73
Views
16
CrossRef citations to date
0
Altmetric
Review

Barrett’s esophagus: can biomarkers predict progression to malignancy?

&
Pages 653-663 | Published online: 10 Jan 2014

References

  • Chow WH, Blot WJ, Vaughan TL et al. Body mass index and risk of adenocarcinomas of the oesophagus and gastric cardia. J. Natl Cancer Inst.90(2), 150–155 (1998).
  • Vaughan TL, Davis S, Kristal A, Thomas DB. Obesity, alcohol and tobacco as risk factors for cancers of the oesophagus and gastric cardia: adenocarcinoma versus squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev.4(2), 85–92 (1995).
  • Yanagai M, Keller G, Mueller J et al. Comparison of loss of heterozygosity and microsatellite instability in adenocarcinomas of the distal esophagus and proximal stomach. Virchows Arch.437(6), 605–610 (2000).
  • Dent J, El-Serag HB, Wallander MA, Johansson S. Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut54(5), 710–717 (2005).
  • Ronkainen J, Aro P, Storskubb T et al. Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology129(6), 1825–1831 (2005).
  • Zagorowicz E, Jankowski J. Molecular changes in the progression of Barrett’s oesophagus. Postgrad. Med. J.83(982), 529–535 (2007).
  • Sommerer F, Vieth M, Markwarth A et al. Mutations of BRAF and KRAS2 in the development of Barrett’s adenocarcinoma. Oncogene23(2), 554–558 (2004).
  • Jankowski J, Provenzale D, Moayyedi P. Esophageal adenocarcinoma arising from Barrett’s metaplasia has regional variations in the west. Gastroenterology122(2), 588–590 (2002).
  • Haggitt RC. Barrett’s esophagus, dysplasia and adenocarcinoma. Hum. Pathol.25(2), 982–993 (1994).
  • Sharma P, Marcon N, Wani S et al. Non-biopsy detection of intestinal metaplasia and dysplasia in Barrett’s esophagus: a prospective multicenter study. Endoscopy38(12), 1206–1212 (2006).
  • Nilsson J, Skobe V, Johansson J, Willen R, Johnsson F. Screening for esophageal adenocarcinoma: an evaluation of a surveillance program for columnar metaplasia of esophagus. Scand. J. Gastroenterol.35(1), 10–16 (2000).
  • Biomarkers definitions working group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69(3), 89–95 (2001).
  • Williams LJ, Guernsey DL, Casson AG. Biomarkers in the molecular pathogenesis of esophageal (Barrett) adenocarcinoma. Curr. Oncol.13(1), 33–43 (2006).
  • Pepe MS, Etzioni R, Feng Z et al. Phases of biomarker development for early detection of cancer. J. Natl Cancer Inst.93(14), 1054–1061 (2001).
  • Cameron AJ, Ott BJ, Payne WS. The incidence of adenocarcinoma in columnar-lined (Barrett’s) esophagus. N. Engl. J. Med.313 (14), 857–859 (1985).
  • Shaheen N, Ransohoff DF. Gastroesophageal reflux, Barrett’s esophagus and esophageal cancer. JAMA287(14), 1972–1981 (2002).
  • Pech O, Vieth M, Schmitz D et al. Conclusions from the histological diagnosis of low-grade intraepithelial neoplasia in Barrett’s oesophagus. Scand. J. Gastroenterol.42(6), 682–688 (2007).
  • Barr H, Kendall C, Bazant-Hegemark F, Moayyedi P, Shetty G, Stone N. Endocsopic screening and surveillance for Barrett’s esophagus. MedGenMed8(2), 88 (2006).
  • Pohl H, Koch M, Khalifa A et al. Evaluation of endoscopy in the surveillance of patients with Barrett’s esophagus. Endoscopy39(6), 492–496 (2007).
  • Montgomery E, Bronner MP, Goldblum JR et al. Reproducibility of the diagnosis of dysplasia in Barrett’s esophagus: a reaffirmation. Hum. Pathol.32(4), 368–387 (2001).
  • Skacel M, Petras RE, Gramlich TL, Sigel JE, Richter JE, Goldblum JR. The diagnosis of low grade dysplasia in Barrett’s esophagus and its implications for disease progression. Am. J. Gastroenterol.95(12), 3383–3387 (2000).
  • Pech O, Gossner L, Manner H et al. Prospective evaluation of the macroscopic types and lesions of early Barrett’s neoplasia in 380 lesions. Endoscopy39(7), 588–593 (2007).
  • Vaughan TL, Kristal AR, Blount PL et al. Nonsteroidal anti-inflammatory drug use, body mass index, and anthropometry in relation to genetic and flow cytometric abnormalities in Barrett’s esophagus. Cancer Epidemiol. Biomarkers Prev.11(8), 745–752 (2002).
  • Merry AHH, Schouten LJ, Goldbohm RA, van den Brandt PA. Body mass index, height and risk of adenocarcinoma of the oesophagus and gastric cardia: a prospective cohort study. Gut56(11), 1503–1511 (2007).
  • Gatenby PAC, Caygill CPJ, Ramus JR et al. Short segment columnar-lined oesophagus: an underestimated cancer risk? A large cohort study of the relationship between Barrett’s colunar-lined oesophagus segment length and adenocarcinoma risk. Eur. J. Gastroenterol. Hepatol.19(11), 969–975 (2007).
  • Anandasabapathy SH, Jhamb J, Davilla M, Wei C, Morris J, Bresalier R. Clinical and endoscopic factors predict higher pathologic grades of Barrett dysplasia. Cancer109(4), 668–674 (2007).
  • Dong LM, Kristal AR, Peters U et al. Dietary supplement use and risk of neoplastic progression in esophageal adenocarcinoma: a prospective study. Nutr. Cancer.60(1), 39–48 (2008).
  • Rudolph RE, Vaughan TL, Kristal AR et al. Serum selenium levels in relation to markers of neoplastic progression among persons with Barrett’s esophagus. J. Natl Cancer Inst.95(10), 750–757 (2003).
  • Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med.4(2), E67 (2007).
  • Sanz-Ortega J, Hernández S, Saez MC et al. 3p21, 5q21, 9p21 and 17p13.1 allelic deletions are potential markers of individuals with a high risk of developing adenocarcinoma in Barrett’s epithelium without dysplasia. Hepatogastroenterology50(50), 404–407 (2003).
  • Helm J, Enkemann SA, Coppola D, Barthel JS, Kelley ST, Yeatman TJ. Dedifferentiation precedes invasion in the progression from Barrett’s metaplasia to esophageal adenocarcinoma. Clin. Cancer Res.11(7), 2478–2485 (2005).
  • Chaves P, Crespo M, Ribeiro C et al. Chromosomal analysis of Barrett’s cells: demonstration of instability and detection of the metaplastic lineage involved. Mod. Pathol.20(7), 788–796 (2007).
  • Wijnhoven BP, Tilanus HW, Dinjens WNM. Molecular biology of Barrett’s adenocarcinoma. Ann. Surg.233(3), 322–337 (2001).
  • Reid BJ, Levine DS, Longton G, Blount PL, Rabinovitch PS. Predictors of progression to cancer in Barrett’s esophagus. Am. J. Gastroenterol.95(7), 1669–1676 (2000).
  • Kim NW, Piatyszek MA, Prowse KR et al. Specific association of human telomerase activity with immortal cells and cancer. Science266 (5193), 2011–2015 (1994).
  • Fitzgerald RC. Barrett’s oesophagus and oesophageal adenocacinoma: how does acid interfere with cell proliferation and differentiation? Gut54 (12), 21–26 (2005).
  • Barclay JY, Morris A, Nwokolo CHU. Telomerase, hTERT and splice variants in Barrett’s oesophagus and oesophageal adenocarcinoma. Eur. J. Gatroenterol. Hepatol.17(2), 221–227 (2005).
  • Gertler R, Doll D, Maak M, Feith M, Rosenberg R. Telomere length and telomerase subunits as diagnostic and prognostic biomarkers in Barrett carcinoma. Cancer112(10), 2173–2180 (2008).
  • Risques RA, Vaughan TL, Li X et al. Leukocyte telomere length predicts cancer risk in Barrett’s esophagus. Cancer Epidemiol. Biomarkers Prev.16(12), 2649–2655 (2008).
  • Finley JC, Reid BJ, Odze RD et al. Chromosomal instability in Barrett’s esophagus is related to telomere shortening. Cancer Epidemiol. Biomarkers Prev.15(8), 1451–1457 (2006).
  • Ouatu-Luscar R, Fitzgerald RC, Triadafilopoulos G. Differentiation and proliferation in Barrett’s esophagus and the effects of acid suppression. Gastroenterology117(2), 327–335 (1999).
  • Kerkhof M, Steverberg EW, Kusters JG et al. Aneuploidy and high expression of p53 and Ki67 is associated with neoplastic progression in Barrett’s esophagus. Cancer Biomark.1(4), 1–10 (2008).
  • Halm U, Tannapfel A, Breitung B, Breidert M, Wittekind CH, Moessner J. Apoptosis and cell proliferation in the metaplasia–dysplasia–carcinoma-sequence of Barrett’s esophagus. Hepatogastroenterology47 (34), 962 – 966 (2000).
  • Sirieix P, O’Donovan M, Brown J, Save V, Coleman N, Fitzgerald RC. Surface expression of minichromosome maintenance proteins provides a novel method for detecting patients at risk for developing adenocarcinoma in Barrett’s esophagus. Clin. Cancer Res.9(7), 2560–2566 (2003).
  • Going JJ, Keith WN, Neilson J, Stoeber K, Stuart RC, Williams GH. Aberrant expression of minichromosome maintance proteins 2 and 5, and Ki-67 in dysplastic squamous epithelium and Barrett’s mucosa. Gut50(3), 373–377 (2002).
  • Tannapfel A. Molecular findings in Barrett’s epithelium. Dig. Dis.22(2), 126–133 (2004).
  • Van der Woude CJ, Jansen PLM, Tiebosch ATG et al. Expression of apoptosis-related proteins in Barrett’s metaplasia–dysplasia–carcinoma sequence: a switch to a more resistant phenotype. Hum. Pathol.33(7), 686–691 (2002).
  • Conio M, Lapertosa G, Blanchi S, Filiberti R. Barrett’s esophagus: an update. Crit. Rev. Oncol. Hematol.46(2), 187–206 (2003).
  • Spechler SJ. Clinical practice: Barrett’s esophagus. N. Engl. J. Med.346(11), 836–842 (2002).
  • Goldblum JR. Barrett’s esophagus and Barrett’s-related dysplasia. Mod. Pathol.16(4), 316–324 (2003).
  • Casson AG, Evans SC, Gillis A et al. Clinical implications of p53 tumor suppressor gene mutation and protein expression in esophageal adenocarcinomas : results of a ten-year prospective study. J. Thorac. Cardiovasc. Surg.125(5), 1121–1131 (2003).
  • Song SH, Guha S, Liu K, Buttar NS, Breaslier RS. COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett’s oesophagus and oesophageal adenocarcinoma. Gut56(11), 1512–1521 (2007).
  • Wilson KT, Fu S, Ramanujam KS, Meltzer SJ. Increased expression of inducible nitric oxidade synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res.58(14), 2929–2934 (1998).
  • Morris CD, Armstrong GR, Bigley G, Green H, Attwood SE. Cylooxygenase-2 expression in the Barrett’s metaplasia-dysplasia-adenocarcinoma-sequence. Am. J. Gastroenterol.96(4), 990–996 (2001).
  • Von Rahden BHA, Stein HJ, Pühringer-Oppermann F, Sarbia M. c-myc amplification is frequent in esophageal adenocarcinoma and correlated with upregulation of VEGF-A expression. Neoplasia8(9), 702–702 (2006).
  • Auvinen MI, Sihvo EIT, Ruohtula T et al. Incipient angiogenesis in Barrett’s epithelium and lymphangiogenesis in Barrett’s adenocarcinoma. J. Clin. Oncol.20(13), 2971–2979 (2002).
  • Möbius C, Stein HJ, Becker I et al. Vascular endothelial growth factor expression and neovascularization in Barrett’s carcinoma. World J. Surg.28(7), 675–679 (2004).
  • Peters CJ, Fitzgerald RC. Systematic review: the application of molecular pathogenesis to prevention and treatment of oesophageal adenocarcinoma. Aliment. Pharmacol. Ther.25(11), 1253–1269 (2007).
  • Freund JN, Domon-Cell C, Kedinger M, Duluc I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem. Cell Biol.76(6), 957–969 (1998).
  • Burnat G, Rau T, Elshimi E, Hahn EG, Konturek PC. Bile acids induce overexpression of homeobox gene CDX-2 and vascular endothelial growth factor (VEGF) in human Barrett’s esophageal mucosa and adenocarcinoma cell line. Scand. J. Gastroenterol.42(12), 1460–1465 (2007).
  • Hu Y, Williams VA, Gellersen O, Jones C, Watson TJ, Peters JH. The pathogenesis of Barrett’s esophagus: secondary bile acids upregulate intestinal differentiation factor CDX2 expression in esophagus cells. J. Gastrointest. Surg.11(7), 827–834 (2007).
  • Wong NA, Wilding J, Bartlett S et al. CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc. Natl Acad. Sci. USA102(21), 7565–7570 (2005).
  • Vallbohmer D, DeMeester SR, Peters JH et al. CDX-2 expression in squamous and metaplastic columnar epithelia of the esophagus. Dis. Esophagus19(4), 260–266 (2006).
  • Debryune PR, Witek M, Gong L et al. Bile acids induce ectopic expression of intestinal guanylyl cyclase C through NF-κB and Cdx2 in human esophageal cells. Gastroenterology130(4), 1191–1206 (2006).
  • Lord RV, Brabender J, Wickramasinghe K et al. Increased CDX2 and decreased PITX1 homeobox gene expression in Barrett’s esophagus and Barrett’s-associated adenocarcinoma. Surgery138(5), 924–931 (2005).
  • Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer6(4), 259–269 (2006).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • Feber A, Xi L, Luketich JD, Pennathur A et al. MicroRNA expression profiles in esophageal cancer. J. Thorac. Cardiovasc. Surg.135(2), 255–260 (2008)
  • Peng D, Sheta EA, Powell SM et al. Alterations in Barrett’s-related adenocarcinomas: a proteomic approach. Int. J. Cancer122(6), 1303–1310 (2008).
  • Razvi MH, Peng D, Dar AA et al. Transcriptional oncogenomic hot spots in Barrett’s adenocarcinomas: serial analysis of gene expression. Genes Chromosomes Cancer46(10), 914–928 (2007).
  • Greenawalt DM, Duong C, Smyth GK et al. Gene expression profiling of esophageal cancer: comparative analysis of Barrett’s esophagus, adenocarcinoma, and squamous cell carcinoma. Int. J. Cancer120(9), 1914–1921 (2007).
  • Ehrlich M. DNA hypomethylation in cancer. In: DNA Alterations in Cancer: Genetic and Epigenetic Changes. Ehrlich M (Ed.). Natick: Eaton Publishing, MA, USA 273–291 (2000).
  • Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Z. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene24(25), 4138–4148 (2005).
  • Clément G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J. Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett’s esophagus patients at risk for malignant transformation. J. Pathol.208(1), 100–107 (2006).
  • Brock MV, Gou M, Akiyama Y et al. Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin. Cancer Res.9(8), 2912–2919 (2003).
  • Sato F, Jin Z, Schulmann K, Wang J, Greenwald BD, Ito T. Three-tiered risk stratification model to predict progression in Barrett’s esophagus using epigenetic and clinical features. PloS ONE3(4), E1890 (2008).
  • Sato F, Meltzer SJ. CpG hypermethylation in progression of esophageal and gastric cancer. Cancer106(3), 483–493 (2005).
  • Kawakami K, Brabender J, Lord RV et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J. Natl Can. Inst.92(22), 1805–1811 (2000).
  • Eads CA, Lord RV, Wickramasinghe K et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res.61(8), 3410–3418 (2001).
  • Ohki R, Nemoto J, Murasawa H et al.Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J. Biol. Chem.275(30), 22627–22630 (2000).
  • Hamilton JP, Sato F, Jin Z et al.Reprimo methylation is a potential biomarker of Barrett’s-associated esophageal neoplastic progression. Clin. Cancer Res.12(22), 6637–6642 (2006).
  • Tischoff I, Vieth M, Ell C et al. Methylation of Socs-3 in the carcinogenesis of Barrett’s adenocarcinoma. Gut56(8), 1047–1053 (2007).
  • Kuester D, Dar AA, Moskaluk CHC et al. Early involvement of death-associated protein kinase promoter hypermethylation in the carcinogenesis of Barrett’s esophageal adenocarcinoma and its association with clinical progression. Neoplasia9(3), 236–245 (2007).
  • Bongiorno PF, al-Kasspooles M, Lee SW et al. E-cadherin expression in primary and metastatic thoracic neoplasms and in Barrett’s oesophagus. Br. J. Cancer71(1), 166–172 (1995).
  • Endo K, Ashida K, Miyake N, Terada T. E-cadherin gene mutations in human intrahepatic cholangiocarcinoma. J. Pathol.193(3), 310–317 (2001).
  • Battle E, Sancho E, Franci C et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumor cells. Nat. Cell Biol.2(2), 84–89 (2000).
  • Cano A, Perez-Morno MA, Rodrigo I et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol.2(2), 76–83 (2000).
  • Jethwa P, Naqvi M, Hardy RG et al. Overexpression of slug is associated with malignant progression of esophageal adenocarcinoma. World J. Gastroenterol.14(7), 1044–1052 (2008).
  • Gerson SL, Trey JE, Miller K, Berger NA. Comparison of O6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissue. Carcinogenesis7(5), 745–749 (1986).
  • Baumann S, Keller G, Napieralski R et al. The prognostic impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter hypermethylation in esophageal adenocarcinoma. Int. J. Cancer119(2), 264–268 (2006).
  • Lee OJ, Schneider-Stock R, McChesney PA et al. Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett’s tumorigenesis. Neoplasia7(9), 854–861 (2005).
  • Tham DM, Whitin JC, Kim KK, Zhu SX, Cohen HJ. Expression of extracellular glutathione peroxidase in human and mouse gastrointestinal tract. Am. J. Physiol.275(6 Pt 1), 1463–1471 (1998).
  • Yamamoto Y, Takahashi K. Glutathione peroxidase isolated from plasma reduces phospholipid hydroperoxides. Arch. Biochem. Biophys.305(2), 541–545 (1993).
  • Peng DF, Razvi M, Chen H et al. DNA hypermethylation regulates the expression of members of the mu-class glutathione-S-transferases and glutathione peroxidases in Barrett’s-related adenocarcinomas. Gut DOI: 10.1136/gut.2007.146290 (2008) (Epub ahead of print).
  • Vieth M, Schneider-Stock R, Röhricht K et al.INK4a-ARF alterations in Barrett’s epithelium, intraepithelial neoplasia and Barrett’s adenocarcinoma. Virchows Arch.445(2), 135–141 (2004).
  • Jin Z, Hamilton JP, Yang J et al. Hypermethylation of the AKAP12 promoter is a biomarker of Barrett’s-associated esophageal neoplastic progression. Cancer Epidemiol. Biomarkers Prev.17(1), 111–117 (2008).
  • Jin Z, Olaru A, Yang J et al. Hypermethylation of tachykinin-1 is a potential biomarker in human esophageal cancer. Clin. Cancer Res.13(21), 6293–6300 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.