28
Views
6
CrossRef citations to date
0
Altmetric
Special Report

Epithelial cell fate following lung injury

, &
Pages 573-582 | Published online: 09 Jan 2014

References

  • Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat. Rev. Mol. Cell Biol.9, 378–390 (2008).
  • Tang PS, Mura M, Seth R et al. Acute lung injury and cell death: how many ways can cells die? Am. J. Physiol. Lung Cell Mol. Physiol.294, L632–L641 (2008).
  • Kroemer G, Reed JC. Mitochondrial control of cell death. Nat. Med.6, 513–519 (2000).
  • Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat. Cell Biol.3, 255–263 (2001).
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell132, 27–42 (2008).
  • Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin. Chest Med.3, 35–56 (1982).
  • Bardales RH, Xie SS, Schaefer RF, Hsu SM. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am. J. Pathol.149, 845–852 (1996).
  • Guinee D Jr, Brambilla E, Fleming M et al. The potential role of BAX and BCL-2 expression in diffuse alveolar damage. Am. J. Pathol.151, 999–1007 (1997).
  • Guinee D Jr, Fleming M, Hayashi T et al. Association of p53 and WAF1 expression with apoptosis in diffuse alveolar damage. Am. J. Pathol.149, 531–538 (1996).
  • Albertine KH, Soulier MF, Wang Z et al. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Pathol.161, 1783–1796 (2002).
  • Matute-Bello G, Liles WC, Steinberg KP et al. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J. Immunol.163, 2217–2225 (1999).
  • Hagimoto N, Kuwano K, Miyazaki H et al. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am. J. Respir. Cell Mol. Biol.17, 272–278 (1997).
  • Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S et al. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J. Exp. Med.186, 1831–1841 (1997).
  • Kawasaki M, Kuwano K, Hagimoto N, et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am. J. Pathol.157, 597–603 (2000).
  • Kitamura Y, Hashimoto S, Mizuta N et al. Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am. J. Respir. Crit. Care Med.163, 762–769 (2001).
  • Tang PS, Tsang ME, Lodyga M, et al. Lipopolysaccharide accelerates caspase-independent but cathepsin B-dependent death of human lung epithelial cells. J. Cell. Physiol.209, 457–467 (2006).
  • Roper JM, Mazzatti DJ, Watkins RH et al.In vivo exposure to hyperoxia induces DNA damage in a population of alveolar type II epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol.286, 1045–1054 (2004).
  • Tateda K, Deng JC, Moore TA et al. Hyperoxia mediates acute lung injury and increased lethality in murine Legionella pneumonia: the role of apoptosis. J. Immunol.170, 4209–4216 (2003).
  • Li LF, Liao SK, Ko YS, Lee CH, Quinn DA. Hyperoxia increases ventilator-induced lung injury via mitogen-activated protein kinases: a prospective, controlled animal experiment. Crit. Care11, 25 (2007).
  • Husari AW, Dbaibo GS, Bitar H et al. Apoptosis and the activity of ceramide, Bax and Bcl-2 in the lungs of neonatal rats exposed to limited and prolonged hyperoxia. Respir. Res.26, 107–100 (2006).
  • Bhandari V, Choo-Wing R, Lee CG et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat. Med.12, 1286–1293 (2006).
  • Mura M, Andrade CF, Han B et al. Intestinal ischemia–reperfusion-induced acute lung injury and oncotic cell death in multiple organs. Shock28(2), 227–238 (2007).
  • Rivo J, Zeira E, Galun E et al. Attenuation of reperfusion lung injury and apoptosis by A2A adenosine receptor activation is associated with modulation of Bcl-2 and Bax expression and activation of extracellular signal-regulated kinases. Shock27, 266–273 (2007).
  • Tipple TE, Welty SE, Rogers LK et al. Thioredoxin-related mechanisms in hyperoxic lung injury in mice. Am. J. Respir. Cell Mol. Biol.37(4), 405–413 (2007).
  • Otterbein LE, Kolls JK, Mantell LL et al. Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J. Clin. Invest.103, 1047–1054 (1999).
  • Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am. J. Physiol.276, 688–694 (1999).
  • Otterbein LE, Otterbein SL, Ifedigbo E et al. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury. Am. J. Pathol.163, 2555–2563 (2003).
  • Kuwano K, Kunitake R, Kawasaki M et al. P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.154, 477–483 (1996).
  • Uhal BD, Joshi I, Hughes WF et al. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am. J. Physiol.275, 1192–1199 (1998).
  • Barbas-Filho JV, Ferreira MA, Sesso A et al. Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP). J. Clin. Pathol.54, 131–138 (2001).
  • Kuwano K, Miyazaki H, Hagimoto N et al. The involvement of Fas–Fas ligand pathway in fibrosing lung diseases. Am. J. Respir. Cell Mol. Biol.20, 53–60 (1999).
  • Hagimoto N, Kuwano K, Nomoto Y, Kunitake R, Hara N. Apoptosis and expression of Fas/Fas ligand mRNA in bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Cell Mol. Biol.16, 91–101 (1997).
  • Kuwano K, Hagimoto N, Kawasaki M et al. Essential roles of the Fas–Fas ligand pathway in the development of pulmonary fibrosis. J. Clin. Invest.104, 13–19 (1999).
  • Kuwano K, Kunitake R, Maeyama T et al. Attenuation of bleomycin-induced pneumopathy in mice by a caspase inhibitor. Am. J. Physiol. Lung Cell Mol. Physiol.280, 316–325 (2001).
  • Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD. Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am. J. Physiol. Lung Cell Mol. Physiol.279, 143–151 (2000).
  • Golan-Gerstl R, Wallach-Dayan SB, Amir G, Breuer R. Epithelial cell apoptosis by fas ligand-positive myofibroblasts in lung fibrosis. Am. J. Respir. Cell Mol. Biol.36, 270–275 (2007).
  • Ko LJ, Prives C. p53 puzzle and paradigm. Genes Dev.10, 1054–1072 (1996).
  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res.51, 6304–6311 (1991).
  • Mishra A, Doyle NA, Martin WJ 2nd. Bleomycin-mediated pulmonary toxicity: evidence for a p53-mediated response. Am. J. Respir. Cell Mol. Biol.22, 543–549 (2000).
  • Kuwano K, Hagimoto N, Tanaka T et al. Expression of apoptosis-regulatory genes in epithelial cells in pulmonary fibrosis in mice. J. Pathol.190, 21–29 (2000).
  • Li R, Waga S, Hannon GJ, Beach D, Stillman B. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature371, 534–537 (1994).
  • Lu Y, Yamagishi N, Yagi T, Takebe H. Mutated p21(WAF1/CIP1/SDI1) lacking CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells. Oncogene16, 705–712 (1998).
  • Bissonnette N, Hunting DJ. p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage. Oncogene16, 3461–3469 (1998).
  • O’Reilly MA, Staversky RJ, Watkins RH et al. The cyclin-dependent kinase inhibitor p21 protects the lung from oxidative stress. Am. J. Respir. Cell Mol. Biol.24, 703–710 (2001).
  • Staversky RJ, Watkins RH, Wright TW, et al. Normal remodeling of the oxygen-injured lung requires the cyclin-dependent kinase inhibitor p21(Cip1/WAF1/Sdi1). Am. J. Pathol.161, 1383–1393 (2002).
  • Inoshima I, Kuwano K, Hamada N et al. Induction of CDK inhibitor p21 gene as a new therapeutic strategy against pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol.286, 727–733 (2004).
  • Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M. Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene17, 931–939 (1998).
  • Suzuki A, Tsutomi Y, Miura M, Akahane K. Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21. Oncogene18, 1239–1244 (1999).
  • Wang R, Zagariya A, Ibarra-Sunga O et al. Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. Am. J. Physiol.276, 885–889 (1999).
  • Wang R, Zagariya A, Ang E, Ibarra-Sunga O, Uhal BD. Fas-induced apoptosis of alveolar epithelial cells requires ANG II generation and receptor interaction. Am. J. Physiol.277, 1245–1250 (1999).
  • Wang R, Alam G, Zagariya A et al. Apoptosis of lung epithelial cells in response to TNF-α requires angiotensin II generation de novo. J. Cell. Physiol.185, 253–259 (2000).
  • Ward WF, Molteni A, Ts’ao CH, Hinz JM. Captopril reduces collagen and mast cell accumulation in irradiated rat lung. Int. J. Radiat. Oncol. Biol. Phys.19, 1405–1409 (1990).
  • Li X, Molina-Molina M, Abdul-Hafez A et al. Extravascular sources of lung angiotensin peptide synthesis in idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol.291, 887–895 (2006).
  • Li X, Rayford H, Uhal BD. Essential roles for angiotensin receptor AT1a in bleomycin-induced apoptosis and lung fibrosis in mice. Am. J. Pathol.163, 2523–2530 (2003).
  • Hagimoto N, Kuwano K, Inoshima I et al. TGF-β 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J. Immunol.168, 6470–6478 (2002).
  • Kang HR, Cho SJ, Lee CG, Homer RJ, Elias JA. Transforming growth factor (TGF)-β1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. J. Biol. Chem.282, 7723–7732 (2007).
  • Matute-Bello G, Wurfel MM, Lee JS et al. Essential role of MMP-12 in fas-induced lung fibrosis. Am. J. Respir. Cell Mol. Biol.37(2), 210–221 (2007).
  • Tuder RM, Yoshida T, Fijalkowka I, Biswal S, Petrache I. Role of lung maintenance program in the heterogeneity of lung destruction in emphysema. Proc. Am. Thorac. Soc.3, 673–679 (2006).
  • Hogg JC, Chu F, Utokaparch S et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med.350, 2645–2653 (2004).
  • Aoshiba K, Yokohori N, Nagai A. Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am. J. Respir. Cell Mol. Biol.28, 555–562 (2003).
  • Petrache I, Fijalkowska I, Medler TR et al. α-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am. J. Pathol.169, 1155–1166 (2006).
  • Lucey EC, Keane J, Kuang PP, Snider GL, Goldstein RH. Severity of elastase-induced emphysema is decreased in tumor necrosis factor-α and interleukin-1β receptor-deficient mice. Lab. Invest.82, 79–85 (2002).
  • Elias JA, Kang MJ, Crothers K et al. Mechanistic heterogeneity in chronic obstructive pulmonary disease: insights from transgenic mice. Proc. Am. Thorac. Soc.3, 494–498 (2006).
  • Kang MJ, Homer RJ, Gallo A et al. IL-18 is induced and IL-18 receptor α plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. J. Immunol.178, 1948–1959 (2007).
  • van der Toorn M, Slebos DJ, de Bruin HG et al. Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis. Am. J. Physiol. Lung Cell Mol. Physiol.292, 1211–1218 (2007).
  • Slebos DJ, Ryter SW, van der Toorn M et al. Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am. J. Respir. Cell Mol. Biol.26, 409–417 (2007).
  • Castillo SS, Levy M, Wang C et al. Nitric oxide-enhanced caspase-3 and acidic sphingomyelinase interaction: a novel mechanism by which airway epithelial cells escape ceramide-induced apoptosis. Exp. Cell Res.313, 816–823 (2007).
  • Kasahara Y, Tuder RM, Taraseviciene-Stewart L et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest.106, 1311–1319 (2000).
  • Kasahara Y, Tuder RM, Cool CD et al. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am. J. Respir. Crit. Care Med.163, 737–744 (2001).
  • Henson PM, Vandivier RW, Douglas IS. Cell death, remodeling and repair in chronic obstructive pulmonary disease? Proc. Am. Thorac. Soc.3, 713–717 (2006).
  • Clark H, Palaniyar N, Strong P et al. Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J. Immunol.169, 2892–2899 (2002).
  • Yokohori N, Aoshiba K, Nagai A. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest125, 626–632 (2004).
  • Carnevali S, Petruzzelli S, Longoni B et al. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol.284, 955–963 (2003).
  • Gauldie J, Kolb M, Ask K et al. Smad3 signaling involved in pulmonary fibrosis and emphysema. Proc. Am. Thorac. Soc.3(8), 696–702 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.