74
Views
15
CrossRef citations to date
0
Altmetric
Review

Th-17 cells in the lungs?

&
Pages 279-293 | Published online: 09 Jan 2014

References

  • Rouvier E, Luciani MF, Mattei MG, Denizof F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpes virus saimiri gene. J. Immunol.150, 5445–5456 (1993).
  • Wynn TA. TH-17: a giant step from TH1 and TH2. Nat. Immunol.6(11), 1069–1070 (2005).
  • Lindén A, Laan M, Anderson GP. Neutrophils, interleukin-17A and lung disease. Eur. Res. J.25, 159–172 (2005).
  • Medzhitov R, Preston-Hulbart P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388, 394–397 (1997).
  • Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol.7, 145–173 (1989).
  • Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat. Rev. Immunol.2, 933–944 (2002).
  • Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science260, 547–549 (1993).
  • Scharton TM, Scott P. Natural killer cells are a source of interferon γ that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med.178, 567–577 (1993).
  • Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity24, 677–688 (2006).
  • Mullen AC, High FA, Hutchins AS et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science292, 1907–1910 (2002).
  • Gubler U, Chua AO, Schoenhaut DS et al. Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc. Natl Acad. Sci. USA88, 4143–4147 (1991).
  • Min B, Prout M, Hu-Li J et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med.200, 507–517 (2004).
  • Shinkai K, Mohrs M, Locksley RM. Helper T cells regulate type-2 innate immunity in vivo. Nature420, 825–829. (2002).
  • Ouyang W, Ranganath SH, Weindel K et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity9, 745–755 (1998).
  • Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell89, 587–596 (1997).
  • McKenzie BS, Kastelein R, Cua DJ. Understanding the IL-23–IL-17 immune pathway. Trends Immunol.27, 17–23 (2006).
  • Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol.5, 521–531 (2005).
  • Constantinescu CS, Wysocka M, Hilliard B et al. Antibodies against IL-12 prevent superantigen-induced and spontaneous relapses of experimental autoimmune encephalomyelitis. J. Immunol.161, 5097–5104 (1998).
  • Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J. Exp. Med.181, 381–386 (1995).
  • Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421, 744–748 (2003).
  • Murphy CA, Langrish CL, Chen Y et al. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med.198(12), 1951–1957 (2003).
  • Langrish CL, Chen Yi, Blumenschein WM et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201(2), 233–240 (2005).
  • Harrington LE, Hatton RD, Mangan PR et al. Interleukin-17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.6(11), 1123–1132 (2005).
  • Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol.6(11), 1133–1141 (2005).
  • Hoeve MA, Savage NDL, de Boer T et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T-cells. Eur. J. Immunol.36, 661–670 (2006).
  • Higgins SC, Jarnicki AC, Lavelle EC, Mills KHG. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J. Immunol.177, 7980–7989 (2006).
  • Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem.276(40), 37692–37699 (2001).
  • Happel KI, Zheng M, Young E et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J. Immunol.170, 4432–4436 (2003).
  • Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine IL-23, with biological activities similar as well as distinct from IL-12. Immunity715–725 (2000).
  • Aggarwal S, Ghiraldi N, Xie M-H, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of Interleukin-17. J. Biol. Chem.278(3), 1910–1914 (2003).
  • Ghilardi N, Kljavin N, Chen Qi, Lucas S, Gurney AL, de Sauvage FJ. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J. Immunol.172, 2827–2833 (2004).
  • Yen D, Cheung J, Scheerens H et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest.116, 1310–1316 (2006).
  • Nakae S, Iwakura Y, Suto H, Galli SJ. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J. Leuk. Biol.81(5), 1258–1268 (2007).
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24, 179–189 (2006).
  • Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor-β induces development of the TH17 lineage. Nature441, 231–234 (2006).
  • Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441, 235–238 (2006).
  • Li OM, Wan YY, Flavell RA. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity26, 579–591 (2007).
  • Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med.203, 1685–1691 (2006).
  • Zhou L, Ivanov II, Spolski R et al. IL-6 programs T(H)-17 differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol.8(9), 967–974 (2007).
  • Nurieva R, Yang XO, Martinez G et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature448(7152), 480–483 (2007).
  • Ivanov I, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell.126, 1121–1133 (2006).
  • Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Ann. Rev. Immunol.25, 221–242 (2007).
  • Chen Z, Laurence A, Kanno Y et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl Acad. Sci. USA103(21), 8137–8142 (2006).
  • Robinson DS, O’Garra A. Further checkpoints in Th1 development. Immunity16, 755–758 (2002).
  • Batten M, Li J, Yi S et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat. Immunol.7, 929–936 (2006).
  • Stumhofer JS, Laurence A, Wilson EH et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol.7, 937–945 (2006).
  • Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity21, 467–476 (2004).
  • Yao Z, Painter SL, Fanslow WC et al. Human IL-17: a novel cytokine derived from T cells. J. Immunol.155, 5483–5486 (1995).
  • Li H, Chen J, Huang A et al. Cloning and characerization of IL-17B and IL-17C: two new members of the IL-17 cytokine family. Proc. Natl Acad. Sci. USA97, 773–778 (2000).
  • Starnes T, Broxmeyer HE, Robertson MJ, Hromas R. Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. J. Immunol.169, 642–646 (2002).
  • Lee J, Ho W-H, Maruoka M et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem.169(1), 4430–4435 (2001).
  • Kim MR, Manoukian R, Yeh R et al. Transgenic overexpression of human IL-17E results in eosinophilia, B-lymphocyte hyperplasia, and altered antibody production. Blood100, 2330–2340 (2002).
  • Starnes T, Broxmeyer HE, Robertson MJ, Hromas R. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J. Immunol.167, 4137–4140 (2001).
  • Hymowitz SG, Filvaroff EH, Yin JP et al. IL-17s adopt a cysteine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J.20(19), 5332–5341 (2001).
  • Yao Z, Fanslow FC, Seldin MF et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity3, 811–821 (1995).
  • Fossiez F, Djossou O, Chomarat P et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med.183, 2593–2603 (1996).
  • Infante-Duarte C, Horton HF, Byrne MC, Kamradt T. Microbial lipopeptides induce the production of IL-17 in Th cells. J. Immunol.165, 6107–6115 (2000).
  • Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J. Immunol.170, 2106–2112 (2003).
  • Shin N, Benbernou N, Esnault S, Guenounou M. Expression of IL-17 in human memory CD45RO+ T lymphocytes and its regulation by protein kinase A pathway. Cytokine11, 257–266 (1999).
  • Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vδ1+ γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol.178, 4466–4472 (2007).
  • Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 Family cytokines and the expanding diversity of effector T cell lineages. Ann. Rev. Immunol.25, 821–852 (2007).
  • Molet S, Hamid Q, Davoine F et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J. Allergy Clin. Immunol.108, 430–438 (2001).
  • Miyamoto M, Prause O, Laan M, Sjöstrand M, Lötvall J, Lindén A. Endogenous IL-17 mediates endotoxin-induced airway neutrophilia in mice in vivo. J. Immunol.170, 4665–4672 (2003).
  • Umemura M, Ayano Yahagi A et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette–Guérin infection. J. Immunol.178, 3786–3796 (2007).
  • Michel M-L, Keller AC, Paget C et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J. Exp. Med.204, 995–1001 (2007).
  • Ivanov S, Palmberg L, Venge P, Larsson K, Lindén A. Interleukin-17A mRNA and protein expression within cells from the human bronchoalveolar space after exposure to organic dust. Respir. Res.6, 44 (2005).
  • Laan M, Palmberg L, Larsson K, Lindén A. Free, soluble interleukin-17 protein during severe inflammation in human airways. Eur. Respir. J.19, 534–537 (2002).
  • Happel KI, Dubin PJ, Zheng M et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae.J. Exp. Med.202(6), 761–769 (2005).
  • Dubin PJ, Kolls JK. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa blung infection in mice. Am. J. Physiol. Lung Cell Mol. Physiol.292(2), L519–L528 (2007).
  • Ivanov S, Bozinovski S, Bossios A et al. Functional relevance of the IL-23–IL-17 axis in lings in vivo. Am. J. Respir. Cell Mol. Biol.36(4), 442–451 (2007).
  • Yao Z, Spriggs M, Derry J et al. Molecular characterisation of the human interleukin (IL)-17 receptor. Cytokine9, 794–800 (1997).
  • Lee J, Ho WH, Maruoka M et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem.276, 1660–1664 (2001).
  • Shi Y, Ullrich SJ, Zhang J et al. A novel cytokine-receptor ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J. Biol. Chem.275, 19167–19176 (2000).
  • Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev.14, 155–174 (2003).
  • Toy D, Kugler D, Wolfson M et al. Cutting edge: Interleukin 17 signals through a heteromeric receptor complex. J. Immunol.177, 36–39 (2006).
  • Qian Y, Liu C, Hartupee J et al. The adaptor Act1 is required for interleukin 17-dependent signalling associated with autoimmune and inflammatory disease. Nat. Immunol.8(3), 247–256 (2007).
  • Rong Z, Cheng L, Ren Y et al. Interleukin-17F signalling requires ubiquitination of interleukin-17 receptor via TRAF6. Cell. Signal.19(7), 1514–1520 (2007).
  • Laan M, Cui ZH, Hoshino H et al. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J. Immunol.162, 2347–2352 (1999).
  • Laan M,Prause O, Miyamoto M et al. A role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF-α. Eur. Respir. J.21(3), 1–7 (2003).
  • Hoshino H, Lötvall J, Skoogh BE, Lindén A. Neutrophil recruitment by IL-17 into rat airways in vivo: role of tachykinins. Am. J. Respir. Crit. Care Med.159, 1423–1428 (1999).
  • Hoshino H, Laan M, Sjöstrand M, Lötvall J, Skoogh BE, Lindén A. Increased elastase and myeloperoxidase activity associated with neutrophil recruitment by IL-17 in airways in vivo. J. Allergy Clin. Immunol.105, 143–149. (2000).
  • Hellings PW, Kasran A, Liu Z et al. Interleukin-17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. Am. J. Respir. Crit. Care Med.28(1), 42–50 (2003).
  • Prause O, Bozinovski S, Anderson GP, Lindén A. Increased matrix metalloproteinase-9 concentration and activity after stimulation with interleukin-17 in mouse airways. Thorax59(4), 313–317 (2004).
  • Laan M, Lötvall J, Chung KF, Lindén A. IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases. Br. J. Pharmacol.133, 200–206 (2001).
  • Kawaguchi M, Kokubu F, Kuga H. Modulation of bronchial epithelial cells by IL-17. J. Allergy Clin. Immunol.108, 804–809 (2001).
  • Prause O, Laan M, Lötvall J, Lindén A. Pharmacological modulation of interleukin-17-induced GCP-2, GRO-a and interleukin-8 release in human bronchial epithelial cells. Eur. J. Pharmacol.462, 193–198 (2003).
  • Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-a, and granulocyte-colony-stimulating factor by human airway epithelial cells. Am. J. Respir. Cell Mol. Biol.26, 748–753 (2002).
  • Numasaki M, Lotze MT, Sasaki H. Interleukin-17 augments tumour necrosis factor-α-induced elaboration of proangiogenic factors from fibroblasts. Immunol. Lett.93, 39–43 (2004).
  • Schwander R, Yamaguchi K, Zhaodan C. Requirement of tumour necrosis factor receptor-associated factor (TRAF)-6 in interleukin-17 signal transduction. J. Exp. Med.191, 1233–1239 (2000).
  • Vanaudenaerde BM, Wuyts WA, Dupont LJ, Van Raemdonck DE, Demedts MM, Verleden GM. Interleukin-17 stimulates release of interleukin-8 by human airway smooth muscle cells in vitro: a potential role for interleukin-17 and airway smooth muscle cells in bronchiolitis obliterans syndrome. J. Heart Lung Transplant.22, 1280–1283 (2003).
  • Dragon S, Rahman MS, Yang J, Unruh H, Halayko A.J, Soussi-Gounni A. IL-17 enhances IL-1{β} mediated CXCL-8 release from human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol.292(4), L1023–L1029 (2006).
  • Henness S, van Thoor E, Ge Q, Armour CL, Hughes JM, Ammit AJ. IL-17A acts via p38 MAPK to increase stability of TNF-α-induced IL-8 mRNA in human ASM. Am. J. Physiol. Lung Cell. Mol. Physiol.290(6), L1283–L1290 (2006).
  • Yamasawa H, Oshikawa K, Ohno S, Sugiyama Y. Macrolides inhibit epithelial cell-mediated neutrophil survival by modulating GM-CSF release. Am. J. Respir. Cell Mol. Biol.30, 569–575 (2004).
  • Ottonello L, Frumento G, Arduino N et al. Differential regulation of spontaneous and immune complex-induced neutrophil apoptosis by proinflammatory cytokines. Role of oxidants, Bax and caspase-3. J. Leukoc. Biol.72, 125–132 (2002).
  • Saba S, Soong G, Greenberg S, Prince A. Bacterial stimulation of epithelial G-CSF and GM-CSF expression promotes PMN survival in CF airways. Am. J. Respir. Cell Mol. Biol.27, 561–567 (2002).
  • Sergejeva S, Ivanov S, Lötvall J, Lindén A. IL-17 as a recruitment and survival factor for airway macrophages in allergic airway inflammation. Am. J. Respir. Cell Mol. Biol.33, 248–253 (2005).
  • Kiener PA, Davis PM, Starling GC et al. Differential induction of apoptosis by Fas–Fas ligand interactions in human monocytes and macrophages. J. Exp. Med.185, 1511–1516 (1997).
  • Nagata S, Golstein P. The Fas death factor. Science267, 1449–1456 (1995).
  • Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling Am. J. Respir. Cell Mol. Biol.28, 12–24 (2003).
  • Betsuyaku T, Nishimura M, Takeyabu K et al. Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am. J. Respir. Crit. Care Med.159, 1985–1991 (1999).
  • Cundall M, Sun Y, Miranda C, Trudeau JB, Barnes S, Wenzel SE. Neutrophil-derived matrix metalloproteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. J. Allergy Clin. Immunol.112, 1064–1071 (2003).
  • Lemjabbar H, Gosset P, Lechapt-Zalcham E et al. Overexpression of alveolar macrophage gelatinase B (MMP-9) in patients with idiopatic pulmonary fibrosis: effects of steroid and immunosuppressive treatment. Am. J. Respir. Cell Mol. Biol.20(5), 903 (1999).
  • Keatings VM, Barnes PJ. Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am. J. Respir. Cell Mol. Biol.155(2), 449 (1997).
  • Cataldo DD, Tournoy KG, Vermaelen K et al. Matrix metalloproteinase-9 deficiency impairs cellular infiltration and bronchial hyperresponsiveness during allergen-induced airway inflammation. Am. J. Pathol.161, 491–498 (2002).
  • Chen Y, Thai P, Zhao YH, Ho YS, DeSouza MM, Wu R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J. Biol. Chem.278, 17036–17043 (2003).
  • Inoue D, Numasaki M, Watanabe M et al. IL-17A promotes the growth of airway epithelial cells through ERK-dependent signaling pathway. Biochem. Biophys. Res. Commun.347, 852–858 (2006).
  • Hashimoto K, Durbin JE, Zhou W et al. Respiratory syncytial virus infection in the absence of STAT1 results in airway dysfunction, airway mucus, and augmented IL-17 levels. J. Allergy Clin. Immunol.116, 550–557 (2005).
  • Larsson R, Rocksén D, Lillienhook B, Jonsson A, Bucht A. Dose-dependent activation of lymphocytes in endotoxin-induced airway inflammation. Infect. Immun.68(12), 6962–6969 (2000).
  • Ye P, Garvey PB, Zhang P et al. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am. J. Respir. Cell Mol. Biol.25, 335–340 (2001).
  • Ye P, Rodriguez FH, Kanaly S et al. Requirement of interleukin 17 receptor signalling for lung CXC chemokines and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med.194, 519–528 (2001).
  • Malley R, Srivastava A, Lipsitch M et al. Antibody-independent, Interleukin-17A-mediated, cross-serotype immunity to Pneumococci in mice immunized intranasally with the cell wall polysaccharide. Infect. Immun.74(4), 2187–2195 (2006).
  • Martin RJ, Kraft M, Chu HW, Berns EA, Cassell GH. A link between chronic asthma and chronic infection. J. Allergy Clin. Immunol.107(4), 595–601 (2001).
  • Lieberman D, Ben-Yaakov M, Lazarovich Z et al. Infectious etiologies in acute exacerbation of COPD. Diagn. Microbiol. Infect. Dis.40, 95–102 (2001).
  • Kraft M, Cassell GH, Henson JE et al. Detection of Mycoplasma pneumoniaein the airways of adults with chronic asthma. Am. J. Respir. Crit. Care Med.158, 998–1001 (1998).
  • Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect.9(1), 78–86 (2007).
  • Khader S, Bell GK, Pearl JE et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol.8(4), 369–377 (2007).
  • Khader S, Pearl JE, Sakamoto K et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific INF-γ responses if IL-12p70 is available. J. Immunol.175, 788–795 (2005).
  • Wozniak TA, Ryan AA, Britton WJ. Interleukin-23 Restores immunity to Mycobacterium tuberculosis infection in IL-12p40-deficient mice and is not required for the development of IL-17-secreting T cell responses. J. Immunol.177, 8684–8692 (2006).
  • Rudner XL, Happel KI, Young EA, Shellito JE. The IL-23/IL-17 cytokine axis in murine Pneumocystis infection. Infect. Immun.75(6), 3055–3061 (2007).
  • Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17a for systemic anti-Candida albicans host defense in mice. J. Infect. Dis.190, 624–631 (2004).
  • Kelly MN, Kolls JK, Happel K et al. Interleukin-17/Interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect. Immun.73(1), 617–621 (2005).
  • Filipe-Santos O, Bustamante J, Chapgier A et al. Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin. Immunol.18, 347–361 (2006).
  • Chakir J, Shannon J, Molet S et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-β IL-11, IL-17, and type I and type III collagen expression. J. Allergy Clin. Immunol.111, 1293–1298 (2003).
  • Barczyk A, Pierzcha W, Sozanska E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir. Med.97, 726–733 (2003).
  • Bullens MAD, Truyen E, Coteur L et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res.7, 135 (2006).
  • Schnyder-Candrian S, Togbe D, Couillin I et al. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med.203(12), 2715–2725 (2006).
  • Fujiwara M, Hirose K, Kagami S et al. T-bet inhibits both T(H)2 cell-mediated eosinophil recruitment and T(H)17 cell-mediated neutrophil recruitment into the airways. J. Allergy Clin. Immunol.119(3), 662–670 (2007).
  • Gocke A, Cravens PD, Ben L-H et al. T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J. Immunol.178, 1341–1348 (2006).
  • Nakae S, Komiyama Y, Nambu A et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity17, 375–387 (2002).
  • McAllister F, Henry A, Kreindler JL et al. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-α, granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J. Immunol.175, 404–412 (2005).
  • Vanaudenaerde BM, Dupont LJ, Wuyts WA et al. The role of interleukin-17 during acute rejection after lung transplantation. Eur. Respir. J.27, 779–787 (2006).
  • Yoshida S, Haque A, Mizobuchi T et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am. J. Transplant.6, 724–735 (2006).
  • Kooten C, Boonstra JG, Paape ME et al. Interleukin-1 7 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J. Am. Soc. Nephrol.9, 1526–1534 (1998).
  • Kaufmann CL, Aria N, Toichi E et al. A Phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J. Invest. Dermatol.123(6), 1037–1044 (2004).
  • Fuss IJ, Becker C, Yang Z et al. Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody Inflamm. Bowel Dis.12(1), 9–15 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.