL, Chou PI, Wen LY, Tsai RJ, Tsao YP. Inducible adeno-associated virus vector-delivered transgene expression in corneal endothelium. Invest. Ophthalmol. Vis. Sci.43(3), 751–757 (2002).
  • Bainbridge JW, Stephens C, Parsley K et al.In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther.8(21), 1665–1668 (2001).
  • Wang X, Appukuttan B, Ott S et al. Efficient and sustained transgene expression in human corneal cells mediated by a lentiviral vector. Gene Ther.7(3), 196–200 (2000).
  • Beutelspacher SC, Ardjomand N, Tan PH et al. Comparison of HIV-1 and EIAV-based lentiviral vectors in corneal transduction. Exp. Eye Res.80(6), 787–794 (2005).
  • Igarashi T, Miyake K, Suzuki N et al. New strategy for in vivo transgene expression in corneal epithelial progenitor cells. Curr. Eye Res.24(1), 46–50 (2002).
  • Jessup CF, Brereton HM, Coster DJ, Williams KA. In vitro adenovirus mediated gene transfer to the human cornea. Br. J. Ophthalmol.89(6), 658–661 (2005).
  • Jessup CF, Brereton HM, Sykes PJ, Thiel MA, Coster DJ, Williams KA. Local gene transfer to modulate rat corneal allograft rejection. Invest. Ophthalmol. Vis. Sci.46(5), 1675–1681 (2005).
  • Klebe S, Sykes PJ, Coster DJ, Krishnan R, Williams KA. Prolongation of sheep corneal allograft survival by ex vivo transfer of the gene encoding interleukin-10. Transplantation71(9), 1214–1220 (2001).
  • Sakamoto T, Ueno H, Sonoda K et al. Blockade of TGF-β by in vivo gene transfer of a soluble TGF-β type II receptor in the muscle inhibits corneal opacification, edema and angiogenesis. Gene Ther.7(22), 1915–1924 (2000).
  • Hudde T, Comer RM, Kinsella MT et al. Modulation of hydrogen peroxide induced injury to corneal endothelium by virus mediated catalase gene transfer. Br. J. Ophthalmol.86(9), 1058–1062 (2002).
  • Beutelspacher SC, Pillai R, Watson MP et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression. Eur. J. Immunol.36(3), 690–700 (2006).
  • Murthy RC, McFarland TJ, Yoken J et al. Corneal transduction to inhibit angiogenesis and graft failure. Invest. Ophthalmol. Vis. Sci.44(5), 1837–1842 (2003).
  • Ambati BK, Nozaki M, Singh N et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature443(7114), 993–997 (2006).
  • Singh N, Higgins E, Amin S et al. Unique homologous siRNA blocks hypoxia-induced VEGF upregulation in human corneal cells and inhibits and regresses murine corneal neovascularization. Cornea26(1), 65–72 (2007).
  • Nakamura H, Siddiqui SS, Shen X et al. RNA interference targeting transforming growth factor-β type II receptor suppresses ocular inflammation and fibrosis. Mol. Vis.10, 703–711 (2004).
  • Silva G, Cunha A, Gregoire IP, Seldon MP, Soares MP. The antiapoptotic effect of heme oxygenase-1 in endothelial cells involves the degradation of p38 α MAPK isoform. J. Immunol.177(3), 1894–1903 (2006).
  • Yamashita K, Ollinger R, McDaid J et al. Heme oxygenase-1 is essential for and promotes tolerance to transplanted organs. Faseb J.20(6), 776–778 (2006).

Website

  • Journal of Gene Medicine Clinical Trials www.wiley.co.uk/genmed/clinical

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.