157
Views
20
CrossRef citations to date
0
Altmetric
Review

Advances in management of polycystic liver disease

, &
Pages 563-576 | Published online: 10 Jan 2014

References

  • Baert L. Hereditary polycystic kidney disease (adult form): a microdissection study of two cases at an early stage of the disease. Kidney Int.13, 519–525 (1978).
  • Qian F, Watnick TJ, Onuchic LF, Germino GG. The molecular basis of focal cyst formation in human ADPKD type I. Cell87, 979–987 (1996).
  • Wu G, D’Agati V, Cai Y et al. Somatic inactivation of Pkd2 results polycystic kidney disease. Cell93, 177–188 (1998).
  • Colgin LM, Hackmann AFM, Emond MJ, Monnat RJJ. The unexpected landscape of in vivo somatic mutation in a human epithelial cell lineage. Proc. Natl Acad. Sci. USA99, 1437–1442 (2002).
  • Gabow PA, Johnson AM, Kaehny WD, Manco-Johnson ML, Duley IT, Everson GT. Risk factors for the development of hepatic cysts in autosomal dominant polycystic kidney disease. Hepatology11, 1033–1037 (1990).
  • Everson GT. Hepatic cysts in autosomal dominant polycystic kidney disease. Am. J. Kidney Dis.22, 520–525 (1993).
  • Everson G. Hepatic cysts in ADPKD. Mayo Clin. Proc.65, 1020–1025 (1990).
  • Fick GM, Gabow PA. Hereditary and acquired cystic disease of the kidney. Kidney Int.46, 951–964 (1994).
  • Hateboer N, van Dijk MA, Bogdanova M. Comparison of phenotypes of PKD types 1 and 2. European PKD1-PKD2 Study Group. Lancet353, 103–107 (1999).
  • Reeders ST, Breuning MH, Davies KE et al. A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature317, 542–544 (1985).
  • Ward CJ, Turley H, Ong ACM et al. Polycystin, the polycystic kidney disease 1 protein, is expressed by epithelial cells in fetal, adult, and polycystic kidney. Proc. Natl Acad. Sci. USA93, 1524–1528 (1996).
  • Consortium IP. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell81, 289–298 (1995).
  • Hughes J, Ward CJ, Peral B et al. The polycystic kidney disease I (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat. Genet.10, 151–159 (1995).
  • Rossetti S, Strmecki L, Gamble V et al. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am. J. Hum. Genet.68, 46–63 (2001).
  • Watnick TJ, Phakdeekitcharoen B, Johnson A et al. Mutation detection of PKD1 identifies a novel mutation common to three families with aneurysms and/or very-early-onset disease. Am. J. Hum. Genet.65, 1561–1571 (1999).
  • Rossetti S, Chauveau D, Kubly V et al. Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet361, 2196–2201 (2003).
  • Rossetti S, Burton S, Strmecki L et al. The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J. Am. Soc. Nephrol.13, 1230–1237 (2002).
  • Gabow PA. Autosomal dominant polycystic kidney disease. N. Engl. J. Med.329, 332–342 (1993).
  • Mochizuki T, Wu G, Hayashi T et al.PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science272, 1339–1342 (1996).
  • Deltas CC. Mutations of the human polycystic kidney disease 2 (PKD2) gene. Hum. Mut.18, 13–24 (2001).
  • Hateboer N, Veldhuisen B, Peters D et al. Location of mutations within the PKD2 gene influences clinical outcomes. Kidney Int.57, 1444–1451 (2000).
  • Pazour GJ, Witman GB. The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol.15, 105–110 (2003).
  • Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1 and polycystin-2, polaris and cystin are co-localized in renal cilia. J. Am. Soc. Nephrol.13, 2508–2516 (2002).
  • Nauli SM, Alenghat FJ, Luo Y et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet.33, 129–137 (2003).
  • Parnella SC, Magenheimera BS, Masera RL et al. The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro. Biochem. Biophys. Res. Comm.251, 625–631 (1998).
  • Delmas P, Nomura H, Li X et al. Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J. Biol. Chem.277, 11276–11283 (2002).
  • Arnould T, Kim E, Tsiokas L et al. The polycystic kidney disease 1 gene product mediates protein kinase C-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1. J. Biol. Chem.273, 6013–6018 (1998).
  • Arnould T, Sellin L, Benzing T et al. Cellular activation triggered by the autosomal dominant polycystic kidney disease gene product PKD2. Mol. Cell. Biol.19, 3423–3434 (1999).
  • Chauvet V, Tian X, Husson H et al. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J. Clin. Invest.114, 1433–1443 (2004).
  • Bhunia AK, Piontek K, Boletta A et al. PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a pocess requiring PKD2. Cell109, 157–168 (2002).
  • Pirson Y, Lannoy N, Peters D et al. Isolated polycystic liver disease as a distinct genetic disease, unlinked to polycystic kidney disease 1 and polycystic kidney disease 2. Hepatology23, 249–252 (1996).
  • Reynolds DM, Falk CT, Li A et al. Identification of a locus for autosomal dominant polycystic liver disease, on chromosome 19p13.2–13.1. Am. J. Hum. Gen.67, 1598–1604 (2000).
  • Li A, Davila S, Furu L et al. Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am. J. Hum. Gen.72, 691–703 (2003).
  • Drenth JPH, te Morsche RHM, Smink R, Bonifacino JS, Jansen JBMJ. Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat. Genet.33, 345–347 (2003).
  • Drenth JPH, Tahvanainen E, te Morsche RHM et al. Abnormal hepatocystin caused by truncating PRKCSH mutations leads to autosomal dominant polycystic liver disease. Hepatology39, 924–931 (2004).
  • Davila S, Furu L, Gharavi AG et al. Mutations in Sec63 cause autosomal dominant polycystic liver disease. Nat. Genet.36, 575–577 (2004)37.
  • Tahvanainen P, Tahvanainen E, Reijonen H, Halme L, Kaariainen H, Hockerstedt K. Polycystic liver disease is genetically heterogeneous: clinical and linkage studies in eight Finnish families. J. Hepatol.38, 39–43 (2003).
  • Hoevenaren IA, Wester R, Schrier S et al. Polycystic liver: clinical characteristics of patients with isolated polycystic liver disease compared with patients with polycystic liver and autosomal dominant polycystic kidney disease. Liver Int.26, 264–270 (2007).
  • Praetorius HA, Spring KR. The renal cell primary cilium functions as a flow sensor. Curr. Opin. Nephrol. Hyperten.12, 517–520 (2003).
  • Tahvanainen E, Tahvanainen P, Kaarianinen H, Hockerstedt K. Polycystic liver and kidney disease. Ann. Med.37, 546–555 (2005).
  • Doctor RB, Nash R, Nichols M, Everson GT. Fibrocystic diseases of the liver. In: Hepatology. Zakim D, Boyer T (Eds), WB Saunders, Oxford, UK (2006).
  • Fain PR, McFann KK, Taylor MRG et al. Modifier genes play a significant role in the phenotypic expression in PKD1. Kidney Int.67, 1256–1267 (2005).
  • Gabow P, Johnson A, Kaehney W, Manco-Johnson M, Duley I, Everson G. Risk factors of the development of hepatic cysts in autosomal dominant polycystic kidney disease. Hepatology11, 1033–1037 (1990).
  • Shrestha R, Mckinley C, Russ P et al. Postmenopausal estrogen therapy selectively stimulates hepatic enlargement in women with autosomal dominant polycystic kidney disease. Hepatology26, 1282–1286 (1997).
  • Alvaro D, Alpini G, Onori P et al. α and β estrogen receptors and the biliary tree. Mol. Cell Endocrinol.193, 105–108 (2002).
  • Everson G, Emmett M, Brown W, Redmond P, Thickman D. Functional similarities of hepatic and biliary epithelium: studies of fluid constituents and in vivo secretion in response to secretin. Hepatology11, 557–565 (1990).
  • Perrone RD, Grubman SA, Rogers LC et al. Continuous epithelial cell lines from ADPKD liver cysts exhibit characteristics of intrahepatic biliary epithelium. Am. J. Physiol.269, G335–G345 (1995).
  • Vandenburgh HH. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol.262, R350–R355 (1992).
  • Tanner GA, McQuillan PF, Maxwell MR, Keck JK, McAteer JA. An in vitro test of the cell stretch–proliferation hypothesis of renal cyst enlargement. J. Am. Soc. Nephrol6, 1230–1241 (1995).
  • Nichols MT, Gidey E, Matzakos T et al. Secretion of cytokines and growth factors into ADPKD liver cyst fluid. Hepatology40, 836–846 (2004).
  • Fabris L, Cadamuro M, Fiorotto R et al. Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases. Hepatology43, 1001–1012 (2006).
  • Amura CR, Brodsky KS, Groff R, Gattone VH, Voelkel NF, Doctor RB. VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am. J. Cell Physiol.293, C419–C428 (2007).
  • Amura CR, Brodsky KS, Gitomer B et al. CXCR2 agonists in ADPKD liver cyst fluids promote cell proliferation. Am. J. Physiol. Cell Physiol.294(3), C786–C796 (2008).
  • Rossetti S, Strmecki L, Gamble V et al. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am. J. Hum. Genet.68, 46–63 (2001).
  • Rossetti S, Burton S, Strmecki L et al. The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J. Am. Soc. Nephrol.13, 1230–1237 (2002).
  • Deltas CC. Mutations of the human polycystic kidney disease 2 (PKD2) gene. Hum. Mut.18, 13 (2001)
  • Thomas R, McConnel R, Whittacker J, Kirkpatrick P, Bradley J, Sandford R. Identification of mutations in the repeated part of the ADPKD type 1 gene, PKD1, by long-range PCR. Am. J. Hum. Genet.65, 39–49 (1999).
  • Everson GT, Taylor MR, Doctor RB. Polycystic liver disease. Hepatology40, 774–782 (2004).
  • Everson GT, Taylor MR. Management of polycystic liver disease.Curr. Gastroenterol. Rep.7, 19–25 (2005).
  • Chauveau D, Fakhouri F, Grunfeld J-P. Liver involvement in autosomal-dominant polycystic kidney disease: therapeutic dilemma. J. Am. Soc. Nephrol.11, 1767–1775 (2000).
  • Perrone RD, Ruthazer R, Terrin NC. Survival after end-stage renal disease in autosomal dominant polycystic kidney disease: contribution of extrarenal complications to mortality. Am. J. Kidney Dis.38, 777–784 (2001).
  • Everson GT, Scherzinger A, Berger-Leff N et al. Polycystic liver disease: quantitation of parenchymal and cyst volumes from computed tomography images and clinical correlates of hepatic cysts. Hepatology8, 1627–1634 (1988).
  • Telenti A, Torres VE, Gross JB, Van Scoy RE, Brown ML, Hattery RR. Hepatic cyst infection in autosomal dominant polycystic kidney disease. Mayo Clin. Proc.65, 933–942 (1990).
  • Uddin W, Ramage JK, Portmann B et al. Hepatic venous outflow obstruction in patients with polycystic liver disease: pathogenesis and treatment. Gut36, 142–145 (1995).
  • Torres VE, Rastogi S, King BF, Stanson AW, Gross JBJ, Nogorney DM. Hepatic venous outflow obstruction in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol.5, 1186–1192 (1994).
  • Chapman AB, Rubinstein D, Hughes R et al. Intracranial aneurysms in autosomal dominant polycystic kidney disease. N. Engl. J. Med.327, 916–920 (1992).
  • Torres VE, Harris, PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet369, 1287–1301 (2007).
  • Wilson PD. Polycystic kidney disease. N. Engl. J. Med.350, 151–164 (2004).
  • Tao Y, Kim J, Schrier RW, Edelstein CL. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol.16, 46–51 (2005).
  • Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP. Inhibition of mTOR with sirolimus slows disease progression in han:Sprd rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol. Dial. Transplant.21, 598–604 (2006).
  • Shillingford JM, Murcia NS, Larson CH et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA103, 5466–5471 (2006).
  • Qian Q, Du H, King BF et al. Sirolimus reduces polycystic liver volume in ADPKD patients. J. Am. Soc. Nephrol.19, 631–638 (2008).
  • Walz G. Therapeutic approaches in autosomal dominant polycystic kidney disease (ADPKD): is there light at the end of the tunnel? Nephrol. Dial. Transplant.21, 1752–1757 (2006).
  • Chauveau D, Martinez F, Grunfeld JP. Evaluation of octreotide in massive polycystic liver disease. Presented at: The 12th International Congress of Nephrology Conference Program. Jerusalem, Israel, June 8–13, 1993.
  • Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3´,5´-cyclic monophosphate. Gastroenterology132, 1104–1116 (2007).
  • Wang X, Gattone V 2nd, Harris PC, Torres VE. Effectiveness of vasopressin v2 receptor antagonists opc-31260 and opc-41061 on polycystic kidney disease development in the pck rat. J. Am. Soc. Nephrol.16, 846–851 (2005).
  • Kornprat P, Cerwenka H, Bacher H et al. Surgical therapy options in polycystic liver disease. Wien Klin. Wochenschr.117, 215–218 (2005)
  • van Sonnenberg E, Wroblicka JT, D’Agostino HB et al. Symptomatic hepatic cysts: percutaneous drainage and sclerosis. Radiology190, 387–392 (1994).
  • Tikkakoski T, Makela JT, Leinonen S et al. Treatment of symptomatic congenital hepatic cysts with single-session percutaneous drainage and ethanol sclerosis: technique and outcome. J. Vasc. Intervent. Radiol.7, 235–239 (1996).
  • Russell RT, Pinson, CW. Surgical management of polycystic liver disease. World J. Gastroenterol.13, 5052–5059 (2007).
  • Gigot JF, Jadoul P, Que F et al. Adult polycystic liver disease: is fenestration the most adequate operation for long-term management? Annals Surg.225, 286–294 (1997).
  • Robinson TN, Stiegmann GV, Everson GT. Laparoscopic palliation of polycystic liver disease. Surg. Endosc.19, 130–132 (2005).
  • Que F, Nagorney DM, Gross JBJ, Torres VE. Liver resection and cyst fenestration in the treatment of severe polycystic liver disease. Gastroenterology108, 487–494 (1995).
  • Klupp J, Bechstein WO, Lobeck H, Neuhaus P. Orthotopic liver transplantation in therapy of advanced polycystic liver disease. Chirurgie67, 515–521 (1996).
  • Washburn WK, Johnson LB, Lewis WD, Jenkins RL. Liver transplantation for adult polycystic liver disease. Liver Transpl. Surg.2, 17–22 (1996).
  • Lang H, Woellwarth JV, Oldhafer KJ et al. Liver transplantation in patients with polycystic liver disease. Transplant. Proc.29, 2832–2833 (1997).
  • Swenson K, Seu P, Kinkhabwala M et al. Liver transplantation for adult polycystic disease. Hepatology28, 412–415 (1998).
  • Pirenne J, Aerts R, Yoong K et al. Liver transplantation for polycystic liver disease. Liver Transpl.7, 238–245 (2001).
  • Gustafsson BI, Friman S, Mjornstedt L, Olaussen M, Backman L. Liver transplantation for polycystic liver disease – indications and outcomes. Transplant. Proc.35, 813–814 (2003).
  • Arrazola L, Moonka D, Gish RG, Everson GT. Model for end-stage liver disease (MELD) exception for polycystic liver disease. Liver Transpl.12, S110–S111 (2006).
  • Masyuk TV, Huang BQ, Ward CJ et al. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology125(5), 1303–1310 (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.