49
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of epigenetic therapy in myelodysplastic syndrome

&
Pages 161-174 | Published online: 10 Jan 2014

References

  • Aul C, Giagounidis A, Germing U. Epidemiological features of myelodysplastic syndromes: results from regional cancer surveys and hospital-based statistics. Int. J. Hematol.73(4), 405–410 (2001).
  • Germing U, Strupp C, Kundgen A et al. No increase in age-specific incidence of myelodysplastic syndromes. Haematologica89(8), 905–910 (2004).
  • Iglesias Gallego M, Sastre Moral JL, Gayoso Diz P, Garcia Costa A, Ros Forteza S, Mayan Santos JM. Incidence and characteristics of myelodysplastic syndromes in Ourense (Spain) between 1994–1998. Haematologica88(10), 1197–1199 (2003).
  • Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer109(8), 1536–1542 (2007).
  • Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat. Rev. Cancer7(2), 118–129 (2007).
  • Bennett JM, Catovsky D, Daniel MT et al. Proposals for the classification of the myelodysplastic syndromes. Br. J. Haematol.51(2), 189–199 (1982).
  • Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood100(7), 2292–2302 (2002).
  • Greenberg P, Cox C, LeBeau MM et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood89(6), 2079–2088 (1997).
  • Malcovati L, Germing U, Kuendgen A et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J. Clin. Oncol.25(23), 3503–3510 (2007).
  • List A, Kurtin S, Roe DJ et al. Efficacy of lenalidomide in myelodysplastic syndromes. N. Engl. J. Med.352(6), 549–557 (2005).
  • List A, Dewald G, Bennett J et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N. Engl. J. Med.355(14), 1456–1465 (2006).
  • Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist10(3), 176–182 (2005).
  • Baylin SB, Ohm JE. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer6(2), 107–116 (2006).
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell128(4), 683–692 (2007).
  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99(3), 247–257 (1999).
  • Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349(21), 2042–2054 (2003).
  • Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA99(6), 3740–3745 (2002).
  • Esteller M, Fraga MF, Guo M et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum. Mol. Genet.10(26), 3001–3007 (2001).
  • Herman JG, Latif F, Weng Y et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA91(21), 9700–9704 (1994).
  • Goto T, Monk M. Regulation of X-chromosome inactivation in development in mice and humans. Microbiol. Mol. Biol. Rev.62(2), 362–378 (1998).
  • Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L). Nature190, 372–373 (1961).
  • Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301(5895), 89–92 (1983).
  • Gaudet F, Hodgson JG, Eden A et al. Induction of tumors in mice by genomic hypomethylation. Science300(5618), 489–492 (2003).
  • Issa JP. DNA methylation as a therapeutic target in cancer. Clin. Cancer Res.13(6), 1634–1637 (2007).
  • Lapeyre JN, Becker FF. 5-Methylcytosine content of nuclear DNA during chemical hepatocarcinogenesis and in carcinomas which result. Biochem. Biophys. Res. Commun.87(3), 698–705 (1979).
  • Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res.72, 141–196 (1998).
  • Garcia-Manero G, Issa JP. Histone deacetylase inhibitors: a review of their clinical status as antineoplastic agents. Cancer Invest.23(7), 635–642 (2005).
  • Kondo Y, Shen L, Cheng AS et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet.40(6), 741–750 (2008).
  • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol.338(1), 17–31 (2004).
  • Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer6(1), 38–51 (2006).
  • Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin. Immunol.109(1), 80–88 (2003).
  • Guo SX, Taki T, Ohnishi H et al. Hypermethylation of p16 and p15 genes and RB protein expression in acute leukemia. Leuk. Res.24(1), 39–46 (2000).
  • Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res.59(15), 3730–3740 (1999).
  • Takahashi T, Shivapurkar N, Reddy J et al. DNA methylation profiles of lymphoid and hematopoietic malignancies. Clin. Cancer Res.10(9), 2928–2935 (2004).
  • Galm O, Herman JG, Baylin SB. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev.20(1), 1–13 (2006).
  • Agrawal S, Unterberg M, Koschmieder S et al. DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia. Cancer Res.67(3), 1370–1377 (2007).
  • Garcia-Manero G, Daniel J, Smith TL et al. DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin. Cancer Res.8(7), 2217–2224 (2002).
  • Shen L, Toyota M, Kondo Y et al. Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood101(10), 4131–4136 (2003).
  • Wong IH, Ng MH, Huang DP, Lee JC. Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood95(6), 1942–1949 (2000).
  • Kroeger H, Jelinek J, Estecio MR et al. Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood112(4), 1366–1373 (2008).
  • Jiang Y, Falk J, Jin M, Liu D, Maciejewski JP. Global methylome of normal and malignant hematopoietic stem cells. ASH Annual Meeting Abstracts110(11), 2118 (2007).
  • Figueroa ME, Fandy T, McConnell MJ et al. Myelodysplastic syndrome (MDS) displays profound and functionally significant epigenetic deregulation compared to acute myeloid leukemia (AML) and normal bone marrow cells. ASH Annual Meeting Abstracts110(11), 345 (2007).
  • Silverman LR, Demakos EP, Peterson BL et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol.20(10), 2429–2440 (2002).
  • Silverman LR, McKenzie DR, Peterson BL et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J. Clin. Oncol.24(24), 3895–3903 (2006).
  • Fenaux P, Mufti GJ, Santini V et al. Azacitidine (AZA) treatment prolongs overall survival (OS) in higher-risk MDS patients compared with conventional care regimens (CCR): results of the AZA-001 Phase III Study. ASH Annual Meeting Abstracts110(11), 817 (2007).
  • Momparler RL. Pharmacology of 5-aza-2´-deoxycytidine (decitabine). Semin. Hematol.42(3 Suppl. 2), S9–S16 (2005).
  • Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann. Intern. Med.134(7), 573–586 (2001).
  • Zagonel V, Lo Re G, Marotta G et al. 5-aza-2´-deoxycytidine (decitabine) induces trilineage response in unfavourable myelodysplastic syndromes. Leukemia7(Suppl. 1), 30–35 (1993).
  • Wijermans PW, Krulder JW, Huijgens PC, Neve P. Continuous infusion of low-dose 5-aza-2´-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia11(1), 1–5 (1997).
  • Wijermans P, Lubbert M, Verhoef G et al. Low-dose 5-aza-2´-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter Phase II study in elderly patients. J. Clin. Oncol.18(5), 956–962 (2000).
  • Lubbert M, Wijermans P, Kunzmann R et al. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2´-deoxycytidine. Br. J. Haematol.114(2), 349–357 (2001).
  • Kantarjian H, Issa JP, Rosenfeld CS et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a Phase III randomized study. Cancer106(8), 1794–1803 (2006).
  • Issa JP, Garcia-Manero G, Giles FJ et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2´-deoxycytidine (decitabine) in hematopoietic malignancies. Blood103(5), 1635–1640 (2004).
  • Atallah E, Kantarjian H, Garcia-Manero G. The role of decitabine in the treatment of myelodysplastic syndromes. Expert Opin. Pharmacother.8(1), 65–73 (2007).
  • Kantarjian H, Oki Y, Garcia-Manero G et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood109(1), 52–57 (2007).
  • Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov.5(9), 769–784 (2006).
  • Liu T, Kuljaca S, Tee A, Marshall GM. Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat. Rev.32(3), 157–165 (2006).
  • Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist12(10), 1247–1252 (2007).
  • Gore SD, Weng LJ, Figg WD et al. Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin. Cancer Res.8(4), 963–970 (2002).
  • Kuendgen A, Schmid M, Knipp S et al. Valproic acid (VPA) achieves high response rates in patients with low-risk myelodysplastic syndromes. ASH Annual Meeting Abstracts106(11), 789 (2005).
  • Kuendgen A, Strupp C, Aivado M et al. Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood104(5), 1266–1269 (2004).
  • Byrd JC, Marcucci G, Parthun MR et al. A Phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood105(3), 959–967 (2005).
  • Odenike OM, Alkan S, Sher D et al. The histone deacetylase inhibitor (HDI) depsipeptide has differential activity in core binding factor AML. ASH Annual Meeting Abstracts108(11), 1956 (2006).
  • Garcia-Manero G, Assouline S, Cortes J et al. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood112(4), 981–989 (2008).
  • Giles F, Fischer T, Cortes J et al. A Phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin. Cancer Res.12(15), 4628–4635 (2006).
  • Gojo I, Jiemjit A, Trepel JB et al. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood109(7), 2781–2790 (2007).
  • Garcia-Manero G, Yang H, Bueso-Ramos C et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood111(3), 1060–1066 (2008).
  • Gore SD, Weng LJ, Zhai S et al. Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin. Cancer Res.7(8), 2330–2339 (2001).
  • Gottlicher M, Minucci S, Zhu P et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J.20(24), 6969–6978 (2001).
  • Kuendgen A, Knipp S, Fox F et al. Results of a Phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann. Hematol.84(Suppl. 1), 61–66 (2005).
  • Jones PL, Wolffe AP. Relationships between chromatin organization and DNA methylation in determining gene expression. Semin. Cancer Biol.9(5), 339–347 (1999).
  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet.21(1), 103–107 (1999).
  • Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G. Antileukemia activity of the combination of 5-aza-2´-deoxycytidine with valproic acid. Leuk. Res.29(7), 739–748 (2005).
  • Gore SD, Baylin S, Sugar E et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res.66(12), 6361–6369 (2006).
  • Maslak P, Chanel S, Camacho LH et al. Pilot study of combination transcriptional modulation therapy with sodium phenylbutyrate and 5-azacytidine in patients with acute myeloid leukemia or myelodysplastic syndrome. Leukemia20(2), 212–217 (2006).
  • Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B et al. Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia. Blood108(10), 3271–3279 (2006).
  • Soriano AO, Yang H, Faderl S et al. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood110(7), 2302–2308 (2007).
  • Blum W, Klisovic RB, Hackanson B et al. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J. Clin. Oncol.25(25), 3884–3891 (2007).
  • Gore SD, Jiemjit A, Silverman LB et al. Combined methyltransferase/histone deacetylase inhibition with 5-azacitidine and MS-275 in patients with MDS, CMMoL and AML: clinical response,histone acetylation and DNA damage. ASH Annual Meeting Abstracts108(11), 517 (2006).
  • Garcia-Manero G, Yang AS, Klimek V et al. Phase I/II study of MGCD0103, an oral isotype-selective histone deacetylase (HDAC) inhibitor, in combination with 5-azacitidine in higher-risk myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). ASH Annual Meeting Abstracts110(11), 444 (2007).
  • Ravandi F, Faderl S, Thomas D et al. Phase I study of suberoylanilide hydroxamic acid (SAHA) and decitabine in patients with relapsed, refractory or poor prognosis leukemia. ASH Annual Meeting Abstracts110(11), 897 (2007).
  • Yee KWL, Minden MD, Brandwein J et al. A Phase I trial of two sequence-specific schedules of decitabine and vorinostat in patients with acute myeloid leukemia (AML). ASH Annual Meeting Abstracts110(11), 908 (2007).
  • Grovdal M, Khan R, Aggerholm A et al. Maintenance treatment with azacytidine for patients with high risk myelodysplastic syndromes or acute myeloid leukaemia in complete remission after intensive chemotherapy. ASH Annual Meeting Abstracts110(11), 818 (2007).
  • Jabbour E, Giralt S, Kantarjian H et al. Efficacy of azacytidine (5-AC) given as maintenance or salvage therapy for patients (pts) with acute leukemia post allogeneic stem cell transplantation (HSCT). ASH Annual Meeting Abstracts110(11), 3013 (2007).
  • Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol.14(3), 286–298 (2002).
  • Fabbri M. MicroRNAs and cancer epigenetics. Curr. Opin. Investig. Drugs9(6), 583–590 (2008).
  • Lehmann U, Hasemeier B, Christgen M et al. Epigenetic inactivation of microRNA gene hsa-mir-9–1 in human breast cancer. J. Pathol.214(1), 17–24 (2008).
  • Lujambio A, Ropero S, Ballestar E et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res.67(4), 1424–1429 (2007).
  • Saito Y, Liang G, Egger G et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell9(6), 435–443 (2006).
  • Chen JF, Mandel EM, Thomson JM et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet.38(2), 228–233 (2006).
  • Duursma AM, Kedde M, Schrier M, le Sage C, Agami R. miR-148 targets human DNMT3b protein coding region. RNA14(5), 872–877 (2008).
  • Fabbri M, Garzon R, Cimmino A et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA104(40), 15805–15810 (2007).
  • Tuddenham L, Wheeler G, Ntounia-Fousara S et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett.580(17), 4214–4217 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.