8
Views
7
CrossRef citations to date
0
Altmetric
Review

Targeting locoregional peritoneal dissemination in ovarian cancer

, , &
Pages 133-147 | Published online: 10 Jan 2014

References

  • Ozols RF, Bookman MA, Connolly DC et al. Focus on epithelial ovarian cancer. Cancer Cell5(1), 19–24 (2004).
  • Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer3(7), 502–516 (2003).
  • Angioli R, Palaia I, Damiani P, Montera R, Benedetti Panici P. Up-date on cytoreductive surgery in the management of advanced ovarian cancer. Minerva Ginecol.58(6), 459–470 (2006).
  • McGuire WP, Hoskins WJ, Brady MF et al. Cyclophosphamide and cisplatin versus paclitaxel and cisplatin: a Phase III randomized trial in patients with suboptimal stage III/IV ovarian cancer (from the Gynecologic Oncology Group). Semin. Oncol.23(5 Suppl. 12), 40–47 (1996).
  • Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr. Rev.22(2), 255–288 (2001).
  • Bell DA. Origins and molecular pathology of ovarian cancer. Mod. Pathol.18(Suppl. 2), S19–S32 (2005).
  • Jarboe EA, Folkins AK, Drapkin R et al. Tubal and ovarian pathways to pelvic epithelial cancer: a pathological perspective. Histopathology53(2), 127–138 (2008).
  • Kurman RJ, Shih Ie M. Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int. J. Gynecol. Pathol.27(2), 151–160 (2008).
  • Naora H. Developmental patterning in the wrong context: the paradox of epithelial ovarian cancers. Cell Cycle4(8), 1033–1035 (2005).
  • Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat. Rev. Mol. Cell. Biol.7(2), 131–142 (2006).
  • Christofori G. New signals from the invasive front. Nature441(7092), 444–450 (2006).
  • Sundfeldt K. Cell–cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Mol. Cell. Endocrinol.202(1–2), 89–96 (2003).
  • Marques FR, Fonsechi-Carvasan GA, De Angelo Andrade LA, Bottcher-Luiz F. Immunohistochemical patterns for α- and β-catenin, E- and N-cadherin expression in ovarian epithelial tumors. Gynecol. Oncol.94(1), 16–24 (2004).
  • Imai T, Horiuchi A, Shiozawa T et al. Elevated expression of E-cadherin and α-, β-, and γ-catenins in metastatic lesions compared with primary epithelial ovarian carcinomas. Hum. Pathol.35(12), 1469–1476 (2004).
  • Sarrio D, Moreno-Bueno G, Sanchez-Estevez C et al. Expression of cadherins and catenins correlates with distinct histologic types of ovarian carcinomas. Hum. Pathol.37(8), 1042–1049 (2006).
  • Davidson B, Berner A, Nesland JM et al. E-cadherin and α-, β-, and γ-catenin protein expression is up-regulated in ovarian carcinoma cells in serous effusions. J. Pathol.192(4), 460–469 (2000).
  • Faleiro-Rodrigues C, Macedo-Pinto I, Pereira D, Ferreira VM, Lopes CS. Association of E-cadherin and β-catenin immunoexpression with clinicopathologic features in primary ovarian carcinomas. Hum. Pathol.35(6), 663–669 (2004).
  • Faleiro-Rodrigues C, Macedo-Pinto I, Pereira D, Lopes CS. Prognostic value of E-cadherin immunoexpression in patients with primary ovarian carcinomas. Ann. Oncol.15(10), 1535–1542 (2004).
  • Darai E, Scoazec JY, Walker-Combrouze F et al. Expression of cadherins in benign, borderline, and malignant ovarian epithelial tumors: a clinicopathologic study of 60 cases. Hum. Pathol.28(8), 922–928 (1997).
  • Patel IS, Madan P, Getsios S, Bertrand MA, MacCalman CD. Cadherin switching in ovarian cancer progression. Int. J. Cancer106(2), 172–177 (2003).
  • Kim KS, Sengupta S, Berk M et al. Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res.66(16), 7983–7990 (2006).
  • Imai T, Horiuchi A, Wang C et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of Snail in ovarian carcinoma cells. Am. J. Pathol.163(4), 1437–1447 (2003).
  • Kurrey NK, Amit K, Bapat SA. Snail and slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol. Oncol.97(1), 155–165 (2005).
  • Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat. Rev. Cancer5(1), 51–63 (2005).
  • Lee SP, Youn SW, Cho HJ et al. Integrin-linked kinase, a hypoxia-responsive molecule, controls postnatal vasculogenesis by recruitment of endothelial progenitor cells to ischemic tissue. Circulation114(2), 150–159 (2006).
  • Elloul S, Elstrand MB, Nesland JM et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer103(8), 1631–1643 (2005).
  • Hosono S, Kajiyama H, Terauchi M et al. Expression of Twist increases the risk for recurrence and for poor survival in epithelial ovarian carcinoma patients. Br. J. Cancer96(2), 314–320 (2007).
  • Blechschmidt K, Sassen S, Schmalfeldt B et al. The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients. Br. J. Cancer98(2), 489–495 (2008).
  • Balzac F, Avolio M, Degani S et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J. Cell Sci.118(Pt 20), 4765–4783 (2005).
  • Symowicz J, Adley BP, Gleason KJ et al. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res.67(5), 2030–2039 (2007).
  • Sawada K, Mitra AK, Radjabi AR et al. Loss of E-cadherin promotes ovarian cancer metastasis via α 5-integrin, which is a therapeutic target. Cancer Res.68(7), 2329–2339 (2008).
  • Avizienyte E, Wyke AW, Jones RJ et al. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signaling. Nat. Cell Biol.4(8), 632–638 (2002).
  • Judson PL, He X, Cance WG, Van Le L. Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer86(8), 1551–1556 (1999).
  • Wiener JR, Windham TC, Estrella VC et al. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol. Oncol.88(1), 73–79 (2003).
  • Rosano L, Spinella F, Di Castro V et al. Integrin-linked kinase functions as a downstream mediator of endothelin-1 to promote invasive behavior in ovarian carcinoma. Mol. Cancer Ther.5(4), 833–842 (2006).
  • Ahmed N, Riley C, Oliva K et al. Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid. J. Pathol.201(2), 229–237 (2003).
  • Ahmed N, Oliva K, Rice GE, Quinn MA. Cell-free 59 kDa immunoreactive integrin-linked kinase: a novel marker for ovarian carcinoma. Clin. Cancer Res.10(7), 2415–2420 (2004).
  • Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer2(8), 563–572 (2002).
  • Lane D, Robert V, Grondin R, Rancourt C, Piche A. Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/Akt pathway in human ovarian carcinoma cells. Int. J. Cancer121(6), 1227–1237 (2007).
  • Shepherd TG, Theriault BL, Campbell EJ, Nachtigal MW. Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nat. Protoc.1(6), 2643–2649 (2006).
  • Ayhan A, Gultekin M, Taskiran C et al. Ascites and epithelial ovarian cancers: a reappraisal with respect to different aspects. Int. J. Gynecol. Cancer17(1), 68–75 (2007).
  • Byrne AT, Ross L, Holash J et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res.9(15), 5721–5728 (2003).
  • Adis International Limited. Aflibercept: AVE 0005, AVE 005, AVE0005, VEGF Trap - Regeneron, VEGF Trap (R1R2), VEGF Trap-Eye. Drugs RD9(4), 261–269 (2008).
  • Freedman RS, Deavers M, Liu J, Wang E. Peritoneal inflammation – a microenvironment for epithelial ovarian cancer (EOC). J. Trans. Med.2(1), 23 (2004).
  • Scotton CJ, Wilson JL, Scott K et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res.62(20), 5930–5938 (2002).
  • Demeter A, Sziller I, Csapo Z et al. Molecular prognostic markers in recurrent and in non-recurrent epithelial ovarian cancer. Anticancer Res.25(4), 2885–2889 (2005).
  • Yagi H, Yotsumoto F, Miyamoto S. Heparin-binding epidermal growth factor-like growth factor promotes transcoelomic metastasis in ovarian cancer through epithelial–mesenchymal transition. Mol. Cancer Ther.7(10), 3441–3451 (2008).
  • Powers MV, Workman P. Targeting of multiple signaling pathways by heat shock protein 90 molecular chaperone inhibitors. Endo. Relat. Cancer13(Suppl. 1), S125–S135 (2006).
  • Palayoor ST, Mitchell JB, Cerna D et al. PX-478, an inhibitor of hypoxia-inducible factor-1α, enhances radiosensitivity of prostate carcinoma cells. Int. J. Cancer123(10), 2430–2437 (2008).
  • Casey RC, Burleson KM, Skubitz KM et al. b 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am. J. Pathol.159(6), 2071–2080 (2001).
  • Burleson KM, Casey RC, Skubitz KM et al. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol. Oncol.93(1), 170–181 (2004).
  • Burleson KM, Hansen LK, Skubitz AP. Ovarian carcinoma spheroids disaggregate on type I collagen and invade live human mesothelial cell monolayers. Clin. Exp. Met.21(8), 685–697 (2004).
  • Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer5(5), 355–366 (2005).
  • Cheng KW, Lahad JP, Kuo WL et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat. Med.10(11), 1251–1256 (2004).
  • McLean GW, Carragher NO, Avizienyte E et al. The role of focal-adhesion kinase in cancer – a new therapeutic opportunity. Nat. Rev. Cancer5(7), 505–515 (2005).
  • Robinson-Smith TM, Isaacsohn I, Mercer CA et al. Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res.67(12), 5708–5716 (2007).
  • Milliken D, Scotton C, Raju S, Balkwill F, Wilson J. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin. Cancer Res.8(4), 1108–1114 (2002).
  • Kulbe H, Thompson R, Wilson JL et al. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res.67(2), 585–592 (2007).
  • Harrison ML, Obermueller E, Maisey NR et al. Tumor necrosis factor α as a new target for renal cell carcinoma: two sequential Phase II trials of infliximab at standard and high dose. J. Clin. Oncol.25(29), 4542–4549 (2007).
  • Madhusudan S, Muthuramalingam SR, Braybrooke JP et al. Study of etanercept, a tumor necrosis factor-α inhibitor, in recurrent ovarian cancer. J. Clin. Oncol.23(25), 5950–5959 (2005).
  • Brown ER, Charles KA, Hoare SA et al. A clinical study assessing the tolerability and biological effects of infliximab, a TNF-α inhibitor, in patients with advanced cancer. Ann. Oncol.19(7), 1340–1346 (2008).
  • Jiang YP, Wu XH, Shi B, Wu WX, Yin GR. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol. Oncol.103(1), 226–233 (2006).
  • Kajiyama H, Shibata K, Terauchi M et al. Involvement of SDF-1α/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int. J. Cancer122(1), 91–99 (2008).
  • Bignotti E, Tassi RA, Calza S et al. Gene expression profile of ovarian serous papillary carcinomas: identification of metastasis-associated genes. Am. J. Obstet. Gynecol.196(3), 245 E1–E11 (2007).
  • Sethi T, Rintoul RC, Moore SM et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med.5(6), 662–668 (1999).
  • Burger M, Glodek A, Hartmann T et al. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene22(50), 8093–8101 (2003).
  • Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene24(27), 4462–4471 (2005).
  • Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res.61(13), 4961–4965 (2001).
  • Wang JF, Park IW, Groopman JE. Stromal cell-derived factor-1α stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood95(8), 2505–2513 (2000).
  • Zou W, Machelon V, Coulomb-L’Hermin A et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat. Med.7(12), 1339–1346 (2001).
  • Burges A, Wimberger P, Kumper C et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a Phase I/II study. Clin. Cancer Res.13(13), 3899–3905 (2007).
  • Cannistra SA. Cancer of the ovary. N. Engl. J. Med.351(24), 2519–2529 (2004).
  • Hand R, Fremgen A, Chmiel JS et al. Staging procedures, clinical management, and survival outcome for ovarian carcinoma. JAMA269(9), 1119–1122 (1993).
  • Partridge EE, Phillips JL, Menck HR. The National Cancer Data Base report on ovarian cancer treatment in United States hospitals. Cancer78(10), 2236–2246 (1996).
  • Benedet JL, Bender H, Jones H 3rd, Ngan HY, Pecorelli S; FIGO Committee on Gynecologic Oncology. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. J. Int. Gynaecol. Obstet.70(2), 209–262 (2000).
  • Onda T, Yoshikawa H, Yasugi T et al. Patients with ovarian carcinoma upstaged to stage III after systematic lymphadenctomy have similar survival to stage I/II patients and superior survival to other Stage III patients. Cancer83(8), 1555–1560 (1998).
  • Fishman DA, Kearns A, Chilukuri K et al. Metastatic dissemination of human ovarian epithelial carcinoma is promoted by α2β1-integrin-mediated interaction with type I collagen. Invasion Metastasis18(1), 15–26 (1998).
  • Strobel T, Cannistra SA. b1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol. Oncol.73(3), 362–367 (1999).
  • Lessan K, Aguiar DJ, Oegema T, Siebenson L, Skubitz AP. CD44 and β1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am. J. Pathol.154(5), 1525–1537 (1999).
  • Casey RC, Skubitz AP. CD44 and β1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clin. Exp. Met.18(1), 67–75 (2000).
  • Ahmed N, Riley C, Rice G, Quinn M. Role of integrin receptors for fibronectin, collagen and laminin in the regulation of ovarian carcinoma functions in response to a matrix microenvironment. Clin. Exp. Met.22(5), 391–402 (2005).
  • Yokoyama Y, Sedgewick G, Ramakrishnan S. Endostatin binding to ovarian cancer cells inhibits peritoneal attachment and dissemination. Cancer Res.67(22), 10813–10822 (2007).
  • Ura H, Denno R, Hirata K, Yamaguchi K, Yasoshima T. Separate functions of α2β1 and α3β1 integrins in the metastatic process of human gastric carcinoma. Surg. Today28(10), 1001–1006 (1998).
  • Takatsuki H, Komatsu S, Sano R, Takada Y, Tsuji T. Adhesion of gastric carcinoma cells to peritoneum mediated by α3β1 integrin (VLA-3). Cancer Res.64(17), 6065–6070 (2004).
  • Witz CA, Takahashi A, Montoya-Rodriguez IA, Cho S, Schenken RS. Expression of the α2β1 and α3β1 integrins at the surface of mesothelial cells: a potential attachment site of endometrial cells. Fertil. Steril.74(3), 579–584 (2000).
  • Sawada K, Radjabi AR, Shinomiya N et al. c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res.67(4), 1670–1679 (2007).
  • Said N, Najwer I, Motamed K. Secreted protein acidic and rich in cysteine (SPARC) inhibits integrin-mediated adhesion and growth factor-dependent survival signaling in ovarian cancer. Am. J. Pathol.170(3), 1054–1063 (2007).
  • Nunez MI, Rosen DG, Ludes-Meyers JH et al. WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome. BMC Cancer5(1), 64 (2005).
  • Gourley C, Paige AJW, Taylor KJ et al. WWOX gene expression abolishes ovarian cancer tumorigenicity in-vivo and decreases attachment to fibronectin via integrin a3. Cancer Res. (2009) (In Press).
  • Gardner MJ, Catterall JB, Jones LM, Turner GA. Human ovarian tumour cells can bind hyaluronic acid via membrane CD44: a possible step in peritoneal metastasis. Clin. Exp. Met.14(4), 325–334 (1996).
  • Strobel T, Swanson L, Cannistra SA. in vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res.57(7), 1228–1232 (1997).
  • Rump A, Morikawa Y, Tanaka M et al. Binding of ovarian cancer antigen CA-125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem.279(10), 9190–9198 (2004).
  • Casey RC, Oegema TR Jr, Skubitz KM et al. Cell membrane glycosylation mediates the adhesion, migration, and invasion of ovarian carcinoma cells. Clin. Exp. Met.20(2), 143–152 (2003).
  • Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer8(8), 604–617 (2008).
  • Hersey P, Sosman J, O’Day S et al. A Phase II, randomized, open-label study evaluating the antitumor activity of MEDI-522, a humanized monoclonal antibody directed against the human α v β 3 (avb3) integrin, ± dacarbazine (DTIC) in patients with metastatic melanoma. 2005 ASCO Annual Meeting Proceedings. J. Clin. Oncol.23(16S), Pt I, 7507 (2005).
  • Nabors LB, Mikkelsen T, Rosenfeld SS et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J. Clin. Oncol.25(13), 1651–1657 (2007).
  • Beekman KW, Colevas AD, Cooney K et al. Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design. Clin. Genitourin. Cancer4(4), 299–302 (2006).
  • Friess H, Langrehr JM, Oettle H et al. A randomized multi-center Phase II trial of the angiogenesis inhibitor cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer. BMC Cancer6, 285 (2006).
  • Landen CN, Kim TJ, Lin YG et al. Tumor-selective response to antibody-mediated targeting of αvβ3 integrin in ovarian cancer. Neoplasia10(11), 1259–1267 (2008).
  • Kuwada SK. Drug evaluation: volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody. Curr. Opin. Mol. Ther.9(1), 92–98 (2007).
  • Cianfrocca ME, Kimmel KA, Gallo J et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2)), a β integrin antagonist, in patients with solid tumours. Br. J. Cancer94(11), 1621–1626 (2006).
  • Sood AK, Coffin JE, Schneider GB et al. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am. J. Pathol.165(4), 1087–1095 (2004).
  • Sieg DJ, Hauck CR, Ilic D et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol.2(5), 249–256 (2000).
  • Halder J, Kamat AA, Landen CN Jr et al. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin. Cancer Res.12(16), 4916–4924 (2006).
  • Halder J, Lin YG, Merritt WM et al. Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. Cancer Res.67(22), 10976–10983 (2007).
  • Ahmed AA, Mills AD, Ibrahim AE et al. The extracellular matrix protein TGFbI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel. Cancer Cell12(6), 514–527 (2007).
  • Han LY, Landen CN, Trevino JG et al. Antiangiogenic and antitumor effects of SRC inhibition in ovarian carcinoma. Cancer Res.66(17), 8633–8639 (2006).
  • Quintas-Cardama A, Kantarjian H, Jones D et al. Dasatinib (BMS-354825) is active in Philadelphia chromosome-positive chronic myelogenous leukemia after imatinib and nilotinib (AMN107) therapy failure. Blood109(2), 497–499 (2007).
  • Bradeen HA, Eide CA, O’Hare T et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl- N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood108(7), 2332–2338 (2006).
  • Doggrell SA. BMS-354825: a novel drug with potential for the treatment of imatinib-resistant chronic myeloid leukaemia. Expert Opin. Investig. Drugs14(1), 89–91 (2005).
  • Summy JM, Gallick GE. Treatment for advanced tumors: SRC reclaims center stage. Clin. Cancer Res.12(5), 1398–1401 (2006).
  • Donninger H, Bonome T, Radonovich M et al. Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene23(49), 8065–8077 (2004).
  • Mok SC, Chan WY, Wong KK et al. DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer. Oncogene16(18), 2381–2387 (1998).
  • Wang SC, Makino K, Xia W et al. DOC-2/hDab-2 inhibits ILK activity and induces anoikis in breast cancer cells through an Akt-independent pathway. Oncogene20(47), 6960–6964 (2001).
  • Rosano L, Spinella F, Di Castro V et al. Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res.65(24), 11649–11657 (2005).
  • Guo W, Giancotti FG. Integrin signaling during tumour progression. Nat. Rev. Mol. Cell. Biol.5(10), 816–826 (2004).
  • Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat. Rev. Cancer2(2), 91–100 (2002).
  • Phuphanich S, Carson KA, Grossman SA et al. Phase I safety study of escalating doses of atrasentan in adults with recurrent malignant glioma. Neuro. Oncol.10(4), 617–623 (2008).
  • Carducci MA, Saad F, Abrahamsson PA et al. A Phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer110(9), 1959–1966 (2007).
  • Fisher M. The endothelin-1 antagonist, atrasentan, improves time to progression and quality of life in hormone-refractory prostate cancer. Clin. Prostate Cancer1(2), 79–80 (2002).
  • Lee D. Clinical trials of atrasentan in hormone-refractory prostate cancer. Clin. Prostate Cancer2(2), 84–86 (2003).
  • Michaelson MD, Kaufman DS, Kantoff P, Oh WK, Smith MR. Randomized Phase II study of atrasentan alone or in combination with zoledronic acid in men with metastatic prostate cancer. Cancer107(3), 530–535 (2006).
  • Witteveen PO, Los M, Groenewegen G, Voest EE. A Phase I study of atrasentan in combination with liposomal doxorubicin in platinum resistant ovarian cancer. 2005 ASCO Annual Meeting Proceedings. J. Clin. Oncol.23(16S), 3170 (2005).
  • Bourguignon LY, Gilad E, Rothman K, Peyrollier K. Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J. Biol. Chem.280(12), 11961–11972 (2005).
  • Bourguignon LY, Zhu H, Shao L, Chen YW. CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J. Biol. Chem.276(10), 7327–7336 (2001).
  • Bourguignon LY, Peyrollier K, Gilad E, Brightman A. Hyaluronan-CD44 interaction with neural Wiskott-Aldrich syndrome protein (N-WASP) promotes actin polymerization and ErbB2 activation leading to β-catenin nuclear translocation, transcriptional up-regulation, and cell migration in ovarian tumor cells. J. Biol. Chem.282(2), 1265–1280 (2007).
  • Kenny HA, Kaur S, Coussens LM, Lengyel E. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Invest.118(4), 1367–1379 (2008).
  • Sodek KL, Ringuette MJ, Brown TJ. MT1-MMP is the critical determinant of matrix degradation and invasion by ovarian cancer cells. Br. J. Cancer97(3), 358–367 (2007).
  • Cheung LW, Leung PC, Wong AS. Gonadotropin-releasing hormone promotes ovarian cancer cell invasiveness through c-Jun NH2-terminal kinase-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9. Cancer Res.66(22), 10902–10910 (2006).
  • Hashimoto K, Morishige K, Sawada K et al. Alendronate inhibits intraperitoneal dissemination in in vivo ovarian cancer model. Cancer Res.65(2), 540–545 (2005).
  • Overall CM, Kleifeld O. Tumour microenvironment – opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer6(3), 227–239 (2006).
  • Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science295(5564), 2387–2392 (2002).
  • Shield K, Riley C, Quinn MA et al. a2β1 integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis. J. Carcinog.6, 11 (2007).
  • Spannuth WA, Sood AK, Coleman RL. Angiogenesis as a strategic target for ovarian cancer therapy. Nat. Clin. Pract. Oncol.5(4), 194–204 (2008).
  • Johnson DH, Fehrenbacher L, Novotny WF et al. Randomized Phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol.22(11), 2184–2191 (2004).
  • Kabbinavar F, Hurwitz HI, Fehrenbacher L et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol.21(1), 60–65 (2003).
  • Kabbinavar FF, Schulz J, McCleod M et al. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized Phase II trial. J. Clin. Oncol.23(16), 3697–3705 (2005).
  • Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350(23), 2335–2342 (2004).
  • Miller KD, Chap LI, Holmes FA et al. Randomized Phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol.23(4), 792–799 (2005).
  • Sandler A, Gray R, Perry MC et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med.355(24), 2542–2550 (2006).
  • Burger RA, Sill MW, Monk BJ, Greer BE, Sorosky JI. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J. Clin. Oncol.25(33), 5165–5171 (2007).
  • Cannistra SA, Matulonis UA, Penson RT et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J. Clin. Oncol.25(33), 5180–5186 (2007).
  • Fujiwara K, Armstrong D, Morgan M, Markman M. Principles and practice of intraperitoneal chemotherapy for ovarian cancer. Int. J. Gynecol. Cancer17(1), 1–20 (2007).
  • Alberts DS, Liu PY, Hannigan EV et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N. Engl. J. Med.335(26), 1950–1955 (1996).
  • Markman M, Bundy BN, Alberts DS et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J. Clin. Oncol.19(4), 1001–1007 (2001).
  • Armstrong DK, Bundy B, Wenzel L et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med.354(1), 34–43 (2006).
  • Gore M, du Bois A, Vergote I. Intraperitoneal chemotherapy in ovarian cancer remains experimental. J. Clin. Oncol.24(28), 4528–4530 (2006).
  • du Bois A, Schmalfeldt B, Meier W, Sehouli J, Pfisterer J. Ovarian cancer – can intraperitoneal therapy be regarded as new standard in Germany? Int. J. Gynecol. Cancer16(5), 1756–1760 (2006).
  • Armstrong DK, Brady MF. Intraperitoneal therapy for ovarian cancer: a treatment ready for prime time. J. Clin. Oncol.24(28), 4531–4533 (2006).
  • Elit L, Oliver TK, Covens A et al. Intraperitoneal chemotherapy in the first-line treatment of women with stage III epithelial ovarian cancer: a systematic review with metaanalyses. Cancer109(4), 692–702 (2007).
  • Fung-Kee-Fung M, Provencher D, Rosen B et al. Intraperitoneal chemotherapy for patients with advanced ovarian cancer: A review of the evidence and standards for the delivery of care. Gynecol. Oncol.105(3), 747–756 (2007).
  • Jaaback K, Johnson N. Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst. Rev. (1), CD005340 (2006).
  • Marth C, Walker JL, Barakat RR et al. Results of the 2006 Innsbruck International Consensus Conference on intraperitoneal chemotherapy in patients with ovarian cancer. Cancer109(4), 645–649 (2007).
  • Petignat P, du Bois A, Bruchim I, Fink D, Provencher DM. Should intraperitoneal chemotherapy be considered as standard first-line treatment in advanced stage ovarian cancer? Crit. Rev. Oncol. Hematol. (2006).
  • Luftensteiner CP, Schwendenwein I, Eichler HG et al. Toxicity of a particulate formulation for the intraperitoneal application of mitoxantrone. Int. J. Pharm.180(2), 251–260 (1999).
  • Yen MS, Juang CM, Lai CR et al. Intraperitoneal cisplatin-based chemotherapy vs. intravenous cisplatin-based chemotherapy for stage III optimally cytoreduced epithelial ovarian cancer. J. Int. Gynaecol. Obstet.72(1), 55–60 (2001).
  • Gadducci A, Carnino F, Chiara S et al. Intraperitoneal versus intravenous cisplatin in combination with intravenous cyclophosphamide and epidoxorubicin in optimally cytoreduced advanced epithelial ovarian cancer: a randomized trial of the Gruppo Oncologico Nord-Ovest. Gynecol. Oncol.76(2), 157–162 (2000).
  • Polyzos A, Tsavaris N, Kosmas C et al. A comparative study of intraperitoneal carboplatin versus intravenous carboplatin with intravenous cyclophosphamide in both arms as initial chemotherapy for stage III ovarian cancer. Oncology56(4), 291–296 (1999).
  • Kirmani S, Braly PS, McClay EF et al. A comparison of intravenous versus intraperitoneal chemotherapy for the initial treatment of ovarian cancer. Gynecol. Oncol.54(3), 338–344 (1994).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.