483
Views
25
CrossRef citations to date
0
Altmetric
Review

Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors

, , , &

References

  • Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114(5):937-51
  • Rowley JD. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Génétique 1973;16(2):109-12
  • Le Beau MM, Larson RA, Bitter MA, et al. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med 1983;309(11):630-6
  • Peterson LF, Boyapati A, Ahn E-Y, et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood 2007;110(3):799-805
  • Liu PP, Wijmenga C, Hajra A, et al. Identification of the chimeric protein product of the CBFB-MYH11 fusion gene in inv(16) leukemia cells. Genes Chromosomes Cancer 1996;16(2):77-87
  • Schwind S, Edwards CG, Nicolet D, et al. Inv(16)/t(16;16) acute myeloid leukemia with non–type A CBFB-MYH11 fusions associate with distinct clinical and genetic features and lack KIT mutations. Blood 2013;121(2):385-91
  • Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002;2(7):502-13
  • Renneville A, Roumier C, Biggio V, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leuk Off J Leuk Soc Am Leuk Res Fund UK 2008;22(5):915-31
  • Asou N. The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit Rev Oncol Hematol 2003;45(2):129-50
  • Kurokawa M, Hirai H. Role of AML1/Runx1 in the pathogenesis of hematological malignancies. Cancer Sci 2003;94(10):841-6
  • Downing JR. The core-binding factor leukemias: lessons learned from murine models. Curr Opin Genet Dev 2003;13(1):48-54
  • Wang Q, Stacy T, Binder M, et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996;93(8):3444-9
  • Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 2012;6(3):248-62
  • Solh M, Yohe S, Weisdorf D, Ustun C. Core-Binding Factor Acute Myeloid Leukemia: Heterogeneity, Monitoring, And Therapy. Am. J. Hematol 2014. [Epub ahead of print]
  • Schoch C, Kohlmann A, Schnittger S, et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA 2002;99(15):10008-13
  • Bullinger L, Rücker FG, Kurz S, et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood 2007;110(4):1291-300
  • Sangle NA, Perkins SL. Core-binding factor acute myeloid leukemia. Arch Pathol Lab Med 2011;135(11):1504-9
  • Paschka P. Core binding factor acute myeloid leukemia. Semin Oncol 2008;35(4):410-17
  • Ferrara F, Del Vecchio L. Acute myeloid leukemia with t(8;21)/AML1/ETO: a distinct biological and clinical entity. Haematologica 2002;87(3):306-19
  • Haferlach T, Gassmann W, Löffler H, et al. Clinical aspects of acute myeloid leukemias of the FAB types M3 and M4Eo. The AML Cooperative Group. Ann Hematol 1993;66(4):165-70
  • Schlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol Off J Am Soc Clin Oncol 2004;22(18):3741-50
  • Marcucci G, Mrózek K, Ruppert AS, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol Off J Am Soc Clin. Oncol 2005;23(24):5705-17
  • Nguyen S, Leblanc T, Fenaux P, et al. A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 cases from the French AML Intergroup. Blood 2002;99(10):3517-23
  • Delaunay J, Vey N, Leblanc T, et al. Prognosis of inv(16)/t(16;16) acute myeloid leukemia (AML): a survey of 110 cases from the French AML Intergroup. Blood 2003;102(2):462-9
  • Appelbaum FR, Kopecky KJ, Tallman MS, et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol 2006;135(2):165-73
  • Billström R, Ahlgren T, Békássy AN, et al. Acute myeloid leukemia with inv(16)(p13q22): involvement of cervical lymph nodes and tonsils is common and may be a negative prognostic sign. Am J Hematol 2002;71(1):15-19
  • Tallman MS, Hakimian D, Shaw JM, et al. Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol 1993;11(4):690-7
  • Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood 2006;107(9):3481-5
  • Brunner AM, Blonquist TM, Sadrzadeh H, et al. Population-based disparities in survival among patients with core-binding factor acute myeloid leukemia: a SEER database analysis. Leuk Res 2014;38(7):773-80
  • Schoch C, Kern W, Schnittger S, et al. The influence of age on prognosis of de novo acute myeloid leukemia differs according to cytogenetic subgroups. Haematologica 2004;89(9):1082-90
  • Fröhling S, Schlenk RF, Kayser S, et al. Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG trial AML HD98-B. Blood 2006;108(10):3280-8
  • Cohen JL. Pharmacokinetic changes in aging. Am. J. Med 1986;80(5A):31-8
  • Prébet T, Boissel N, Reutenauer S, et al. Acute Myeloid Leukemia With Translocation (8;21) or Inversion (16) in Elderly Patients Treated With Conventional Chemotherapy: a Collaborative Study of the French CBF-AML Intergroup. J Clin Oncol 2009;27(28):4747-53
  • Farag SS, Archer KJ, Mrózek K, et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood 2006;108(1):63-73
  • Hoyos M, Nomdedeu JF, Esteve J, et al. Core binding factor acute myeloid leukemia: the impact of age, leukocyte count, molecular findings, and minimal residual disease. Eur J Haematol 2013;91(3):209-18
  • Cairoli R, Beghini A, Turrini M, et al. Old and new prognostic factors in acute myeloid leukemia with deranged core-binding factor beta. Am J Hematol 2013;88(7):594-600
  • Creutzig U, Büchner T, Sauerland MC, et al. Significance of age in acute myeloid leukemia patients younger than 30 years. Cancer 2008;112(3):562-71
  • Lange BJ, Smith FO, Feusner J, et al. Outcomes in CCG-2961, a Children’s Oncology Group Phase 3 Trial for untreated pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. Blood 2008;111(3):1044-53
  • Grimwade D, Walker H, Oliver F, et al. The Importance of Diagnostic Cytogenetics on Outcome in AML: analysis of 1,612 Patients Entered Into the MRC AML 10 Trial. Blood 1998;92(7):2322-33
  • Harrison CJ, Hills RK, Moorman AV, et al. Cytogenetics of Childhood Acute Myeloid Leukemia: united Kingdom Medical Research Council Treatment Trials AML 10 and 12. J Clin Oncol 2010;28(16):2674-81
  • von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic Impact of Specific Chromosomal Aberrations in a Large Group of Pediatric Patients With Acute Myeloid Leukemia Treated Uniformly According to Trial AML-BFM 98. J Clin Oncol 2010;28(16):2682-9
  • Rubnitz JE, Inaba H, Dahl G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 2010;11(6):543-52
  • Rubnitz JE. How I treat pediatric acute myeloid leukemia. Blood 2012;119(25):5980-8
  • Greenwood MJ, Seftel MD, Richardson C, et al. Leukocyte count as a predictor of death during remission induction in acute myeloid leukemia. Leuk Lymphoma 2006;47(7):1245-52
  • Nowacki P, Zdziarska B, Fryze C, Urasiński I. Co-existence of thrombocytopenia and hyperleukocytosis (‘critical period’) as a risk factor of haemorrhage into the central nervous system in patients with acute leukaemias. Haematologia (Budap) 2001;31(4):347-55
  • Dutcher JP, Schiffer CA, Wiernik PH. Hyperleukocytosis in adult acute nonlymphocytic leukemia: impact on remission rate and duration, and survival. J Clin Oncol Off J Am Soc Clin Oncol 1987;5(9):1364-72
  • Billström R, Johansson B, Fioretos T, et al. Poor survival in t(8;21) (q22;q22)-associated acute myeloid leukaemia with leukocytosis. Eur J Haematol 1997;59(1):47-52
  • O’Brien S, Kantarjian HM, Keating M, et al. Association of granulocytosis with poor prognosis in patients with acute myelogenous leukemia and translocation of chromosomes 8 and 21. J Clin Oncol Off J Am Soc Clin Oncol 1989;7(8):1081-6
  • Paschka P, Du J, Schlenk RF, et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG). Blood 2013;121(1):170-7
  • Martin G, Barragan E, Bolufer P, et al. Relevance of presenting white blood cell count and kinetics of molecular remission in the prognosis of acute myeloid leukemia with CBFbeta/MYH11 rearrangement. Haematologica 2000;85(7):699-703
  • Owatari S, Otsuka M, Uozumi K, et al. Two cases of secondary acute myeloid leukemia accompanying adult T-cell leukemia/lymphoma. Int J Hematol 2007;85(1):32-5
  • Chang H, Liaw CC, Chang HK. Therapy-related acute myeloid leukemia after concurrent chemoradiotherapy for esophageal cancer: report of two cases. Tumori 2009;95(3):371-3
  • Dissing M, Le Beau MM, Pedersen-Bjergaard J. Inversion of chromosome 16 and uncommon rearrangements of the CBFB and MYH11 genes in therapy-related acute myeloid leukemia: rare events related to DNA-topoisomerase II inhibitors? J Clin Oncol Off J Am Soc Clin Oncol 1998;16(5):1890-6
  • Seymour JF, Juneja SK, Campbell LJ, et al. Secondary acute myeloid leukemia with inv(16): report of two cases following paclitaxel-containing chemotherapy and review of the role of intensified ara-C therapy. Leukemia 1999;13(11):1735-40
  • Mauritzson N, Albin M, Rylander L, et al. Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976-1993 and on 5098 unselected cases reported in the literature 1974-2001. Leukemia 2002;16(12):2366-78
  • Felix CA. Secondary leukemias induced by topoisomerase-targeted drugs. Biochim Biophys Acta 1998;1400(1-3):233-55
  • Smith SM, Beau MML, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 2003;102(1):43-52
  • Rowley JD, Olney HJ. International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 2002;33(4):331-45
  • Zhang Y, Rowley JD. Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst) 2006;5(9-10):1282-97
  • Borthakur G, Lin E, Jain N, et al. Survival is poorer in patients with secondary core-binding factor acute myelogenous leukemia compared with de novo core-binding factor leukemia. Cancer 2009;115(14):3217-21
  • Gustafson SA, Lin P, Chen SS, et al. Therapy-Related Acute Myeloid Leukemia With t(8;21) (q22;q22) Shares Many Features With De Novo Acute Myeloid Leukemia With t(8;21)(q22;q22) but Does Not Have a Favorable Outcome. Am J Clin Pathol 2009;131(5):647-55
  • Schnittger S, Bacher U, Haferlach C, et al. Rare CBFB-MYH11 fusion transcripts in AML with inv(16)/t(16;16) are associated with therapy-related AML M4eo, atypical cytomorphology, atypical immunophenotype, atypical additional chromosomal rearrangements and low white blood cell count: a study on 162 patients. Leukemia 2007;21(4):725-31
  • Arber DA, Slovak ML, Popplewell L, et al. Therapy-Related Acute Myeloid Leukemia/Myelodysplasia With Balanced 21q22 Translocations. Am J Clin Pathol 2002;117(2):306-13
  • Zhang Y, Strissel P, Strick R, et al. Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia. Proc Natl Acad Sci 2002;99(5):3070-5
  • Quesnel B, Kantarjian H, Bjergaard JP, et al. Therapy-related acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a report on 25 cases and review of the literature. J Clin Oncol Off J Am Soc Clin Oncol 1993;11(12):2370-9
  • Andersen MK, Larson RA, Mauritzson N, et al. Balanced chromosome abnormalities inv(16) and t(15;17) in therapy-related myelodysplastic syndromes and acute leukemia: report from an International Workshop. Genes Chromosomes Cancer 2002;33(4):395-400
  • Slovak ML, Bedell V, Popplewell L, et al. 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: report from an International Workshop. Genes. Chromosomes Cancer 2002;33(4):379-94
  • Kayser S, Döhner K, Krauter J, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 2011;117(7):2137-45
  • Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2009;115(3):453-74
  • Parihar M, Kumar JA, Sitaram U, et al. Cytogenetic analysis of acute myeloid leukemia with t(8;21) from a tertiary care center in India with correlation between clinicopathologic characteristics and molecular analysis. Leuk Lymphoma 2011;53(1):103-9
  • Mrózek K, Marcucci G, Paschka P, Bloomfield CD. Advances in molecular genetics and treatment of core-binding factor acute myeloid leukemia. Curr Opin Oncol 2008;20(6):711-18
  • Matsuura S, Yan M, Lo M-C, et al. Negative effects of GM-CSF signaling in a murine model of t(8;21)–induced leukemia. Blood 2012;119(13):3155-63
  • Jung HA, Maeng CH, Park S, et al. Prognostic Factor Analysis in Core-Binding Factor-positive Acute Myeloid Leukemia. Anticancer Res 2014;34(2):1037-45
  • Jourdan E, Boissel N, Chevret S, et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood 2013;121(12):2213-23
  • Mecucci C, Vermaelen K, Kulling G, et al. Interstitial 9q- deletions in hematologic malignancies. Cancer Genet Cytogenet 1984;12(4):309-19
  • Peniket A, Wainscoat J, Side L, et al. Del(9q) AML: clinical and cytological characteristics and prognostic implications. Br J Haematol 2005;129(2):210-20
  • Schoch C, Haase D, Haferlach T, et al. Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22;q22): an additional deletion in 9q is an adverse prognostic factor. Leukemia 1996;10(8):1288-95
  • Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010;116(3):354-65
  • Byrd JC, Mrózek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461) Presented in part at the 43rd annual meeting of the American Society of Hematology, Orlando, FL, December 10, 2001, and published in abstract form.59. Blood 2002;100(13):4325-36
  • Lin P, Chen L, Luthra R, et al. Acute myeloid leukemia harboring t(8;21)(q22;q22): a heterogeneous disease with poor outcome in a subset of patients unrelated to secondary cytogenetic aberrations. Mod Pathol 2008;21(8):1029-36
  • Grois N, Nowotny H, Tyl E, et al. Is trisomy 22 in acute myeloid leukemia a primary abnormality or only a secondary change associated with inversion 16? Cancer Genet Cytogenet 1989;43(1):119-29
  • Wong KF, Kwong YL. Trisomy 22 in Acute Myeloid Leukemia: A Marker for Myeloid Leukemia with Monocytic Features and Cytogenetically Cryptic Inversion 16. Cancer Genet Cytogenet 1999;109(2):131-3
  • Schaich M, Schlenk RF, Al-Ali HK, et al. Prognosis of acute myeloid leukemia patients up to 60 years of age exhibiting trisomy 8 within a non-complex karyotype: individual patient data-based meta-analysis of the German Acute Myeloid Leukemia Intergroup. Haematologica 2007;92(6):763-70
  • Krauth M-T, Eder C, Alpermann T, et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia 2014;28(7):1449-58
  • Kühn MWM, Radtke I, Bullinger L, et al. High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations. Blood 2012;119(10):e67-75
  • Kuchenbauer F, Schnittger S, Look T, et al. Identification of additional cytogenetic and molecular genetic abnormalities in acute myeloid leukaemia with t(8;21)/AML1-ETO. Br J Haematol 2006;134(6):616-19
  • Nishii K, Usui E, Katayama N, et al. Characteristics of t(8;21) acute myeloid leukemia (AML) with additional chromosomal abnormality: concomitant trisomy 4 may constitute a distinctive subtype of t(8;21) AML. Leukemia 2003;17(4):731-7
  • Beghini A, Ripamonti CB, Castorina P, et al. Trisomy 4 Leading to Duplication of a Mutated KIT Allele in Acute Myeloid Leukemia with Mast Cell Involvement. Cancer Genet. Cytogenet 2000;119(1):26-31
  • Schoch C, Kohlmann A, Dugas M, et al. Impact of trisomy 8 on expression of genes located on chromosome 8 in different AML subgroups. Genes Chromosomes Cancer 2006;45(12):1164-8
  • Dayyani F, Wang J, Yeh J-RJ, et al. Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival. Blood 2008;111(8):4338-47
  • Chen C, Liu Y, Rappaport AR, et al. MLL3 Is a Haploinsufficient 7q Tumor Suppressor in Acute Myeloid Leukemia. Cancer Cell 2014;25(5):652-65
  • Gilliland DG. Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 2002;39(4):6-11
  • Hou H-A, Lin C-C, Chou W-C, et al. Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid. Leukemia 2014;28(1):50-8
  • Schnittger S, Kohl TM, Haferlach T, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 2006;107(5):1791-9
  • Gari M, Goodeve A, Wilson G, et al. c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 1999;105(4):894-900
  • Manara E, Bisio V, Masetti R, et al. Core-binding factor acute myeloid leukemia in pediatric patients enrolled in the AIEOP AML 2002/01 trial: screening and prognostic impact of c-KIT mutations. Leukemia 2014;28(5):1132-4
  • Pollard JA, Alonzo TA, Gerbing RB, et al. Prevalence and prognostic significance of KIT mutations in pediatric patients with core binding factor AML enrolled on serial pediatric cooperative trials for de novo AML. Blood 2010;115(12):2372-9
  • Paschka P, Marcucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol Off J Am Soc Clin Oncol 2006;24(24):3904-11
  • Lück SC, Russ AC, Du J, et al. KIT mutations confer a distinct gene expression signature in core binding factor leukaemia. Br J Haematol 2010;148(6):925-37
  • Shimada A, Taki T, Tabuchi K, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 2006;107(5):1806-9
  • Nanri T, Matsuno N, Kawakita T, et al. Mutations in the receptor tyrosine kinase pathway are associated with clinical outcome in patients with acute myeloblastic leukemia harboring t(8;21)(q22;q22). Leukemia 2005;19(8):1361-6
  • Allen C, Hills RK, Lamb K, et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid. Leukemia 2013;27(9):1891-901
  • Cairoli R, Grillo G, Beghini A, et al. C-Kit point mutations in core binding factor leukemias: correlation with white blood cell count and the white blood cell index. Leukemia 2003;17(2):471-2
  • Cairoli R, Beghini A, Grillo G, et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2006;107(9):3463-8
  • Boissel N, Leroy H, Brethon B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006;20(6):965-70
  • Care RS, Valk PJM, Goodeve AC, et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 2003;121(5):775-7
  • Shih L-Y. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002;100(7):2387-92
  • Goemans BF, Zwaan CHM, Miller M, et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005;19(9):1536-42
  • Wang Y-Y, Zhou G-B, Yin T, et al. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: Implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 2005;102(4):1104-9
  • Shah NP, Lee FY, Luo R, et al. Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 2006;108(1):286-91
  • Mpakou VE, Kontsioti F, Papageorgiou S, et al. Dasatinib inhibits proliferation and induces apoptosis in the KASUMI-1 cell line bearing the t(8;21)(q22;q22) and the N822K c-kit mutation. Leuk Res 2013;37(2):175-82
  • Cammenga J, Horn S, Bergholz U, et al. Extracellular KIT receptor mutants, commonly found in core binding factor AML, are constitutively active and respond to imatinib mesylate. Blood 2005;106(12):3958-61
  • Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease Presented in part at the 42nd annual meeting of the American Society of Hematology, December 1-5, 2000, San Francisco, CA (abstract 3569). Blood 2002;100(1):59-66
  • Kainz B, Heintel D, Marculescu R, et al. Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t(15;17), t(8;21) or inv(16). Hematol J Off J Eur Haematol Assoc EHA 2002;3(6):283-9
  • Mead AJ, Linch DC, Hills RK, et al. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 2007;110(4):1262-70
  • Opatz S, Polzer H, Herold T, et al. Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia. Blood 2013;122(10):1761-9
  • Mead AJ, Gale RE, Hills RK, et al. Conflicting data on the prognostic significance of FLT3/TKD mutations in acute myeloid leukemia might be related to the incidence of biallelic disease. Blood 2008;112(2):444-5
  • Bacher U, Haferlach T, Schoch C, et al. Implications of NRAS mutations in AML: a study of 2502 patients. Blood 2006;107(10):3847-53
  • Abbas S, Rotmans G, Löwenberg B, Valk PJM. Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica 2008;93(10):1595-7
  • Illmer T, Schaich M, Ehninger G, Thiede C. Tyrosine kinase mutations of JAK2 are rare events in AML but influence prognosis of patients with CBF-leukemias. Haematologica 2007;92(1):137-8
  • Iwanaga E, Nanri T, Matsuno N, et al. A JAK2-V617F activating mutation in addition to KIT and FLT3 mutations is associated with clinical outcome in patients with t(8;21)(q22;q22) acute myeloid leukemia. Haematologica 2009;94(3):433-5
  • Vicente C, Vázquez I, Marcotegui N, et al. JAK2-V617F activating mutation in acute myeloid leukemia: prognostic impact and association with other molecular markers. Leukemia 2007;21(11):2386-90
  • Dohner K, Du J, Corbacioglu A, et al. JAK2V617F mutations as cooperative genetic lesions in t(8;21)-positive acute myeloid leukemia. Haematologica 2006;91(11):1569-70
  • Lee JW, Kim YG, Soung YH, et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 2005;25(9):1434-6
  • Marková J, Marková J, Trnková Z, et al. Monitoring of minimal residual disease in patients with core binding factor acute myeloid leukemia and the impact of C-KIT, FLT3, and JAK2 mutations on clinical outcome. Leuk Lymphoma 2009;50(9):1448-60
  • O’Donnell MR, Abboud CN, Altman J, et al. Acute Myeloid Leukemia. J Natl Compr Canc Netw 2012;10(8):984-1021
  • Conway O’Brien E, Prideaux S, Chevassut T. The Epigenetic Landscape of Acute Myeloid Leukemia. Adv Hematol 2014;2014:1-15
  • Gelsi-Boyer V, Brecqueville M, Devillier R, et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol J Hematol Oncol 2012;5:12
  • Micol J-B, Duployez N, Boissel N, et al. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 2014
  • Duployez N, Nibourel O, Marceau-Renaut A, et al. Minimal Residual Disease Monitoring in t(8;21) Acute Myeloid Leukemia based on RUNX1-RUNX1T1 fusion quantification on genomic DNA. Am J Hematol 2014;89(6):610-15
  • Schnittger S, Weisser M, Schoch C, et al. New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood 2003;102(8):2746-55
  • Leroy H, de Botton S, Grardel-Duflos N, et al. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia 2005;19(3):367-72
  • Morschhauser F, Cayuela JM, Martini S, et al. Evaluation of Minimal Residual Disease Using Reverse-Transcription Polymerase Chain Reaction in t(8;21) Acute Myeloid Leukemia: a Multicenter Study of 51 Patients. J Clin Oncol 2000;18(4):788
  • Krauter J, Görlich K, Ottmann O, et al. Prognostic Value of Minimal Residual Disease Quantification by Real-Time Reverse Transcriptase Polymerase Chain Reaction in Patients With Core Binding Factor Leukemias. J Clin Oncol 2003;21(23):4413-22
  • Weisser M, Haferlach C, Hiddemann W, Schnittger S. The quality of molecular response to chemotherapy is predictive for the outcome of AML1-ETO-positive AML and is independent of pretreatment risk factors. Leukemia 2007;21(6):1177-82
  • Guièze R, Renneville A, Cayuela JM, et al. Prognostic value of minimal residual disease by real-time quantitative PCR in acute myeloid leukemia with CBFB-MYH11 rearrangement: the French experience. Leukemia 2010;24(7):1386-8
  • Corbacioglu A, Scholl C, Schlenk RF, et al. Prognostic Impact of Minimal Residual Disease inCBFB-MYH11–Positive Acute Myeloid Leukemia. J Clin Oncol 2010;28(23):3724-9
  • Marcucci G, Caligiuri MA, Döhner H, et al. Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia 2001;15(7):1072-80
  • Stentoft J, Hokland P, Østergaard M, et al. Minimal residual core binding factor AMLs by real time quantitative PCR—Initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse. Leuk Res 2006;30(4):389-95
  • Lane S, Saal R, Mollee P, et al. A ≥1 log rise in RQ-PCR transcript levels defines molecular relapse in core binding factor acute myeloid leukemia and predicts subsequent morphologic relapse. Leuk Lymphoma 2008;49(3):517-23
  • Perea G, Lasa A, Aventín A, et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia 2005;20(1):87-94
  • Liu Yin JA, O’Brien MA, Hills RK, et al. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood 2012;120(14):2826-35
  • Zhu H-H, Zhang X-H, Qin Y-Z, et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood 2013;121(20):4056-62
  • Wang Y, Wu D-P, Liu Q-F, et al. RUNX1/RUNX1T1-based MRD-monitoring early after allogeneic transplantation rather than c-KIT mutations in adult t(8;21) AML allows further risk stratification. Blood blood–2014–03–563403. [Epub ahead of print]
  • Ommen HB, Schnittger S, Jovanovic JV, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood 2010;115(2):198-205
  • Inaba H, Coustan-Smith E, Cao X, et al. Comparative Analysis of Different Approaches to Measure Treatment Response in Acute Myeloid Leukemia. J Clin Oncol 2012;30(29):3625-32
  • Miyamoto T, Weissman IL, Akashi K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000;97(13):7521-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.