716
Views
17
CrossRef citations to date
0
Altmetric
Review

Antigen-specific immunotherapy for acute myeloid leukemia: where are we now, and where do we go from here?

&
Pages 335-350 | Received 19 Dec 2015, Accepted 13 Jan 2016, Published online: 06 Feb 2016

References

  • Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–474.
  • Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–1152.
  • Foon KA, Schroff RW, Gale RP. Surface markers on leukemia and lymphoma cells: recent advances. Blood. 1982;60(1):1–19.
  • Takeshita A. Efficacy and resistance of gemtuzumab ozogamicin for acute myeloid leukemia. Int J Hematol. 2013;97(6):703–716.
  • Cowan AJ, Laszlo GS, Estey EH, et al. Antibody-based therapy of acute myeloid leukemia with gemtuzumab ozogamicin. Front Biosci (Landmark Ed). 2013;18:1311–1334.
  • Jurcic JG. Radioimmunotherapy for hematopoietic cell transplantation. Immunotherapy. 2013;5(4):383–394.
  • Martner A, Thorén FB, Aurelius J, et al. Immunotherapeutic strategies for relapse control in acute myeloid leukemia. Blood Rev. 2013;27(5):209–216.
  • Grosso DA, Hess RC, Weiss MA. Immunotherapy in acute myeloid leukemia. Cancer. 2015;121(16):2689–2704.
  • Buckley SA, Walter RB. Antigen-specific immunotherapies for acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2015;2015(1):584–595.
  • Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005;23(18):4110–4116.
  • Sekeres MA, Lancet JE, Wood BL, et al. Randomized phase IIb study of low-dose cytarabine and lintuzumab versus low-dose cytarabine and placebo in older adults with untreated acute myeloid leukemia. Haematologica. 2013;98(1):119–128.
  • Ossenkoppele GJ, Stüssi G, Maertens J, et al. Addition of bevacizumab to chemotherapy in acute myeloid leukemia at older age: a randomized phase 2 trial of the Dutch-Belgian Cooperative Trial Group for Hemato-Oncology (HOVON) and the Swiss Group for Clinical Cancer Research (SAKK). Blood. 2012;120(24):4706–4711.
  • Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 2001;1(2):118–129.
  • Smaglo BG, Aldeghaither D, Weiner LM. The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol. 2014;11(11):637–648.
  • Laszlo GS, Estey EH, Walter RB. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 2014;28(4):143–153.
  • Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7(6):1490–1496.
  • Hills RK, Castaigne S, Appelbaum FR, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–996.
  • Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014;32(27):3021–3032.
  • Amadori S, Suciu S, Selleslag D, et al. Improved overall survival with gemtuzumab ozogamicin (GO) compared with best supportive care (BSC) in elderly patients with untreated acute myeloid leukemia (AML) not considered fit for intensive chemotherapy: final results from the randomized phase III study (AML-19) of the EORTC and GIMEMA Leukemia Groups [abstract]. Blood. 2014;124(21):619.
  • Lapusan S, Vidriales MB, Thomas X, et al. Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest New Drugs. 2012;30(3):1121–1131.
  • Wayne AS, Fitzgerald DJ, Kreitman RJ, et al. Immunotoxins for leukemia. Blood. 2014;123(16):2470–2477.
  • Alewine C, Hassan R, Pastan I. Advances in anticancer immunotoxin therapy. Oncologist. 2015;20(2):176–185.
  • Borthakur G, Rosenblum MG, Talpaz M, et al. Phase 1 study of an anti-CD33 immunotoxin, humanized monoclonal antibody M195 conjugated to recombinant gelonin (HUM-195/rGEL), in patients with advanced myeloid malignancies. Haematologica. 2013;98(2):217–221.
  • Konopleva M, Hogge DE, Rizzieri DA, et al. SL-401, a targeted therapy directed to the interleukin-3 receptor present on leukemia blasts and cancer stem cells, is active as a single agent in patients with advanced AML [abstract]. Blood. 2012;120(21):3625.
  • Frankel AE, Woo JH, Ahn C, et al Activity of SL-401, a targeted therapy directed to interleukin-3 receptor, in blastic plasmacytoid dendritic cell neoplasm patients. Blood. 2014;124(3):385–392.
  • Anguille S, Van Tendeloo VF, Berneman ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia. 2012;26(10):2186–2196.
  • Greiner J, Schneider V, Schmitt M, et al. Immune responses against the mutated region of cytoplasmatic NPM1 might contribute to the favorable clinical outcome of AML patients with NPM1 mutations (NPM1mut). Blood. 2013;122(6):1087–1088.
  • Schmitt M, Casalegno-Garduño R, Xu X, et al. Peptide vaccines for patients with acute myeloid leukemia. Expert Rev Vaccines. 2009;8(10):1415–1425.
  • Alatrash G, Molldrem JJ. Vaccines as consolidation therapy for myeloid leukemia. Expert Rev Hematol. 2011;4(1):37–50.
  • Walter RB, Appelbaum FR, Estey EH, et al. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198–6208.
  • Walter RB, Press OW, Bernstein ID. Antibody-based therapeutics targeting CD33, CD45, and CD66. In: Andreef M, editor. Targeted therapy of acute myeloid leukemia. New York: Springer; 2015. p. 531–558.
  • Dos Santos C, Xiaochuan S, Chenghui Z, et al. Anti-leukemic activity of daratumumab in acute myeloid leukemia cells and patient-derived xenografts [abstract]. Blood. 2014;124(21):2312.
  • Park H-S, Lee J-H, Lee J-H, et al. Expression of JL1 antigen in acute leukemia and myelodysplastic syndrome [abstract]. Blood. 2015;126(23):3826.
  • Schiffer S, Rosinke R, Jost E, et al. Targeted ex vivo reduction of CD64-positive monocytes in chronic myelomonocytic leukemia and acute myelomonocytic leukemia using human granzyme B-based cytolytic fusion proteins. Int J Cancer. 2014;135(6):1497–1508.
  • Mladenov R, Hristodorov D, Cremer C, et al. The Fc-alpha receptor is a new target antigen for immunotherapy of myeloid leukemia. Int J Cancer. 2015;137(11):2729–2738.
  • Bixby D, Wieduwilt MJ, Akard LP, et al. A phase I study of IGN523, a novel anti-CD98 monoclonal antibody in patinets with relapsed or refractory acute myeloid leukemia (AML) [abstract]. Blood. 2015;126(23):3809.
  • Krupka C, Jansen A, Lassmann I, et al. Targeting AML using an Fc-engineered BST1/CD157 monoclonal antibody [abstract]. Blood. 2014;124(21):987.
  • Aud D, Dusek R, Bisht A, et al. MEN1112, a novel humanized de-fucosylated monoclonal antibody with high affinity and specificity for Bst1/CD157 antigen and enhanced CD16 binding [abstract]. Blood. 2014;124(21):3606.
  • Venditti A, Buccisano F, Maurillo L, et al. MEN1112/OBT357, an anti Bst1/CD157 humanized antibody inducing acute myelogenous leukemia (AML) blast depletion in an autologous ex vivo assay: a potential new targeted therapy for AML [abstract]. Blood. 2015;126(23):788.
  • Korver W, Zhao X, Singh S, et al. Monoclonal antibodies against IREM-1: potential for targeted therapy of AML. Leukemia. 2009;23(9):1587–1597.
  • Lynn RC, Poussin M, Kalota A, et al. Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood. 2015;125(22):3466–3476.
  • Ritchie DS, Neeson PJ, Khot A, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21(11):2122–2129.
  • Spear P, Wu MR, Sentman ML, et al. NKG2D ligands as therapeutic targets. Cancer Immun. 2013;13:8.
  • Kim SY, Theunissen JW, Balibalos J, et al. A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies. Blood Cancer J. 2015;5:e316.
  • Peled A, Tavor S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics. 2013;3(1):34–39.
  • Small D. Targeting FLT3 for the treatment of leukemia. Semin Hematol. 2008;45(3 Suppl 2):S17–21.
  • Majeti R. Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene. 2011;30(9):1009–1019.
  • Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12(10):1167–1174.
  • Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138(2):286–299.
  • Theocharides AP, Jin L, Cheng PY, et al. Disruption of SIRPalpha signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. J Exp Med. 2012;209(10):1883–1899.
  • Florian S, Sonneck K, Hauswirth AW, et al. Detection of molecular targets on the surface of CD34+/CD38– stem cells in various myeloid malignancies. Leuk Lymphoma. 2006;47(2):207–222.
  • Van Rhenen A, Van Dongen GA, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110(7):2659–2666.
  • Ågerstam H, Karlsson C, Hansen N, et al. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc Natl Acad Sci U S A. 2015;112(34):10786–10791.
  • Kikushige Y, Shima T, Takayanagi S, et al TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010;7(6):708–717.
  • Naidoo J, Page DB, Wolchok JD. Immune modulation for cancer therapy. Br J Cancer. 2014;111(12):2214–2219.
  • Vey N, Bourhis JH, Boissel N, et al. A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood. 2012;120(22):4317–4323.
  • Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 2015;125(9):3384–3391.
  • Sehgal A, Whiteside TL, Boyiadzis M. Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin Biol Ther. 2015;15(8):1191–1203.
  • Kuhne MR, Mulvey T, Belanger B, et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res. 2013;19(2):357–366.
  • Pernasetti F, Liu S-H, Hallin M, et al. A novel CXCR4 antagonist IgG1 antibody (PF-06747143) for the treatment of hematological malignancies [abstract]. Blood. 2014;124(21):2311.
  • Zhang Y, Saavedra E, Tang R, et al. Targeting acute myeloid leukemia with a new CXCR4 antagonist IgG1 antibody (PF-06747143) in NOD/SCID mice [abstract]. Blood. 2015;126(23):1362.
  • Becker PS, Foran JM, Altman JK, et al. Targeting the CXCR4 pathway: safety, tolerability and clinical activity of ulocuplumab (BMS-936564), an anti-CXCR4 antibody, in relapsed/refractory acute myeloid leukemia [abstract]. Blood. 2014;124(21):386.
  • Colonna M, Samaridis J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science. 1995;268(5209):405–408.
  • Vey N, Goncalves A, Karlin L, et al. A phase 1 dose-escalation study of IPH2102 (lirilumab, BMS-986015, LIRI), a fully human anti KIR monoclonal antibody (mAb) in patients (pts) with various hematologic (HEM) or solid malignancies (SOL) [abstract]. J Clin Oncol. 2015;33(Suppl):3065.
  • Dao T, Yan S, Veomett N, et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med. 2013;5(176):176ra133.
  • Chang A, Dao T, Scott A, et al. A therapeutic TCR mimic monoclonal antibody for intracellular PRAME protein in leukemias [abstract]. Blood. 2015;126(23):2527.
  • Busfield SJ, Biondo M, Wong M, et al. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia. 2014;28(11):2213–2221.
  • Romain G, Senyukov V, Rey-Villamizar N, et al. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells. Blood. 2014;124(22):3241–3249.
  • Buckley SA, Walter RB. Update on antigen-specific immunotherapy of acute myeloid leukemia. Curr Hematol Malig Rep. 2015;10(2):65–75.
  • Smith BD, Roboz GJ, Walter RB, et al. First-in man, phase 1 study of CSL362 (anti-IL3Rα/anti-CD123 monoclonal antibody) in patients with CD123+ acute myeloid leukemia (AML) in CR at high risk for early relapse [abstract]. Blood. 2014;124(21):120.
  • Syed K, Pietsch C, Axel A, et al. Preclinical evaluation of CSL362/JNJ-56022473 in combination with decitabine or azacitidine in in vitro assays [abstract]. Blood. 2015;126(23):1370.
  • He SZ, Busfield S, Ritchie DS, et al. A Phase 1 study of the safety, pharmacokinetics and anti-leukemic activity of the anti-CD123 monoclonal antibody CSL360 in relapsed, refractory or high-risk acute myeloid leukemia. Leuk Lymphoma. 2015;56(5):1406–1415.
  • Paubelle E, Marceau A, Zylbersztejn F, et al. HFE gene mutation status predicts response to gemtuzumab ozogamicin [abstract]. Blood. 2015;126(23):1307.
  • Kung Sutherland MS, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–1463.
  • Stein AS, Walter RB, Erba HP, et al. A phase 1 trial of SGN-CD33A as monotherapy in patients with CD33-positive acute myeloid leukemia (AML) [abstract]. Blood. 2015;126(23):324.
  • Fahti AT, Erba HP, Lancet JE, et al. SGN-CD33A plus hypomethylating agents: a novel, well-tolerated regimen with high remission rate in frontline unfit AML [abstract]. Blood. 2015;126(23):454.
  • Kung Sutherland MS, Yu C, O’Day C, et al. SGN-CD33A in combination with hypomethylating agents is highly efficacious in preclinical models of AML [abstract]. Blood. 2015;126(23):3785.
  • Whiteman KR, Noordhuis P, Walker R, et al. The antibody-drug conjugate (ADC) IMGN779 is highly active in vitro and in vivo against acute myeloid leukemia (AML) with FLT3-ITD mutations [abstract]. Blood. 2014;124(21):2321.
  • Krystal WM, Walker R, Fishkin N, et al. IMGN779, a CD33-targeted antibody-drug conjugate (ADC) with a novel DNA-alkylating effector molecule, induces DNA damage, cell cycle arrest, and apoptosis in AML cells [abstract]. Blood. 2015;126(23):1366.
  • Flynn MJ, Van Berkel PH, Zammarchi F, et al. Mechanistic and pharmacodynamic studies of ADCT-301, a pyrrolobenzodizepine (PBD) dimer-containing antibody drug conjugate (ADC) targeting CD25-expressing hematological malignancies [abstract]. Blood. 2015;126(23):1559.
  • Kung Sutherland MS, Yu C, Walter RB, et al. SGN-CD123A, a pyrrolobenzodiazepine dimer linked anti-CD123 antibody drug conjugate, demonstrates effective anti-leukemic activity in multiple preclinical models of AML [abstract]. Blood. 2015;126(23):330.
  • Rudra-Ganguly N, Lowe C, Virata C, et al. AGS62P1, a novel anti-FLT3 antibody drug conjugate, emplyoing site specific conjugation, demonstrates preclinical anti-tumor efficacy in AML tumor and patient derived xenografts [abstract]. Blood. 2015;126(23):3806.
  • Walter RB, Press OW, Pagel JM. Pretargeted radioimmunotherapy for hematologic and other malignancies. Cancer Biother Radiopharm. 2010;25(2):125–142.
  • Pagel JM, Kenoyer AL, Back T, et al. Anti-CD45 pretargeted radioimmunotherapy using bismuth-213: high rates of complete remission and long-term survival in a mouse myeloid leukemia xenograft model. Blood. 2011;118(3):703–711.
  • Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100(4):1233–1239.
  • Rosenblat TL, McDevitt MR, Mulford DA, et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res. 2010;16(21):5303–5311.
  • Jurcic JG, Rosenblat TL, McDevitt MR, et al. Phase I trial of the targeted-particle nano-generator actinium 225 (225Ac)-lintuzumab (anti-CD33; HuM195) in acute myeloid leukemia (AML) [abstract]. Blood. 2011;118(21):768.
  • Jurcic JG, Ravandi F, Pagel JM, et al. Phase I trial of targeted alpha-particle immunotherapy with actinium-225 (225Ac)-lintuzumab (anti-CD33) and low-dose cytarabine (LDAC) in older patients wtih untreated acute myeloid leukemia (AML) [abstract]. Blood. 2015;126(23):3794.
  • Palchaudhuri R, Saez B, Hoggatt J, et al. Immunotoxin enables non-genotoxic conditioning for hematopoietic stem cell transplantation [abstract]. Blood. 2015;126(23):32.
  • Anguille S, Smits EL, Bryant C, et al. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev. 2015;67(4):731–753.
  • Van Tendeloo VF, Van De Velde A, Van Driessche A, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A. 2010;107(31):13824–13829.
  • Berneman ZN, Van De Velde A, Anguille S, et al. Prevention of relapse in acute myeloid leukemia by dendritic cell vaccination: report on a phase II study with 29 patients [abstract]. Blood. 2013;122(21):236.
  • Bigalke I, Fløisand Y, Solum G, et al. AML patients in minimal residual disease vaccinated with a novel generation of fast dendritic cells expressing WT-1 and PRAME mount specific immune responses that relate to clinical outcome [abstract]. Blood. 2015;126(23):3798.
  • Rosenblatt J, Stone RM, Uhl L, et al. Clinical trial evaluating DC/AML fusion cell vaccination in AML patients [abstract]. Blood. 2013;122(21):3928.
  • Van De Loosdrecht AA, Van Wetering S, Santegoeds S, et al. Clinical and immunological results of a phase I/IIa study of allogeneic dendritic cell (DC) vaccination, an “off the shelf” treatment to prevent or delay relapse in elderly patients with acute myeloid leukemia [abstract]. Blood. 2013;122(21):2651.
  • Riethmüller G. Symmetry breaking: bispecific antibodies, the beginnings, and 50 years on. Cancer Immun. 2012;12:12.
  • Weiner LM, Murray JC, Shuptrine CW. Antibody-based immunotherapy of cancer. Cell. 2012;148(6):1081–1084.
  • Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20(7):838–847.
  • Topp MS, Gökbuget N, Zugmaier G, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–5187.
  • Topp MS, Gökbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.
  • Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4944.
  • Laszlo GS, Gudgeon CJ, Harrington KH, et al. T-cell ligands modulate the cytolytic activity of the CD33/CD3 BiTE antibody construct, AMG 330. Blood Cancer J. 2015;5:e340.
  • Krupka C, Kufer P, Kischel R, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia. Forthcoming 2016.
  • Köhnke T, Krupka C, Tischer J, et al. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J Hematol Oncol. 2015;8(1):111.
  • Stamm H, Klingler F, Pende D, et al. Expression of novel immune checkpoint molecules PVR and PVRL2 confers a negative prognosis to patients with acute myeloid leukemia and their blockade augments T-cell mediated lysis of AML cells alone or in combination with the BiTE antibody construct AMG 330 [abstract]. Blood. 2015;126(23):789.
  • Arndt C, Von Bonin M, Cartellieri M, et al. Redirection of T cells with a first fully humanized bispecific CD33-CD3 antibody efficiently eliminates AML blasts without harming hematopoietic stem cells. Leukemia. 2013;27(4):964–967.
  • Aigner M, Feulner J, Schaffer S, et al. T lymphocytes can be effectively recruited for ex vivo and in vivo lysis of AML blasts by a novel CD33/CD3-bispecific BiTE antibody construct. Leukemia. 2013;27(5):1107–1115.
  • Krupka C, Kufer P, Kischel R, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123(3):356–365.
  • Laszlo GS, Gudgeon CJ, Harrington KH, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 2014;123(4):554–561.
  • Friedrich M, Henn A, Raum T, et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther. 2014;13(6):1549–1557.
  • Harrington KH, Gudgeon CJ, Laszlo GS, et al. The broad anti-AML activity of the CD33/CD3 BiTE antibody construct, AMG 330, is impacted by disease stage and risk. PLoS One. 2015;10(8):e0135945.
  • Al Hussaini M, Rettig MP, Ritchey JK, et al. Targeting CD123 in AML using a T-cell directed dual-affinity re-targeting (DART(R)) platform. Blood. 2016;127(1):122–131.
  • Reusch U, Harrington KH, Gudgeon CJ, et al. Construction and characterization of novel CD33/CD3 tandem diabodies (TandAbs) for the treatment of acute myeloid leukemia (AML) [abstract]. J Clin Oncol. 2015;33(Suppl):7067.
  • Lu H, Zhou Q, Deshmukh V, et al. Targeting human C-type lectin-like molecule-1 (CLL1) with a bispecific antibody for immunotherapy of acute myeloid leukemia. Angew Chem Int Ed Engl. 2014;53(37):9841–9845.
  • Van Loo PF, Doornbos R, Dolstra H, et al. Preclinical evaluation of MCLA117, a CLEC12AxCD3 bispecific antibody efficiently targeting a novel leukemic stem cell associated antigen in AML [abstract]. Blood. 2015;126(23):325.
  • Durben M, Schmiedel D, Hofmann M, et al. Characterization of a bispecific FLT3 X CD3 antibody in an improved, recombinant format for the treatment of leukemia. Mol Ther. 2015;23(4):648–655.
  • Koerner S, Kanz L, Grosse-Hovest L, et al. Induction of NK and T cell immune responses against leukemia cells by bispecific NKG2D-CD16 and -CD3 fusion proteins [abstract]. Blood. 2015;126(23):2558.
  • Arndt C, Feldmann A, Koristka S, et al. Improved killing of AML blasts by dual-targeting of CD123 and CD33 via UniTARG a novel antibody-based modular T cell retargeting system [abstract]. Blood. 2015;126(23):2565.
  • Dao T, Pankov D, Scott A, et al. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat Biotechnol. 2015;33(10):1079–1086.
  • Aliperta R, Cartellieri M, Feldmann A, et al. Bispecific antibody releasing-mesenchymal stromal cell machinery for retargeting T cells towards acute myeloid leukemia blasts. Blood Cancer J. 2015;5:e348.
  • Liu X, Barrett DM, Jiang S, et al. Improved anti-leukemia activities of adoptively transferred T cells expressing BiTEs [abstract]. Blood. 2015;126(23):4431.
  • Stauss HJ, Morris EC, Abken H. Cancer gene therapy with T cell receptors and chimeric antigen receptors. Curr Opin Pharmacol. 2015;24:113–118.
  • Barrett DM, Grupp SA, June CH. Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street. J Immunol. 2015;195(3):755–761.
  • Batlevi CL, Matsuki E, Brentjens RJ, et al. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016;13(1):25–40.
  • Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev. Forthcoming 2016.
  • Maude SL, Teachey DT, Porter DL, et al. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–4023.
  • Galetto R, Lebuhotel C, Gouble A, et al. TCRab deficient CAR T-cells targeting CD123: an allogeneic approach of adoptive immunotherapy for the treatment of acute myeloid leukemia [abstract]. Blood. 2015;126(23):2555.
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–1517.
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–528.
  • Marin V, Pizzitola I, Agostoni V, et al. Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica. 2010;95(12):2144–2152.
  • Dutour A, Marin V, Pizzitola I, et al. In vitro and in vivo antitumor effect of anti-CD33 chimeric receptor-expressing EBV-CTL against CD33+ acute myeloid leukemia. Adv Hematol. 2012;2012:1–10.
  • Tettamanti S, Marin V, Pizzitola I, et al Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol. 2013;161(3):389–401.
  • Mardiros A, Dos Santos C, McDonald T, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013;122(18):3138–3148.
  • Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia. 2014;28(8):1596–1605.
  • Gill S, Tasian SK, Ruella M, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014;123(15):2343–2354.
  • O’Hear C, Heiber JF, Schubert I, et al. Anti-CD33 chimeric antigen receptor targeting of acute myeloid leukemia. Haematologica. 2015;100(3):336–344.
  • Kenderian SS, Ruella M, Shestova O, et al CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 2015;29(8):1637–1647.
  • Arcangeli S, Bardelli M, Tettamanti S, et al. Unraveling the efficacy and safety profiles of anti-CD123 chimeric antigen receptors (CARs) in a model of acute myeloid leukemia immunotherapy by investigating CAR binding affinity and density variables [abstract]. Blood. 2015;126(23):1359.
  • Tasian SK, Kenderian SS, Shen F, et al. Efficient termination of CD123-rredirected chimeric antigen receptor T cells for acute myeloid leukemia to mitigate toxicity [abstract]. Blood. 2015;126(23):565.
  • Wang Q-S, Wang Y, Lv H-Y, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23(1):184–191.
  • Luo Y, Chang L-J, Hu Y, et al. First-in-man CD123-specific chimeric antigen receptor-modified T cells for the treatment of refractory acute myeloid leukemia [abstract]. Blood. 2015;126(23):3778.
  • Bar M, Chapuis AG, Schmitt TM, et al. Transferred donor-derived virus specific CD8+ T cells that have been transduced to express a WT1-specific T cell receptor can persist and provide anti-leukemic activity in AML patients post-transplant [abstract]. Blood. 2014;124(21):3939.
  • Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361–370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.