225
Views
20
CrossRef citations to date
0
Altmetric
Review

Preclinical animal models of asthma and chronic obstructive pulmonary disease

&
Pages 631-643 | Published online: 09 Jan 2014

References

  • Svendsen O, Ahnfelt-Rønne I, Vanhoutte P. In vivo pharmacology in drug discovery and development. Basic Clin. Pharmacol. Toxicol.99, 89–90 (2006).
  • Wenzel S, Holgate ST. The mouse trap: it still yields few answers in asthma. Am. J. Respir. Crit. Care Med.174, 1173–1176 (2006).
  • Cookson W. The alliance of genes and environment in asthma and allergy. Nature402(Suppl.), B5–B11 (1999).
  • Prescott SL, Macaubas C, Holt BJ et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J. Immunol.160, 4730–4737 (1998).
  • Burrows B, Martinez FD, Halonen M, Barbee RA, Cline MG. Association of asthma with serum IgE levels and skin-test reactivity to allergens. N. Engl. J. Med.320, 271–277 (1989).
  • Solèr M, Matz J, Townley R et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J.18(2), 254–261. Erratum in: Eur. Respir. J.18, 739–740 (2001).
  • Busse WW, Lemanske RF Jr. Asthma. N. Engl. J. Med.344, 350–362 (2001).
  • Chiappara G, Gagliardo R, Siena A et al. Airway remodeling in the pathogenesis of asthma. Curr. Opin. Allergy Clin. Immunol.1, 85–93 (2001).
  • Slauson DO, Hahn FF. Criteria for development of animal models of diseases of the respiratory system: the comparative approach in respiratory disease model development. Am. J. Pathol.101, S103–S122 (1980).
  • Kurucz I, Szelenyi I. Current animal models of bronchial asthma. Curr. Pharm. Des.12, 3175–3194 (2006).
  • Kips JC, Cuvelier CA, Pauwels RA. Effect of acute and chronic antigen inhalation on airway morphology and responsiveness in actively sensitized rats. Am. Rev. Respir. Dis.145, 1306–1130 (1992).
  • Misawa M, Chiba Y. Repeated antigenic challenge-induced airway hyperresponsiveness and airway inflammation in actively sensitized rats. Jpn. J. Pharmacol.61, 41–50 (1993).
  • Renzi PM, Al Assaad AS, Yang J, Yasruel Z, Hamid Q. Cytokine expression in the presence or absence of late airway responses after antigen challenge of sensitized rats. Am. J. Respir. Cell Mol. Biol.15, 367–373 (1996).
  • Schneider T, van Velzen D, Moqbel R, Issekutz AC. Kinetics and quantification of eosinophil and neutrophil recruitment to allergic lung inflammation in a Brown Norway rat model. Am. J. Respir. Cell Mol. Biol.17, 702–712 (1997).
  • Nonaka T, Mitsuhashi H, Takahashi K, Sugiyama H, Kishimoto T. Effect of TEI-9874, an inhibitor of immunoglobulin E production, on allergen-induced asthmatic model in rats. Eur. J. Pharmacol.402, 287–295 (2000).
  • Hsiue TR, Lei HY, Hsieh AL, Wang TY, Chang HY, Chen CR. Mite-induced allergic airway inflammation in guinea pigs. Int. Arch. Allergy Immunol.112, 295–302 (1997).
  • Riedel F, Krause A, Slenczka W, Rieger CHL. Parainfluenza-3-virus infection enhances allergic sensitization in the guinea pig. Clin. Exp. Allergy26, 603–609 (1996).
  • Hamelmann E, Tadeda K, Oshiba A, Gelfand EW. Role of IgE in the development of allergic airway inflammation and airway hyper-responsiveness – a murine model. Allergy54, 297–305 (1999).
  • Crosby JR, Cieslewicz G, Borchers M et al. Early phase bronchoconstriction in the mouse requires allergen-specific IgG. J. Immunol.168, 4050–4054 (2002).
  • Korsgren M, Erjefält JS, Korsgren O, Sundler F, Persson CG. Allergic eosinophil-rich inflammation develops in lungs and airways of B cell-deficient mice. J. Exp. Med.185, 885–892 (1997).
  • Hamelmann E, Vella AT, Oshiba A, Kappler JW, Marrack P, Gelfand EW. Allergic airway sensitization induces T cell activation but not airway hyperresponsiveness in B cell-deficient mice. Proc. Natl Acad. Sci. USA94, 1350–1355 (1997).
  • Canning BJ. Modeling asthma and COPD in animals: a pointless exercise? Curr. Opin. Pharmacol.3, 244–250 (2003).
  • Szelenyi I. Animal models of bronchial asthma. Inflamm. Res.49, 639–654 (2000).
  • Hele DJ, Birrell MA, Webber SE, Foster ML, Belvisi MG. Mediator involvement in antigen-induced bronchospasm and microvascular leakage in the airways of ovalbumin sensitized Brown Norway rats. Br. J. Pharmacol.132, 481–488 (2001).
  • Zosky GR, Sly PD, Turner DJ. Mouse models of asthma: what physiological evidence are they based on? Allergy Clin. Immunol. Int.18, 76–79 (2006).
  • Canning BJ, Fischer A. Neural regulation of airway smooth muscle tone. Respir. Physiol.125, 113–127 (2001).
  • Skloot G, Permutt S, Togias A. Airway hyper-responsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration. J. Clin. Invest.96, 2393–2403 (1995).
  • Martin TR, Gerard NP, Galli SJ, Drazen JM. Pulmonary responses to bronchoconstrictor agonists in the mouse. J. Appl. Physiol.64, 2318–2323 (1988).
  • Laberge S, Rabb H, Issekutz TB, Martin JG. Role of VLA-4 and LFA-1 in allergen-induced airway hyper-responsiveness and lung inflammation in the rat. Am. J. Respir. Crit. Care Med.151, 822–829 (1995).
  • Haczku A, Macary P, Haddad EB et al.Expression of Th-2 cytokines interleukin-4 and -5 and of Th-1 cytokine interferon-γ in ovalbumin-exposed sensitized Brown Norway rats. Immunology88, 247–251 (1996).
  • Patra AL. Comparative anatomy of mammalian respiratory tracts: the nasopharyngeal region and the tracheobronchial region. J. Toxicol. Environ. Health17, 163–174 (1986).
  • Renzi PM, Olivenstein R, Martin JG. Inflammatory cell populations in the airways and parenchyma after antigen challenge in the rat. Am. Rev. Respir. Dis.147, 967–974 (1993).
  • Rabb HA, Olivenstein R, Issekutz TB, Renzi PM, Martin JG. The role of the leukocyte adhesion molecules VLA-4, LFA-1, and Mac-1 in allergic airway responses in the rat. Am. J. Respir. Crit. Care Med.149, 1186–1191 (1994).
  • Selig WM, Chapman RW. Asthma. In: In Vivo Models of Inflammation. Morgan DW, Marshall LA (Eds). Birkhauser Verlag, Basel, Switzerland 111–135 (1999).
  • de Bie JJ, Kneepkens M, Kraneveld AD et al. Absence of late airway response despite increased airway responsiveness and eosinophilia in a murine model of asthma. Exp. Lung Res.26, 491–507 (2000).
  • Hylkema MN, Hoekstra MO, Luinge M, Timens W. The strength of the OVA-induced airway inflammation in rats is strain dependent. Clin. Exp. Immunol.129, 390–396 (2002).
  • Trifilieff A, El-Hashim A, Bertrand C. Time course of inflammatory and remodeling events in a murine model of asthma: effect of steroid treatment. Am. J. Physiol. Lung Cell Mol. Physiol.279, L1120–L1128 (2000).
  • Levitt RC, Mitzner W. Autosomal recessive inhertiance of airway hyperreactivity to 5-hydroxytryptamine. J. Appl. Physiol.67, 1125–1132 (1989)
  • Lai YH, Mosmann TR. Mouse IL-13 enhances antibody production in vivo and acts directly on B cells in vitro to increase survival and hence antibody production. J. Immunol.162, 78–87 (1999).
  • Owen C. Chemokine receptors in airway disease: which receptors to target? Pulm. Pharmacol. Ther.14, 193–202 (2001).
  • Proudfoot AE. Chemokine receptors: multifaceted therapeutic targets. Nat. Rev. Immunol.2, 106–115 (2002).
  • Rothenberg ME, Luster AD, Lilly CM, Drazen JM, Leder P. Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung. J. Exp. Med.181, 1121–1216 (1995).
  • Noritake S, Ogawa K, Suzuki G, Ozawa K, Ikeda T. Pulmonary inflammation in brown Norway rats: possible association of environmental particles in the animal room environment. Exp. Anim.56(5), 319–327 (2007).
  • Hessel EM, Van Oosterhout AJ, Hofstra CL et al. Bronchoconstriction and airway hyperresponsiveness after ovalbumin inhalation in sensitized mice. Eur. J. Pharmacol.293, 401–412 (1995).
  • Lefort J, Bachelet CM, Leduc D, Vargaftig BB. Effect of antigen provocation of IL-5 transgenic mice on eosinophil mobilization and bronchial hyperresponsiveness. J. Allergy Clin. Immunol.97, 788–799 (1996).
  • Persson CG, Erjefalt JS, Korsgren M, Sundler F. The mouse trap. Trends Pharmacol. Sci.18, 465–467 (1997).
  • Lacy P, Weller PF, Moqbel R. A report from the International Eosinophil Society: eosinophils in a tug of war. J. Allergy Clin. Immunol.108, 895–900 (2001).
  • Leckie MJ, Ten Brinke A, Khan J et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356, 2144–2148 (2000).
  • Corry DB, Folkesson HG, Warnock ML et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med.183(1), 109–117 (1996). Erratum in: J. Exp Med.185(9), 1715 (1997).
  • Mauser PJ, Pitman A, Witt A et al. Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am. Rev. Respir. Dis.148(6 Pt 1), 1623–1627 (1993).
  • Lee JJ, Dimina D, Macias MP, Ochkur SI et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science305, 1773–1776 (2004).
  • Humbles AA, Lloyd CM, McMillan SJ et al. A critical role for eosinophils in allergic airways remodeling. Science305, 1776–1779 (2004).
  • Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med.183, 195–201 (1996).
  • Hogan SP, Matthaei KI, Young JM, Koskinen A, Young IG, Foster PS. A novel T cell-regulated mechanism modulating allergen-induced airways hyperreactivity in BALB/c mice independently of IL-4 and IL-5. J. Immunol.161, 1501–1509 (1998).
  • Wills-Karp M, Karp CL. Biomedicine. Eosinophils in asthma: remodeling a tangled tale. Science305, 1726–1729 (2004).
  • Underwood SL, Haddad el-B, Birrell MA et al. Functional characterization and biomarker identification in the brown Norway model of allergic airway inflammation. Br. J. Pharmacol.137(2), 263–275 (2002).
  • Eum S-Y, Hailé S, Lefort J, Huerre M, Vargaftig BB. Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin-5-dependent bronchial hyperresponsiveness. Proc. Natl Acad. Sci. USA92, 12290–12294 (1995).
  • Zosky GR, von Garnier C, Stumbles PA, Holt PG, Sly PD, Turner DJ. The pattern of methacholine responsiveness in mice is dependent on antigen challenge dose. Respir. Res.5, 15 (2004).
  • Pauwels RA, Brusselle GJ, Kips JC. Cytokine manipulation in animal models of asthma. Am. J. Respir. Crit. Care Med.156, S78–S81 (1997).
  • Fish SC, Donaldson DD, Goldman SJ, Williams CMM, Kasaian MT. IgE generation and mast cell effector function in mice deficient in IL-4 and IL-13. J. Immunol.174, 7716–7724 (2005).
  • Temelkovski J, Hogan SP, Shepherd DP, Foster PS, Kumar RK. An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax53, 849–856 (1998).
  • Johnson JR, Wiley RE, Fattouh R et al. Continuous exposure to house dust mice elicits chronic airway inflammation and structural remodeling. Am. J. Respir. Crit. Care Med.169, 378–385 (2004).
  • Duez C, Kips J, Pestel J, Tournoy K, Tonnel AB, Pauwels R. House dust mite-induced airway changes in hu-SCID mice. Am. J. Respir. Crit. Care Med161, 200–206 (2000).
  • Zosky GR, Sly PD. Animal models of asthma. Clin. Exp. Allergy37(7), 973–988 (2007).
  • Fulkerson PC, Rothenberg ME, Hogan SP. Building a better mouse model: experimental models of chronic asthma. Clin. Exp. Allergy.35, 1251–1253 (2005).
  • Ostroukhova M, Seguin-Devaux C, Oriss TB et al. Tolerance induced by inhaled antigen involves CD4(1) T cells expressing membrane-bound TGF-β and Foxp3. J. Clin. Invest.114, 28–38 (2004).
  • Melkild I, Groeng EC, Leikvold RB, Granum B, Lovik M. Maternal allergen immunization during pregnancy in a mouse model reduces adult allergy-related antibody responses in the offspring. Clin. Exp. Allergy32, 1370–1376 (2002).
  • You D, Becnel D, Wang K, Ripple M, Daly M, Cormier SA. Exposure of neonates to respiratory syncytial virus is critical in determining subsequent airway response in adults. Respir. Res.7, 107 (2006).
  • Hogg JC, Chu F, Utokaparch S et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med.350, 2645–2653 (2004).
  • Pauwels RA, Buist S, Calverley PMA, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.163, 1256–1276 (2001).
  • Higgins BG, Francis HC, Yates CJ et al. Effects of air pollution on symptoms and peak expiratory flow measurements in subjects with obstructive airways disease. Thorax50, 149–155 (1995).
  • Jany B, Gallup M, Tsuda T, Basbaum C. Mucin gene expression in rat airways following infection and irritation. Biochem. Biophys. Res. Commun.181, 1–8 (1991).
  • Lei YH, Barnes PJ, Rogers DF. Mechanisms and modulation of airway plasma exudation after direct inhalation of cigarette smoke. Am. J. Respir. Crit. Care Med.151, 1752–1762 (1995).
  • Dusser DJ, Djokic TD, Borson DB, Nadel JA. Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals. J. Clin. Invest.84, 900–906 (1989).
  • Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet364, 709–721 (2004).
  • van der Strate BW, Postma DS, Brandsma CA et al. Cigarette smoke-induced emphysema: a role for the B cell? Am. J. Respir. Crit. Care Med.173, 751–758 (2006).
  • Voelkel N, Taraseviciene-Stewart L. Emphysema: an autoimmune vascular disease? Proc. Am. Thorac. Soc.2, 23–25 (2005).
  • Taraseviciene-Stewart L, Scerbavicius R, Choe KH et al. An animal model of autoimmune emphysema. Am. J. Respir. Crit Care Med.171, 734–742 (2005).
  • Feghali-Bostwick CA, Gadgil AS, Otterbein LE et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.177(2), 156–163 (2008).
  • Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br. Med. J.25, 1645–1648 (1977).
  • Lundback B, Lindberg A, Lindstrom M et al. Obstructive lung disease in northern sweden studies. Not 15 but 50% of smokers develop COPD? – Report from the obstructive lung disease in northern sweden studies. Respir. Med.97, 115–122 (2003).
  • Eriksson S. Studies in 1-antitrypsin deficiency. Acta Med. Scand.432(Suppl.), 1–85 (1965).
  • Laurell C-B, Eriksson S. The electrophoretic 1-globulin pattern of serum in α1-antitrypsin deficiency. Scand. J. Clin. Lab. Invest.15, 132–140 (1963).
  • Gross P, Pfitzer EA, Tolker E, Babyak MA, Kaschak M. Experimental emphysema. Its production with papain in normal and silicotic rats. Arch. Environ. Health11, 50–58 (1965).
  • Snider GL. Emphysema: the first two centuries and beyond. A historical overview, with suggestions for future research: part 2. Am. Rev. Respir. Dis.146, 1615– 1622 (1992).
  • Bates DV, Macklem PT, Christie RV. Respiratory Function in Disease. WB Saunders, Toronto, Canada (1971).
  • Lucey EC, Stone PJ, Christensen TG, Breuer R, Snider GL. An 18-month study of the effects on hamster lungs of intratracheally administered human neutrophil elastase. Exp. Lung Res.14, 671–686 (1988).
  • Stevenson CS, Underwood DC. Asthma. In: In Vivo Models of Inflammation (Volume 2). Stevenson CS, Marshall LM, Morgan DW (Eds). Birkhauser Verlag, Basel, Switzerland 29–57 (2006).
  • Chang C, Houck JC. Demonstration of the chemotactic properties of collagen. Proc. Soc. Exp. Biol. Med.134, 22–26 (1970).
  • Postlethwaite AE, Kang AH. Collagen and collagen peptide-induced chemotaxis of human blood monocytes. J. Exp. Med.143, 1299–1307 (1976).
  • Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastin-derived peptides. J. Clin. Invest.66, 859–862 (1980).
  • Birrell MA, Wong S, Hele DJ, McCluskie K, Hardaker E, Belvisi MG. Steroid-resistant inflammation in a rat model of chronic obstructive pulmonary disease is associated with a lack of nuclear factor-κB pathway activation. Am. J. Respir. Crit. Care Med.172, 74–84 (2005).
  • Houghton AM, Quintero PA, Perkins DL et al. Elastin fragments drive disease progression in a murine model of emphysema. J. Clin. Invest.116, 753–759 (2006).
  • Kaplan PD, Kuhn C, Pierce JA. The induction of emphysema with elastase. I. The evolution of the lesion and the influence of serum. J. Lab. Clin. Med.82, 349–356 (1973).
  • Kuhn C, Yu SY, Chraplyvy M, Linder HE, Senior RM. The induction of emphysema with elastase. II. Changes in connective tissue. Lab. Invest.34, 372–380 (1976).
  • Massaro GD, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat. Med.3, 675–677 (1997).
  • Fujita M, Ye Q, Ouchi H et al. Retinoic acid fails to reverse emphysema in adult mouse models. Thorax59, 224–230 (2004).
  • Lucey EC, Goldstein RH, Breuer R, Rexer BN, Ong DE, Snider GL. Retinoic acid does not affect alveolar septation in adult FVB mice with elastase-induced emphysemea. Respiration70, 200–205 (2003).
  • March TH, Cossey PY, Esparza DC, Dix KJ, McDonald JD, Bowen LE. Inhalation administration of all-trans-retinoic acid for treatment of elastase-induced pulmonary emphysema in Fischer 344 rats. Exp. Lung Res.30, 383–404 (2004).
  • Birrell MA, Wong S, Hardaker E et al. IκB kinase-2 independent and dependent inflammation in airway disease models: relevance of IKK-2 inhibition to the clinic. Mol. Pharmacol.282(44), 31882–31890 (2006).
  • Roth MD, Connett JE, D’Armiento JM et al. Feasibility of retinoids for the treatment of emphysema study. Chest130(5), 1334–1345 (2006).
  • Shinohara T, Kaneko T, Nagashima Y, Ueda A, Tagawa A, Ishigatsubo Y. Adenovirus-mediated transfer and overexpression of heme oxygenase 1 cDNA in lungs attenuates elastase-induced pulmonary emphysema in mice. Hum. Gene Ther.16, 318–327 (2005).
  • Ogura M, Kitamura M. Oxidant stress incites spreading of macrophages via extracellular signal-regulated kinases and p38 mitogen-activated protein kinase. J. Immunol.161, 3569–3574 (1998).
  • Lucey EC, Keane J, Kuang PP, Snider GL, Goldstein RH. Severity of elastase-induced emphysema is decreased in tumor necrosis factor-α and interleukin-1β receptor-deficient mice. Lab. Invest.82, 79–85 (2002).
  • Wright JL, Churg A. Animal models of cigarette smoke-induced COPD. Chest122, 301S–306S (2002).
  • March TH, Barr EB, Finch GL et al. Cigarette smoke exposure produces more evidence of emphysema in B6C3F1 mice than in F344 rats. Toxicol. Sci.51, 289–299 (1999).
  • Bartalesi B, Cavarra E, Fineschi S et al. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur. Respir. J.25, 15–22 (2005).
  • Guerassimov A, Hoshino Y, Takubo Y et al. The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am. J. Respir. Crit. Care Med.170, 974–980 (2004).
  • Churg A, Wang RD, Tai H et al. Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-α release. Am. J. Respir. Crit. Care Med.167, 1083–1089 (2003).
  • Leclerc O, Lagente V, Planquois JM et al. Involvement of MMP-12 and phosphodiesterase type 4 in cigarette smoke-induced inflammation in mice. Eur. Respir. J.27(6), 1102–1109 (2006).
  • Thatcher TH, McHugh NA, Egan RW et al. Role of CXCR2 in cigarette smoke-induced lung inflammation. Am. J. Physiol. Lung Cell Mol. Physiol.289, L322–L328 (2005).
  • Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL. Tumor necrosis factor-a drives 70% of cigarette smoke-induced emphysema in the mouse. Am. J. Respir. Crit. Care Med.170 (5), 492–498 (2004).
  • Cavarra E, Bartalesi B, Lucattelli M et al. Effects of cigarette smoke in mice with different levels of α1-proteinase inhibitor and sensitivity to oxidants. Am. J. Respir. Crit. Care Med.164, 886–890 (2001).
  • Churg A, Dai J, Tai H, Xie C, Wright JL. Tumor necrosis factor-α is central to acute cigarette smoke-induced inflammation and connective tissue breakdown. Am. J. Respir. Crit. Care Med.166, 849–854 (2002).
  • Stevenson CS, Coote K, Webster R et al. Characterization of cigarette smoke-induced inflammatory and mucus hypersecretory changes in rat lung and the role of CXCR2 ligands in mediating this effect. Am. J. Physiol. Lung Cell Mol. Physiol.288, L514–L522 (2005).
  • D’hulst AI, Vermaelen KY, Brusselle GG, Joos GF, Pauwels RA. Time course of cigarette smoke-induced pulmonary inflammation in mice. Eur. Respir. J.26, 204–213 (2005).
  • Stevenson CS, Winny C, Coote K et al. A chronic rat model of smoke-induced lung injury and comparison with an acute 24 h screening model. Am. J. Respir. Crit. Care Med.169, A205 (2004).
  • Churg A, Zay K, Shay S, Xie C et al. cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am. J. Respir. Cell Mol. Biol.27, 368–374 (2002).
  • Marwick JA, Kirkham PA, Stevenson CS et al. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J. Respir. Cell Mol. Biol.31, 633–642 (2004).
  • Churg A, Cherukupalli K. Cigarette smoke causes rapid lipid peroxidation of rat tracheal epithelium. Int. J. Exp. Pathol.74, 127–132 (1993).
  • Foronjy RF, Mirochnitchenko O, Propokenko O et al. Superoxide dismutase expression attenuates cigarette smoke- or elastase-generated emphysema in mice. Am. J. Respir. Crit. Care Med.173, 623–631 (2006).
  • Rogers DF, Jeffery PK. Inhibition by oral N-acetylcysteine of cigarette smoke-induced “bronchitis” in the rat. Exp. Lung Res.10, 267–283 (1986).
  • Smith KR, Uyeminami DL, Kodavanti UP, Crapo JD, Chang LY, Pinkerton KE. Inhibition of tobacco smoke-induced lung inflammation by a catalytic antioxidant. Free Radic. Biol. Med.33, 1106–1114 (2002).
  • Stevenson CS, Docx C, Webster R et al. Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am. J. Physiol. Lung Cell Mol. Physiol.293, L1183–L1193 (2007).
  • Ito K, Ito M, Elliott WM et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med.352, 1967–1976 (2005).
  • Pemberton PA, Cantwell JS, Kim KM et al. An inhaled matrix metalloprotease inhibitor prevents cigarette smoke-induced emphysema in the mouse. COPD2(3), 303–310 (2005).
  • Churg A J, Dai K, Zay A et al. α-1-antitrypsin and a broad spectrum metalloprotease inhibitor, RS113456, have similar acute anti-inflammatory effects. Lab. Invest.81, 1119–1131 (2001).
  • Medicherla S, Fitzgerald MF, Spicer D et al. p38α-selective mitogen-activated protein kinase inhibitor SD-282 reduces inflammation in a subchronic model of tobacco smoke-induced airway inflammation. J. Pharmacol. Exp. Ther.324, 921–929 (2008).
  • Martorana PA, Beume R, Lucattelli M, Wollin L, Lungarella G. Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am. J. Respir. Crit. Care Med.172, 848–853 (2005).
  • Wright JL, Churg A. Effect of long-term cigarette smoke exposure on pulmonary vascular structure and function in the guinea pig. Exp. Lung Res.17, 997–1009 (1991).
  • Wright JL, Postma DS, Kerstjens HA, Timens W, Whittaker P, Churg A. Airway remodeling in the smoke exposed guinea pig model. Inhal. Toxicol.19(11), 915–923 (2007).
  • Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am. J. Physiol. Lung Cell Mol. Physiol.294(4), L612–L631 (2008).
  • Rubio ML, Sanchez-Cifuentes MV, Ortega M et al.N-acetylcysteine prevents cigarette smoke induced small airways alterations in rats. Eur. Respir. J.15, 505–511 (2000).
  • Cooper PR, Stevenson CS, Poll CT, Barnes PJ, Sturton RG. Videomicroscopy of small airway function in precision cut lung slices prepared from tobacco smoke exposed rats. Proc. Am. Thorac. Soc.2, A652 (2005).
  • Wright JL, Sun JP, Churg A. Cigarette smoke exposure causes constriction of rat lung. Eur. Respir. J.14, 1095–1099 (1999).
  • Wang RD, Tai H, Xie C, Wang X, Wright JL, Churg A. Cigarette smoke produces airway wall remodeling in rat tracheal explants. Am. J. Respir. Crit. Care Med.168, 1232–1236 (2003).
  • Bracke KR, D’hulst AI, Maes T et al. Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J. Immunol.177, 4350–4359 (2006).
  • Churg A, Tai H, Coulthard T, Wang R, Wright JL. Cigarette smoke drives small airway remodeling by induction of growth factors in the airway wall. Am. J. Respir. Crit. Care Med.174, 1327–1334 (2006).
  • Wright JL, Churg A. Cigarette smoke causes physiologic and morphologic changes of emphysema in the guinea pig. Am. Rev. Respir. Dis.142, 1422–1428 (1990).
  • Lewis CA, Ambrose C, Banner K et al. Animal models of cough: literature review and presentation of a novel cigarette smoke-enhanced cough model in the guinea-pig. Pulm. Pharmacol. Ther.20(4), 325–333 (2007).
  • Triantafillopoulos A, Whittaker K, Hoidal JR, Cosio MG. The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am. J. Respir. Crit. Care Med.170, 974–980 (2004).
  • Zhu Z, Homer RJ, Wang Z et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest.103, 779–788 (1999).
  • Grünig G, Warnock M, Wakil AE et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science282, 2261–2263 (1998).
  • Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science277, 2002–2004 (1997).
  • Lundblad LK, Irvin CG, Hantos Z, Sly P, Mitzner W, Bates JH. Penh is not a measure of airway resistance! Eur. Respir. J.30(4), 805 (2007).
  • Bartlett NW, Walton RP, Edwards MR et al. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat. Med.14(2), 199–204 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.