1
Views
0
CrossRef citations to date
0
Altmetric
Review

Cervical and myometrial physiology and preterm labor

, &
Pages 179-192 | Published online: 10 Jan 2014

References

  • Berkowitz GS, Papiernik E. Epidemiology of preterm birth. Epidemiol. Rev.15(2), 414–443 (1993).
  • Kramer MS, Demissie K, Yang H et al. The contribution of mild and moderate preterm birth to infant mortality. Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. JAMA284(7), 843–849 (2000).
  • Barros FC, Velez Mdel P. Temporal trends of preterm birth subtypes and neonatal outcomes Obstet. Gynecol.107(5), 1035–1041 (2006).
  • Prematurity Research Expansion and Education for Mothers who Deliver Infants Early Act. (2003).
  • Leppert PC. Anatomy and physiology of cervical ripening. Clin. Obstet. Gynecol.38(2), 267–279 (1995).
  • Minamoto T, Arai K, Hirakawa S, Nagai Y. Immunohistochemical studies on collagen types in the uterine cervix in pregnant and nonpregnant states. Am. J. Obstet. Gynecol.156(1), 138–144 (1987).
  • Uldbjerg N, Ekman G, Malmstrom A, Olsson K, Ulmsten U. Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans, and collagenolytic activity. Am. J. Obstet. Gynecol.147(6), 662–666 (1983).
  • Becher N, Hein M, Danielsen CC, Uldbjerg N. Matrix metalloproteinases and their inhibitors in the cervical mucus plug at term of pregnancy. Am. J. Obstet. Gynecol.191(4), 1232–1239 (2004).
  • Leppert PC, Yu SY. Apoptosis in the cervix of pregnant rats in association with cervical softening. Gynecol. Obstet. Invest.37(3), 150–154 (1994).
  • Allaire AD, D’Andrea N, Truong P, McMahon MJ, Lessey BA. Cervical stroma apoptosis in pregnancy. Obstet. Gynecol.97(3), 399–403 (2001).
  • Osman I, Young A, Ledingham MA et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labor at term. Mol. Hum. Reprod.9(1), 41–45 (2003).
  • Ledingham MA, Thomson AJ, Jordan F et al. Cell adhesion molecule expression in the cervix and myometrium during pregnancy and parturition. Obstet. Gynecol.97(2), 235–242 (2001).
  • Chwalisz K, Benson M, Scholz P et al. Cervical ripening with the cytokines interleukin 8, interleukin 1β and tumour necrosis factor αl in guinea-pigs. Hum. Reprod.9(11), 2173–2181 (1994).
  • Luque EH, Bassani MM, Ramos JG et al. Leukocyte infiltration and collagenolysis in cervical tissue from intrapartum sheep. Zentralbl Veterinarmed. A.44(8), 501–510 (1997).
  • Ramos JG, Varayoud J, Kass L et al. Estrogen and progesterone modulation of eosinophilic infiltration of the rat uterine cervix. Steroids65(7), 409–414 (2000).
  • Junqueira LC, Zugaib M, Montes GS et al. Morphologic and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilic polymorphonuclear leukocytes during cervical dilation. Am. J. Obstet. Gynecol.138(3), 273–281 (1980).
  • Bokstrom H, Brannstrom M, Alexandersson M, Norstrom A. Leukocyte subpopulations in the human uterine cervical stroma at early and term pregnancy. Hum. Reprod.12(3), 586–590 (1997).
  • Mackler AM, Iezza G, Akin MR, McMillan P, Yellon SM. Macrophage trafficking in the uterus and cervix precedes parturition in the mouse. Biol. Reprod.61(4), 879–883 (1999).
  • Tanaka Y, Narahara H, Takai N et al. Interleukin-1β and interleukin-8 in cervicovaginal fluid during pregnancy. Am. J. Obstet. Gynecol.179(3 Pt 1), 644–649 (1998).
  • Kelly RW. Inflammatory mediators and cervical ripening. J. Reprod. Immunol.57(1–2), 217–224 (2002).
  • Winkler M, Fischer DC, Hlubek M et al. Interleukin-1β and interleukin-8 concentrations in the lower uterine segment during parturition at term. Obstet. Gynecol.91(6), 945–949 (1998).
  • Ito A, Goshowaki H, Sato T et al. Human recombinant interleukin-1 α-mediated stimulation of procollagenase production and suppression of biosynthesis of tissue inhibitor of metalloproteinases in rabbit uterine cervical fibroblasts. FEBS Lett.234(2), 326–330 (1988).
  • Kuijpers TW, Hakkert BC, Hart MH, Roos D. Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells: a role for platelet-activating factor and IL-8. J. Cell Biol.117(3), 565–572 (1992).
  • Wahl LM, Wahl SM, Mergenhagen SE, Martin GR. Collagenase production by lymphokine-activated macrophages. Science187(4173), 261–263 (1975).
  • Wahl LM, Wahl SM, Mergenhagen SE, Martin GR. Collagenase production by endotoxin-activated macrophages. Proc. Natl Acad. Sci. USA71(9), 3598–3601 (1974).
  • Yellon SM, Mackler AM, Kirby MA. The role of leukocyte traffic and activation in parturition. J. Soc. Gynecol. Investig.10(6), 323–338 (2003).
  • Ledingham MA, Thomson AJ, Young A et al. Changes in the expression of nitric oxide synthase in the human uterine cervix during pregnancy and parturition. Mol. Hum. Reprod.6(11), 1041–1048 (2000).
  • Tschugguel W, Schneeberger C, Lass H et al. Human cervical ripening is associated with an increase in cervical inducible nitric oxide synthase expression. Biol. Reprod.60(6), 1367–1372 (1999).
  • Buhimschi I, Ali M, Jain V, Chwalisz K, Garfield RE. Differential regulation of nitric oxide in the rat uterus and cervix during pregnancy and labor. Hum. Reprod.11(8), 1755–1766 (1996).
  • Ledingham MA, Thomson AJ, Greer IA, Norman JE. Nitric oxide in parturition. Br. J. Obstet. Gynaecol.107(5), 581–593 (2000).
  • MacMicking JD, Nathan C, Hom G et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell81(4), 641–650 (1995).
  • Tornblom SA, Maul H, Klimaviciute A et al. mRNA expression and localization of bNOS, eNOS and iNOS in human cervix at preterm and term labor. Reprod. Biol. Endocrinol.3, 33 (2005).
  • Stichtenoth DO, Thoren S, Bian H et al. Microsomal prostaglandin E synthase is regulated by proinflammatory cytokines and glucocorticoids in primary rheumatoid synovial cells. J. Immunol.167(1), 469–474 (2001).
  • Young A, Thomson AJ, Ledingham M et al. Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term. Biol. Reprod.66(2), 445–449 (2002).
  • Westman M, Korotkova M, af Klint E et al. Expression of microsomal prostaglandin E synthase 1 in rheumatoid arthritis synovium. Arthritis Rheum.50(6), 1774–1780 (2004).
  • Murakami M, Nakashima K, Kamei D et al. Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J. Biol. Chem.278(39), 37937–37947 (2003).
  • Kojima F, Kato S, Kawai S. Prostaglandin E synthase in the pathophysiology of arthritis. Fundam. Clin. Pharmacol.19(3), 255–261 (2005).
  • Astle S, Thornton S, Slater DM. Identification and localization of prostaglandin E2 receptors in upper and lower segment human myometrium during pregnancy. Mol. Hum. Reprod.11(4), 279–287 (2005).
  • Yamada T, Minakami H, Matsubara S et al. Changes in the number of polymorphonuclear leukocytes and concentrations of IL-8 and granulocyte elastase in the vaginas of normal pregnant women. Am. J. Reprod. Immunol.47(2), 98–103 (2002).
  • Timmons BC, Mahendroo MS. Timing of neutrophil activation and expression of proinflammatory markers do not support a role for neutrophils in cervical ripening in the mouse. Biol. Reprod.74(2), 236–245 (2006).
  • Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J.15(12), 2057–2072 (2001).
  • Groom KM, Shennan AH, Jones BA, Seed P, Bennett PR. TOCOX – a randomised, double-blind, placebo-controlled trial of rofecoxib (a COX-2-specific prostaglandin inhibitor) for the prevention of preterm delivery in women at high risk. Br. J. Obstet. Gynaecol.112(6), 725–730 (2005).
  • Shi L, Shi SQ, Saade GR, Chwalisz K, Garfield RE. Studies of cervical ripening in pregnant rats: effects of various treatments. Mol. Hum. Reprod.6(4), 382–389 (2000).
  • Mackenzie R, Walker M, Armson A, Hannah ME. Progesterone for the prevention of preterm birth among women at increased risk: a systematic review and meta-analysis of randomized controlled trials. Am. J. Obstet. Gynecol.194(5), 1234–1242 (2006).
  • Miller L, Hunt JS. Sex steroid hormones and macrophage function. Life Sci.59(1), 1–14 (1996).
  • Klein SL. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol.26(6–7), 247–264 (2004).
  • Savita, Rai U. Sex steroid hormones modulate the activation of murine peritoneal macrophages: receptor mediated modulation. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol.119(2), 199–204 (1998).
  • Piccinni MP, Giudizi MG, Biagiotti R et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J. Immunol.155(1), 128–133 (1995).
  • Lu FX, Abel K, Ma Z et al. The strength of B cell immunity in female rhesus macaques is controlled by CD8+ T cells under the influence of ovarian steroid hormones. Clin. Exp. Immunol.128(1), 10–20 (2002).
  • Nathanielsz PWHM. Myometrial Function, in Prostaglandins and the Uterus. Drife J, (Ed.) Springer-Verlag, London, UK 161–176 (1992).
  • Mackler AM, Ducsay CA, Veldhuis JD, Yellon SM. Maturation of spontaneous and agonist-induced uterine contractions in the peripartum mouse uterus. Biol. Reprod.61(4), 873–878 (1999).
  • Buhimschi C, Boyle MB, Garfield RE. Electrical activity of the human uterus during pregnancy as recorded from the abdominal surface. Obstet. Gynecol.90(1), 102–111 (1997).
  • Apostolakis EM, Rice KE, Longo LD, Seron-Ferre M, Yellon SM. Time of day of birth and absence of endocrine and uterine contractile activity rhythms in sheep. Am. J. Physiol.264(4 Pt 1), E534–E540 (1993).
  • Thompson AJ, Norman JE. Biology of preterm labor. In: Preterm Labor. Norman JE, Greer IA (Eds). Cambridge University Press, Cambridge, UK 26–75 (2005).
  • Thornton S, Gillespie JI, Greenwell JR, Dunlop W. Oxytocin-evoked repetitive rises of intracellular calcium in single cultured human myometrial cells. Exp. Physiol.77(2), 385–388 (1992).
  • Kupittayanant S, Luckas MJ, Wray S. Effect of inhibiting the sarcoplasmic reticulum on spontaneous and oxytocin-induced contractions of human myometrium. Br. J. Obstet. Gynaecol.109(3), 289–296 (2002).
  • Chanrachakul B, Matharoo-Ball B, Turner A et al. Immunolocalization and protein expression of the α-subunit of the large-conductance calcium-activated potassium channel in human myometrium. Reproduction126(1), 43–48 (2003).
  • Khan RN, Smith SK, Morrison JJ, Ashford MLJ. Ca2+ dependence and pharmacology of large-conductance K+ channels in nonlabor and labor human uterine myocytes. Am. J. Physiol. Cell Physiol.273(5), C1721–C1731 (1997).
  • Song M, Zhu N, Olcese R et al. Hormonal control of protein expression and mRNA levels of the MaxiK channel α-subunit in myometrium. FEBS Lett.460(3), 427–32 (1999).
  • Khan RN, Matharoo-Ball B, Arulkumaran S, Ashford ML. Potassium channels in the human myometrium. Exp. Physiol.86(2), 255–264 (2001).
  • Matharoo-Ball B, Ashford ML, Arulkumaran S, Khan RN. Down-regulation of the α- and β-subunits of the calcium-activated potassium channel in human myometrium with parturition. Biol. Reprod.68(6), 2135–2141 (2003).
  • Benkusky NA, Fergus DJ, Zucchero TM, England SK. Regulation of the Ca2+-sensitive domains of the Maxi-K channel in the mouse myometrium during gestation. J. Biol. Chem.275(36), 27712–27719 (2000).
  • Zhou X-B, Wang G-X, Huneke B, Wieland T, Korth M. Pregnancy switches adrenergic signal transduction in rat and human uterine myocytes as probed by BKCa channel activity. J. Physiol. (Lond.)524(2), 339–352 (2000).
  • Brainard AM, Miller AJ, Martens JR, England SK. Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. Am. J. Physiol. Cell Physiol.289(1), C49–C57 (2005).
  • Korovkina VP, Brainard AM, England SK. Translocation of an endoproteolytically cleaved maxi-K channel isoform: mechanisms to induce human myometrial cell repolarization. J. Physiol. (Lond.)573(2), 329–341 (2006).
  • Aaronson PI, Sarwar U, Gin S et al. A role for voltage-gated, but not Ca2+-activated, K+ channels in regulating spontaneous contractile activity in myometrium from virgin and pregnant rats. Br. J. Pharmacol.147(7), 815–824 (2006).
  • Bai X, Bugg GJ, Greenwood SL et al. Expression of TASK and TREK, two-pore domain K+ channels, in human myometrium. Reproduction129(4), 525–530 (2005).
  • Kilarski WM, Dupont E, Coppen S et al. Identification of two further gap-junctional proteins, connexin40 and connexin45, in human myometrial smooth muscle cells at term. Eur. J. Cell Biol.75(1), 1–8 (1998).
  • Kilarski WM, Rothery S, Roomans GM et al. Multiple connexins localized to individual gap-junctional plaques in human myometrial smooth muscle. Microsc. Res. Tech.54(2), 114–122 (2001).
  • Chow L and Lye SJ. Expression of the gap junction protein connexin-43 is increased in the human myometrium toward term and with the onset of labor. Am. J. Obstet. Gynecol.170(3), 788–795 (1994).
  • Albrecht JL, Atal NS, Tadros PN et al. Rat uterine myometrium contains the gap junction protein connexin45, which has a differing temporal expression pattern from connexin43. Am. J. Obstet. Gynecol.175(4 Pt 1), 853–858 (1996).
  • Doring B, Shynlova O, Tsui P et al. Ablation of connexin43 in uterine smooth muscle cells of the mouse causes delayed parturition. J. Cell Sci.119(Pt 9), 1715–1722 (2006).
  • Cook JL, Zaragoza DB, Sung DH, Olson DM. Expression of myometrial activation and stimulation genes in a mouse model of preterm labor: myometrial activation, stimulation, and preterm labor. Endocrinology141(5), 1718–1728 (2000).
  • Kilarski WM, Hongpaisan J, Semik D, Roomans GM. Effect of progesterone and oestradiol on expression of connexin43 in cultured human myometrium cells. Folia Histochem. Cytobiol.38(1), 3–9 (2000).
  • Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Ann. Rev. Biochem.69, 145–182 (2000).
  • Kulmacz RJ, Wang LH. Comparison of hydroperoxide initiator requirements for the cyclooxygenase activities of prostaglandin H synthase-1 and -2. J. Biol. Chem.270(41), 24019–24023 (1995).
  • Chen W, Pawelek TR, Kulmacz RJ. Hydroperoxide dependence and cooperative cyclooxygenase kinetics in prostaglandin H synthase-1 and -2. J. Biol. Chem.274(29), 20301–20306 (1999).
  • Capdevila JH, Morrow JD, Belosludtsev YY et al. The catalytic outcomes of the constitutive and the mitogen inducible isoforms of prostaglandin H2 synthase are markedly affected by glutathione and glutathione peroxidase(s). Biochemistry34(10), 3325–3337 (1995).
  • Giannoulias D, Alfaidy N, Holloway AC et al. Expression of prostaglandin I(2) synthase, but not prostaglandin E synthase, changes in myometrium of women at term pregnancy. J. Clin. Endocrinol. Metab.87(11), 5274–5282 (2002).
  • Hirst JJ, Teixeira FJ, Zakar T, Olson DM. Prostaglandin endoperoxide-H synthase-1 and -2 messenger ribonucleic acid levels in human amnion with spontaneous labor onset. J. Clin. Endocrinol. Metab.80(2), 517–523 (1995).
  • Slater DM, Dennes WJ, Campa JS, Poston L, Bennett PR. Expression of cyclo-oxygenase types-1 and -2 in human myometrium throughout pregnancy. Mol. Hum. Reprod.5(9), 880–884 (1999).
  • Johnson RF, Mitchell CM, Giles WB, Bisits A, Zakar T. Mechanisms regulating prostaglandin H2 synthase-2 mRNA level in the amnion and chorion during pregnancy. J. Endocrinol.188(3), 603–610 (2006).
  • Lindstrom T, Bennett P. Transcriptional regulation of genes for enzymes of the prostaglandin biosynthetic pathway. Prostaglandins, Leukot. Essent. Fatty Acids70(2), 115–135 (2004).
  • Lee Y, Allport V, Sykes A et al. The effects of labor and of interleukin 1 β upon the expression of nuclear factor-κB related proteins in human amnion. Mol. Hum. Reprod.9(4), 213–218 (2003).
  • Loudon JA, Elliott CL, Hills F, Bennett PR. Progesterone represses interleukin-8 and cyclo-oxygenase-2 in human lower segment fibroblast cells and amnion epithelial cells. Biol. Reprod.69(1), 331–337 (2003).
  • Condon JC, Hardy DB, Kovaric K, Mendelson CR. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-κB may contribute to the onset of labor through inhibition of PR function. Mol. Endocrinol.20(4), 764–775 (2006).
  • Condon JC, Jeyasuria P, Faust JM, Wilson JW, Mendelson CR. A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc. Natl Acad. Sci. USA100(16), 9518–9523 (2003).
  • Croy BA, Chantakru S, Narumiya S, Ichikawa A, Sugimoto Y. Prolonged gestation does not extend survival of uterine natural killer lymphocytes in mice deleted in the receptor for prostaglandin F2α. J. Reprod. Immunol.46(2), 125–129 (2000).
  • Reese J, Paria BC, Brown N et al. Coordinated regulation of fetal and maternal prostaglandins directs successful birth and postnatal adaptation in the mouse. Proc. Natl Acad. Sci. USA97(17), 9759–9764 (2000).
  • King J, Flenady V, Cole S, Thornton S. Cyclo-oxygenase (COX) inhibitors for treating preterm labor. Cochrane Database Syst. Rev. (2), CD001992 (2005).
  • Fuchs AR and Fuchs F. Endocrinology of human parturition: a review. Br. J. Obstet. Gynaecol.91(10), 948–967 (1984).
  • Torok I, Csapo AI. The effects of progesterone, prostaglandin F2α and oxytocin on the calcium-activation of the uterus. Prostaglandins12(2), 253–269 (1976).
  • Norwitz ER, Starkey PM, Lopez Bernal A, Turnbull AC. Identification by flow cytometry of the prostaglandin-producing cell populations of term human decidua. J. Endocrinol.131(2), 327–334 (1991).
  • Elliott CL, Allport VC, Loudon JA, Wu GD, Bennett PR. Nuclear factor-κB is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol. Hum. Reprod.7(8), 787–790 (2001).
  • Fidel PL, Jr, Romero R, Wolf N et al. Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am. J. Obstet. Gynecol.170(5 Pt 1), 1467–1475 (1994).
  • Pollard JW, Hunt JS, Wiktor-Jedrzejczak W, Stanley ER. A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev. Biol.148(1), 273–283 (1991).
  • Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr. Rev.21(5), 514–550 (2000).
  • Giangrande PH, McDonnell DP. The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog. Horm. Res.54, 291–313 (1999).
  • Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP. The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol. Cell Biol.20(9), 3102–3115 (2000).
  • Lydon JP, DeMayo FJ, Funk CR et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev.9(18), 2266–2278 (1995).
  • Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science289(5485), 1751–1754 (2000).
  • Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc. Natl Acad. Sci. USA100(17), 9744–9749 (2003).
  • Wei LL, Gonzalez-Aller C, Wood WM, Miller LA, Horwitz KB. 5'-Heterogeneity in human progesterone receptor transcripts predicts a new amino-terminal truncated “C”-receptor and unique A-receptor messages. Mol. Endocrinol.4(12), 1833–1840 (1990).
  • Wei LL, Norris BM, Baker CJ. An N-terminally truncated third progesterone receptor protein, PR(C), forms heterodimers with PR(B) but interferes in PR(B)-DNA binding. J. Steroid Biochem. Mol. Biol.62(4), 287–297 (1997).
  • Mesiano S, Chan EC, Fitter JT et al. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J. Clin. Endocrinol. Metab.87(6), 2924–2930 (2002).
  • Pieber D, Allport VC, Hills F, Johnson M, Bennett PR. Interactions between progesterone receptor isoforms in myometrial cells in human labor. Mol. Hum. Reprod.7(9), 875–879 (2001).
  • Condon JC, Jeyasuria P, Faust JM, Mendelson CR. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc. Natl Acad. Sci. USA101(14), 4978–4983 (2004).
  • Mendelson CR, Condon JC. New insights into the molecular endocrinology of parturition. J. Steroid Biochem. Mol. Biol.93(2–5), 113–119 (2005).
  • Perusquia M, Jasso-Kamel J. Influence of 5α- and 5β-reduced progestins on the contractility of isolated human myometrium at term. Life Sci.68(26), 2933–2944 (2001).
  • Thornton S, Terzidou V, Clark A, Blanks A. Progesterone metabolite and spontaneous myometrial contractions in vitro.Lancet353(9161), 1327–1329 (1999).
  • Mitchell BF, Mitchell JM, Chowdhury J et al. Metabolites of progesterone and the pregnane X receptor: a novel pathway regulating uterine contractility in pregnancy? Am. J. Obstet. Gynecol.192(4), 1304–1313 (2005).
  • Chanrachakul B, Pipkin FB, Warren AY, Arulkumaran S, Khan RN. Progesterone enhances the tocolytic effect of ritodrine in isolated pregnant human myometrium. Am. J. Obstet. Gynecol.192(2), 458–463 (2005).
  • Tsuboi K, Iwane A, Nakazawa S, Sugimoto Y, Ichikawa A. Role of prostaglandin H2 synthase 2 in murine parturition: study on ovariectomy-induced parturition in prostaglandin F receptor-deficient mice. Biol. Reprod.69(1), 195–201 (2003).
  • Critchley HOD, Jones RL, Lea RG et al. Role of inflammatory mediators in human endometrium during progesterone withdrawal and early pregnancy. J. Clin. Endocrinol. Metab.84(1), 240–248 (1999).
  • Marx SG, Wentz MJ, MacKay LB et al. Effects of progesterone on iNOS, COX-2, and collagen expression in the cervix. J. Histochem. Cytochem.54(6), 623–639 (2006).
  • Dong Y-L, Fang L, Kondapaka S et al. Involvement of calcitonin gene-related peptide in the modulation of human myometrial contractility during pregnancy. J. Clin. Invest.104(5), 559–565 (1999).
  • Piersanti M, Lye SJ. Increase in messenger ribonucleic acid encoding the myometrial gap junction protein, connexin-43, requires protein synthesis and is associated with increased expression of the activator protein-1, c-fos. Endocrinology136(8), 3571–3578 (1995).
  • Mitchell JA, Shynlova O, Langille BL, Lye SJ. Mechanical stretch and progesterone differentially regulate activator protein-1 transcription factors in primary rat myometrial smooth muscle cells. Am. J. Physiol. Endocrinol. Metab.287(3), E439–E445 (2004).
  • Sano H, Kuroki Y. The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity. Mol. Immunol.42(3), 279–287 (2005).
  • Kingma PS, Whitsett JA. In defense of the lung: surfactant protein A and surfactant protein D. Curr. Opin. Pharmacol.6(3), 277–283 (2006).
  • Whitsett JA. Surfactant proteins in innate host defense of the lung. Biol. Neonate.88(3), 175–180 (2005).
  • Snyder JM, Kwun JE, O’Brien JA, Rosenfeld CR, Odom MJ. The concentration of the 35-kDa surfactant apoprotein in amniotic fluid from normal and diabetic pregnancies. Pediatr. Res.24(6), 728–734 (1988).
  • Mendelson CR, Chen C, Boggaram V, Zacharias C, Snyder JM. Regulation of the synthesis of the major surfactant apoprotein in fetal rabbit lung tissue. J. Biol. Chem.261(21), 9938–9943 (1986).
  • Islam KN, Mendelson CR. Potential role of nuclear factor κb and reactive oxygen species in cAMP and cytokine regulation of surfactant protein-a gene expression in lung type II cells. Mol. Endocrinol.16(6), 1428–1440 (2002).
  • Miyamura K, Malhotra R, Hoppe HJ et al. Surfactant proteins A (SP-A) and D (SP-D): levels in human amniotic fluid and localization in the fetal membranes. Biochim. Biophys. Acta.1210(3), 303–307 (1994).
  • Guillot L, Balloy V, McCormack FX et al. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol.168(12), 5989–5992 (2002).
  • Sato M, Sano H, Iwaki D et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κ B activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J. Immunol.171(1), 417–425 (2003).
  • Wang H, Hirsch E. Bacterially-induced preterm labor and regulation of prostaglandin-metabolizing enzyme expression in mice: the role of Toll-like receptor 4. Biol. Reprod.69(6), 1957–1963 (2003).
  • Lorenz E, Hallman M, Marttila R, Haataja R, Schwartz DA. Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the Finnish population. Pediatr. Res.52(3), 373–376 (2002).
  • Kim CJ, Kim JS, Kim YM et al. Fetal macrophages are not present in the myometrium of women with labor at term. Am. J. Obstet. Gynecol.195(3), 829–833 (2006).
  • Mohan AR, Loudon JA, Bennett PR. Molecular and biochemical mechanisms of preterm labor. Semin. Fetal Neonatal Med.9(6), 437–444 (2004).
  • Terakawa K, Itoh H, Sagawa N et al. Site-specific augmentation of amnion cyclooxygenase-2 and decidua vera phospholipase-A2 expression in labor: possible contribution of mechanical stretch and interleukin-1 to amnion prostaglandin synthesis. J. Soc. Gynecol. Investig.9(2), 68–74 (2002).
  • Korita D, Sagawa N, Itoh H et al. Cyclic mechanical stretch augments prostacyclin production in cultured human uterine myometrial cells from pregnant women: possible involvement of up-regulation of prostacyclin synthase expression. J. Clin. Endocrinol. Metab.87(11), 5209–5219 (2002).
  • Sooranna SR, Lee Y, Kim LU et al. Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor in human myometrial cells. Mol. Hum. Reprod.10(2), 109–113 (2004).
  • Terzidou V, Sooranna SR, Kim LU et al. Mechanical stretch up-regulates the human oxytocin receptor in primary human uterine myocytes. J. Clin. Endocrinol. Metab.90(1), 237–246 (2005).
  • Lyall F, Lye SJ, Teoh T-G et al. Expression of gsα connexin-43, connexin-26, and EP1, 3, and 4 receptors in myometrium of prelabor singleton versus multiple gestations and the effects of mechanical stretch and steroids on gsα. J. Soc. Gynecol. Invest.9(5), 299–307 (2002).
  • Goldenberg RL, Culhane JF. Infection as a cause of preterm birth. Clin. Perinatol.30(4), 677–700 (2003).
  • Bennett PR, Rose MP, Myatt L, Elder MG. Preterm labor: stimulation of arachidonic acid metabolism in human amnion cells by bacterial products. Am. J. Obstet. Gynecol.156(3), 649–655 (1987).
  • Figueroa R, Garry D, Elimian A et al. Evaluation of amniotic fluid cytokines in preterm labor and intact membranes. J. Matern. Fetal Neonatal Med.18(4), 241–247 (2005).
  • Romero R, Mazor M, Tartakovsky B. Systemic administration of interleukin-1 induces preterm parturition in mice. Am. J. Obstet. Gynecol.165(4 Pt 1), 969–971 (1991).
  • Bry K, Hallman M. Transforming growth factor-β 2 prevents preterm delivery induced by interleukin-1 α and tumor necrosis factor-α in the rabbit. Am. J. Obstet. Gynecol.168(4), 1318–22 (1993).
  • Challis JRG. Mechanism of parturition and preterm labor. Obstet. Gynecol. Surv.55(10), 650–660 (2000).
  • Pitiphat W, Gillman MW, Joshipura KJ et al. Plasma C-reactive protein in early pregnancy and preterm delivery. Am. J. Epidemiol.162(11), 1108–1113 (2005).
  • Elbaz G, Fich A, Levy A, Holcberg G, Sheiner E. Inflammatory bowel disease and preterm delivery. Int. J. Gynaecol. Obstet.90(3), 193–197 (2005).
  • Ghezzi F, Franchi M, Raio L et al. Elevated amniotic fluid C-reactive protein at the time of genetic amniocentesis is a marker for preterm delivery. Am. J. Obstet. Gynecol.186(2), 268–273 (2002).
  • Offenbacher S, Boggess KA, Murtha AP et al. Progressive periodontal disease and risk of very preterm delivery. Obstet. Gynecol.107(1), 29–36 (2006).
  • Moore S, Ide M, Coward PY et al. A prospective study to investigate the relationship between periodontal disease and adverse pregnancy outcome. Br. Dent. J.197(5), 251–258 (2004).
  • Davenport ES, Williams CE, Sterne JA et al. Maternal periodontal disease and preterm low birthweight: case–control study. J. Dent. Res.81(5), 313–318 (2002).
  • McLean M, Bisits A, Davies J et al. A placental clock controlling the length of human pregnancy. Nat. Med.1(5), 460–463 (1995).
  • Challis JR, Bloomfield FH, Bocking AD et al. Fetal signals and parturition. J. Obstet. Gynaecol. Res.31(6), 492–499 (2005).
  • Sehringer B, Zahradnik HP, Simon M et al. mRNA expression profiles for corticotrophin-releasing hormone, urocortin, CRH-binding protein and CRH receptors in human term gestational tissues determined by real-time quantitative RT-PCR. J. Mol. Endocrinol.32(2), 339–348 (2004).
  • Stevens MY, Challis JR, Lye SJ. Corticotropin-releasing hormone receptor subtype 1 is significantly up-regulated at the time of labor in the human myometrium. J. Clin. Endocrinol. Metab.83(11), 4107–4115 (1998).
  • Johnson RF, Mitchell CM, Giles WB et al. Mechanisms regulating prostaglandin H2 synthase-2 mRNA level in the amnion and chorion during pregnancy. J. Endocrinol.188(3), 603–610 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.