9
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Fetal and maternal microchimerism: implications for prenatal diagnosis, fetal tolerance and autoimmune disease

&
Pages 331-340 | Published online: 10 Jan 2014

References

  • Adams KM, Nelson JL. Microchimerism: an investigative frontier in autoimmunity and transplantation. JAMA291(9), 1127–1131 (2004).
  • Dennis Lo YM, Chiu RW. Prenatal diagnosis: progress through plasma nucleic acids. Nat. Rev. Genet.8(1), 71–77 (2007).
  • Adams KM, Yan Z, Stevens AM, Nelson JL. The Changing Maternal “Self” Hypothesis: a mechanism for maternal tolerance of the fetus. Placenta DOI: 10.1016/j.placenta.2006.07.003 (2006) (Epub ahead of print).
  • Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc. Natl Acad. Sci. USA93(2), 705–708 (1996).
  • Maloney S, Smith A, Furst DE et al. Microchimerism of maternal origin persists into adult life. J. Clin. Invest.104(1), 41–47 (1999).
  • Lo YM, Tein MS, Lau TK et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am. J. Hum. Genet.62(4), 768–775 (1998).
  • Lo YM, Zhang J, Leung TN et al. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet.64(1), 218–224 (1999).
  • Faas BH, Beuling EA, Christiaens GC, von dem Borne AE, van der Schoot CE. Detection of fetal RHD-specific sequences in maternal plasma. Lancet352(9135), 1196 (1998).
  • Lo YM, Hjelm NM, Fidler C et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N. Engl. J. Med.339(24), 1734–1738 (1998).
  • Bianchi DW, Avent ND, Costa JM, van der Schoot CE. Noninvasive prenatal diagnosis of fetal rhesus D: ready for prime(r) time. Obstet. Gynecol.106(4), 841–844 (2005).
  • Finning K, Martin P, Daniels G. A clinical service in the UK to predict fetal Rh (Rhesus) D blood group using free fetal DNA in maternal plasma. Ann. NY Acad. Sci.1022, 119–123 (2004).
  • Moise KJ. Fetal RhD typing with free DNA in maternal plasma. Am. J. Obstet. Gynecol.192(3), 663–665 (2005).
  • Zhou L, Thorson JA, Nugent C et al. Noninvasive prenatal RHD genotyping by real-time polymerase chain reaction using plasma from D-negative pregnant women. Am. J. Obstet. Gynecol.193(6), 1966–1971 (2005).
  • Grootkerk-Tax MG, Soussan AA, de Haas M, Maaskant-van Wijk PA, van der Schoot CE. Evaluation of prenatal RHD typing strategies on cell-free fetal DNA from maternal plasma. Transfusion46(12), 2142–2148 (2006).
  • Saito H, Sekizawa A, Morimoto T, Suzuki M, Yanaihara T. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet356(9236), 1170 (2000).
  • Amicucci P, Gennarelli M, Novelli G, Dallapiccola B. Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin. Chem.46(2), 301–302 (2000).
  • Gonzalez-Gonzalez MC, Garcia-Hoyos M, Trujillo MJ et al. Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma. Prenat. Diagn.22(10), 946–948 (2002).
  • Gonzalez-Gonzalez MC, Trujillo MJ, Rodriguez de Alba M, Ramos C. Early Huntington disease prenatal diagnosis by maternal semiquantitative fluorescent-PCR. Neurology60(7), 1214–1215 (2003).
  • Chiu RW, Lau TK, Cheung PT et al. Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study. Clin. Chem.48(5), 778–780 (2002).
  • Chiu RW, Lau TK, Leung TN et al. Prenatal exclusion of β thalassaemia major by examination of maternal plasma. Lancet360(9338), 998–1000 (2002).
  • Li Y, Di Naro E, Vitucci A et al. Detection of paternally inherited fetal point mutations for β-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA293(7), 843–849 (2005).
  • Ding C, Chiu RW, Lau TK et al. MS analysis of single-nucleotide differences in circulating nucleic acids: application to noninvasive prenatal diagnosis. Proc. Natl Acad. Sci. USA101(29), 10762–10767 (2004).
  • Lo YM, Leung TN, Tein MS et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin. Chem.45(2), 184–188 (1999).
  • Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YM. Maternal plasma fetal DNA as a marker for preterm labour. Lancet352(9144), 1904–1905 (1998).
  • Zhong XY, Burk MR, Troeger C et al. Fetal DNA in maternal plasma is elevated in pregnancies with aneuploid fetuses. Prenat. Diagn.20(10), 795–798 (2000).
  • Levine RJ, Qian C, Leshane ES et al. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am. J. Obstet. Gynecol.190(3), 707–713 (2004).
  • Wataganara T, LeShane ES, Farina A et al. Maternal serum cell-free fetal DNA levels are increased in cases of trisomy 13 but not trisomy 18. Hum. Genet.112(2), 204–208 (2003).
  • Farina A, LeShane ES, Lambert-Messerlian GM et al. Evaluation of cell-free fetal DNA as a second-trimester maternal serum marker of Down syndrome pregnancy. Clin. Chem.49(2), 239–242 (2003).
  • Ng EK, Tsui NB, Lau TK et al. mRNA of placental origin is readily detectable in maternal plasma. Proc. Natl Acad. Sci. USA100(8), 4748–4753 (2003).
  • Lo YM, Tsui NB, Chiu RW et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat. Med.13(2), 218–223 (2007).
  • Poon LL, Leung TN, Lau TK, Chow KC, Lo YM. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin. Chem.48(1), 35–41 (2002).
  • Chim SS, Tong YK, Chiu RW et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc. Natl Acad. Sci. USA102(41), 14753–14758 (2005).
  • Flori E, Doray B, Gautier E et al. Circulating cell-free fetal DNA in maternal serum appears to originate from cyto- and syncytio-trophoblastic cells. Case report. Hum. Reprod.19(3), 723–724 (2004).
  • Huppertz B, Kadyrov M, Kingdom JC. Apoptosis and its role in the trophoblast. Am. J. Obstet. Gynecol.195(1), 29–39 (2006).
  • Ranella A, Vassiliadis S, Mastora C et al. Constitutive intracellular expression of human leukocyte antigen (HLA)-DO and HLA-DR but not HLA-DM in trophoblast cells. Hum. Immunol.66(1), 43–55 (2005).
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003).
  • Steinbrink K, Jonuleit H, Muller G et al. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood93(5), 1634–1642 (1999).
  • Hench PS. The ameliorating effect of pregnancy on chronic atrophic infectious rheumatoid arthritis, fibrositis, and intermittent hydroarthrosis. Mayo Clin. Proc.13, 161–167 (1938).
  • Nelson JL, Ostensen M. Pregnancy and rheumatoid arthritis. Rheum. Dis. Clin. North Am.23(1), 195–212 (1997).
  • Winchester R, Dwyer E, Rose S. The genetic basis of rheumatoid arthritis. The shared epitope hypothesis. Rheum. Dis. Clin. North Am.18(4), 761–783 (1992).
  • Engelhard VH. Structure of peptides associated with class I and class II MHC molecules. Annu. Rev. Immunol.12, 181–207 (1994).
  • Yan Z, Lambert NC, Ostensen M et al. Prospective study of fetal DNA in serum and disease activity during pregnancy in women with inflammatory arthritis. Arthritis Rheum.54(7), 2069–2073 (2006).
  • Nelson JL. Maternal-fetal immunology and autoimmune disease: is some autoimmune disease auto-alloimmune or allo-autoimmune? Arthritis Rheum.39(2), 191–194 (1996).
  • Rouquette-Gally AM, Boyeldieu D, Gluckman E, Abuaf N, Combrisson A. Autoimmunity in 28 patients after allogeneic bone marrow transplantation: comparison with Sjogren syndrome and scleroderma. Br. J. Haematol.66(1), 45–47 (1987).
  • Scaletti C, Vultaggio A, Bonifacio S et al. Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens. Arthritis Rheum.46(2), 445–450 (2002).
  • Lambert NC, Lo YM, Erickson TD et al. Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood100(8), 2845–2851 (2002).
  • Artlett CM, Cox LA, Ramos RC et al. Increased microchimeric CD4+ T lymphocytes in peripheral blood from women with systemic sclerosis. Clin. Immunol.103(3 Pt 1), 303–308 (2002).
  • Nelson JL, Furst DE, Maloney S et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet351(9102), 559–562 (1998).
  • Davies TF. The thyroid immunology of the postpartum period. Thyroid9(7), 675–684 (1999).
  • Klintschar M, Schwaiger P, Mannweiler S, Regauer S, Kleiber M. Evidence of fetal microchimerism in Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab.86(6), 2494–2498 (2001).
  • Ando T, Imaizumi M, Graves PN, Unger P, Davies TF. Intrathyroidal fetal microchimerism in Graves’ disease. J. Clin. Endocrinol. Metab.87(7), 3315–3320 (2002).
  • Klintschar M, Immel UD, Kehlen A et al. Fetal microchimerism in Hashimoto’s thyroiditis: a quantitative approach. Eur. J. Endocrinol.154(2), 237–241 (2006).
  • Srivatsa B, Srivatsa S, Johnson KL et al. Microchimerism of presumed fetal origin in thyroid specimens from women: a case–control study. Lancet358(9298), 2034–2038 (2001).
  • Walsh JP, Bremner AP, Bulsara MK et al. Parity and the risk of autoimmune thyroid disease: a community-based study. J. Clin. Endocrinol. Metab.90(9), 5309–5312 (2005).
  • Hovinga IC, Koopmans M, Baelde HJ et al. Chimerism occurs twice as often in lupus nephritis as in normal kidneys. Arthritis Rheum.54(9), 2944–2950 (2006).
  • Abbud Filho M, Pavarino-Bertelli EC, Alvarenga MP et al. Systemic lupus erythematosus and microchimerism in autoimmunity. Transplant Proc.34(7), 2951–2952 (2002).
  • Turner JH, Wald N, Quinlivan WL. Cytogenetic evidence concerning possible transplacental transfer of leukocytes in pregnant women. Am. J. Obstet. Gynecol.95(6), 831–833 (1966).
  • El-Alfi OS, Hathout H. Maternofetal transfusion: immunologic and cytogenetic evidence. Am. J. Obstet. Gynecol.103(4), 599–600 (1969).
  • Duhring JL, Smith K, Greene JW Jr, Rochlin DB, Blakemore WS. Placental transfer of maternal erythrocytes into the fetal circulation. Surg. Forum10, 720–722 (1960).
  • Desai RG, Creger WP. Maternofetal passage of leukocytes and platelets in man. Blood21, 665–673 (1963).
  • Srivatsa B, Srivatsa S, Johnson KL, Bianchi DW. Maternal cell microchimerism in newborn tissues. J. Pediatr.142(1), 31–35 (2003).
  • Stevens AM Hermes HH, Rutledge R, Buyon J, Nelson JL. Maternal microchimerism has myocardial tissue-specific phenotype in neonatal lupus congenital heart block. Lancet362(9396), 1617–1623 (2003).
  • Lo YM, Lo ES, Watson N et al. Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood88(11), 4390–4395 (1996).
  • Loubiere LS, Lambert NC, Flinn LJ et al. Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Lab. Invest.86(11), 1185–1192 (2006).
  • Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat. Med.7(4), 393–395 (2001).
  • Cogle CR, Yachnis AT, Laywell ED et al. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet363, 1432–1437 (2004).
  • Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell116, 639–648 (2004).
  • Fujimiya M, Kojima H, Ichinose M et al. Fusion of proinsulin-producing bone marrow-derived cells with hepatocytes in diabetes. PNAS104, 4030–4035 (2007).
  • Nelson JL, Gillespie KM, Lambert NC et al. Maternal microchimerism in peripheral blood in tType 1 diabetes and pancreatic islet β cell microchimerism. Proc. Natl Acad. Sci. USA104(5), 1637–1642 (2007).
  • Reed AM Picomell YJ, Harwood A, Kredich DW. Chimerism in children with juvenile dermatomyositis. Lancet356, 2156–2157 (2000).
  • Artlett CM Ramos R, Jiminez SA, Patterson K, Miller FW, Rider LG. Detection of microchimeric cells of maternal origin in the periphery and tissues of patients with juvenile idiopathic inflammatory myopathies. Lancet356, 2155–2156 (2000).
  • Artlett CM, Miller FW, Rider LG. Persistent maternally derived peripheral microchimerism is associated with the juvenile idiopathic inflammatory myopathies. Rheumatology (Oxf.)40(11), 1279–1284 (2001).
  • Khosrotehrani K, Guegan S, Fraitag S et al. Presence of chimeric maternally derived keratinocytes in cutaneous inflammatory diseases of children: the example of pityriasis lichenoides. J. Invest. Dermatol.126(2), 345–348 (2006).
  • Lambert NC, Erickson TD, Yan Z et al. Quantification of maternal microchimerism by HLA-specific real-time PCR. Studies of healthy women and women with scleroderma. Arthritis Rheum.50(3), 906–914 (2004).
  • Lambert NC, Distler O, Muller-Ladner U, Tylee TS, Furst DE, Nelson JL. HLA-DQA1*0501 is associated with diffuse systemic sclerosis in Caucasian men. Arthritis Rheum.43(9), 2005–2010 (2000).
  • Ichinohe T, Teshima T, Matsuoka K, Maruya E, Saji H. Fetal–maternal microchimerism: impact on hematopoietic stem cell-transplantation. Curr. Opin. Immunol.17(5), 546–552 (2005).
  • van Rood JJ, Roelen DL, Claas FH. The effect of noninherited maternal antigens in allogeneic transplantation. Semin. Hematol.42, 104–111 (2005).
  • van Rood JJ, Loberiza FR Jr, Zhang MJ et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood99(5), 1572–1577 (2002).
  • Tamaki S, Ichinohe T, Matsue K et al. Superior survival of blood and marrow stem cell recipients given maternal grafts over recipients given paternal grafts. Bone Marrow Transplant28, 375–380 (2001).
  • Shimazaki C, Ochiai N, Uchida R et al. Non-T-cell-depleted HLA haploidentical stem cell transplantation in advanced hematologic malignancies based on the feto-maternal microchimerism. Blood101(8), 3334–3336 (2003).
  • Burlingham WJ, Grailer AP, Heisey DM et al. The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. N. Engl. J. Med.339(23), 1657–1664 (1998).
  • van Twuyer E, Mooijaart R, ten Berge I et al. Pretransplantation blood transfusion revisited. N. Engl. J. Med.325, 1210–1213 (1991).
  • Adams KM, Lambert NC, Heimfeld S et al. Male DNA in peripheral blood stem cell apheresis products of female donors. Blood102, 3845–3847 (2003).
  • Perreault C, Roy DC, Fortin C. Immunodominant minor histocompatibility antigens: the major ones. Immunol. Today19, 69–74 (1998).
  • Adams KM, Holmberg LA, Leisenring WM et al. Risk factors for syngeneic graft-versus-host disease after adult hematopoietic cell transplantation. Blood104(6), 1894–1897 (2004).
  • Flowers ME, Pepe MS, Longton G et al. Previous donor pregnancy as a risk factor for acute graft-versus-host disease in patients with aplastic anaemia treated by allogeneic marrow transplantation. Br. J. Haematol.74(4), 492–496 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.