79
Views
17
CrossRef citations to date
0
Altmetric
Review

Phagocytic clearance of apoptotic cells: role in lung disease

, &
Pages 753-765 | Published online: 09 Jan 2014

References

  • Blank M, Shiloh Y. Programs for cell death: apoptosis is only one way to go. Cell Cycle6(6), 686–695 (2007).
  • Henson PM, Tuder RM. Apoptosis in the lung: induction, clearance and detection. Am. J. Physiol. Lung Cell. Mol. Physiol.294(4), L601–L611 (2008).
  • Maderna P, Godson C. Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim. Biophys. Acta1639(3), 141–151 (2003).
  • Vandivier RW, Henson PM, Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest129(6), 1673–1682 (2006).
  • Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat. Rev. Immunol.7(12), 964–974 (2007).
  • Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med.182(5), 1597–1601 (1995).
  • Williamson P, Schlegel RA. Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim. Biophys. Acta1585(2–3), 53–63 (2002).
  • Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J. Exp. Med.203(12), 2613–2625 (2006).
  • Vandivier RW, Ogden CA, Fadok VA et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol.169(7), 3978–3986 (2002).
  • Gardai SJ, McPhillips KA, Frasch SC et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell123(2), 321–334 (2005).
  • Ezekowitz RA, Sastry K, Bailly P, Warner A. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med.172(6), 1785–1794 (1990).
  • Weihua Z, Tsan R, Schroit AJ, Fidler IJ. Apoptotic cells initiate endothelial cell sprouting via electrostatic signaling. Cancer Res.65(24), 11529–11535 (2005).
  • Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature450(7168), 435–439 (2007).
  • Park D, Tosello-Trampont AC, Elliott MR et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature450(7168), 430–434 (2007).
  • Park SY, Jung MY, Kim HJ et al. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ.15(1), 192–201 (2007).
  • Park SY, Kim SY, Jung MY, Bae DJ, Kim IS. EGF-like domain repeat (EGFrp) of stabilin-2 recognizes phosphatidylserine during cell corpse clearance. Mol. Cell. Biol.28(17), 5288–5298 (2008).
  • Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature405(6782), 85–90 (2000).
  • Bose J, Gruber A, Helming L et al. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. J. Biol.3(4), 15 (2004).
  • Schlegel RA, Williamson P. PS to PS (phosphatidylserine) – pertinent proteins in apoptotic cell clearance. Sci. STKE (408), E57 (2007).
  • Savill J, Hogg N, Ren Y, Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest.90(4), 1513–1522 (1992).
  • Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature417(6885), 182–187 (2002).
  • Ishimoto Y, Ohashi K, Mizuno K, Nakano T. Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J. Biochem.127(3), 411–417 (2000).
  • Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature392(6675), 505–509 (1998).
  • Platt N, Suzuki H, Kurihara Y, Kodama T, Gordon S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc. Natl Acad. Sci. USA93(22), 12456–12460 (1996).
  • Ramprasad MP, Fischer W, Witztum JL, Sambrano GR, Quehenberger O, Steinberg D. The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc. Natl Acad. Sci. USA92(21), 9580–9584 (1995).
  • Ogden CA, deCathelineau A, Hoffmann PR et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med.194(6), 781–795 (2001).
  • Takemura Y, Ouchi N, Shibata R et al. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J. Clin. Invest.117(2), 375–386 (2007).
  • Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature418(6894), 200–203 (2002).
  • Tsai RK, Discher DE. Inhibition of ‘self’ engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol.180(5), 989–1003 (2008).
  • Krieser RJ, White K. Engulfment mechanism of apoptotic cells. Curr. Opin. Cell Biol.14(6), 734–738 (2002).
  • Nobes CD, Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell81(1), 53–62 (1995).
  • Leverrier Y, Ridley AJ. Requirement for Rho GTPases and PI 3-kinases during apoptotic cell phagocytosis by macrophages. Curr. Biol.11(3), 195–199 (2001).
  • Tosello-Trampont AC, Nakada-Tsukui K, Ravichandran KS. Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J. Biol. Chem.278(50), 49911–49919 (2003).
  • Morimoto K, Janssen WJ, Fessler MB et al. Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J. Immunol.176(12), 7657–7665 (2006).
  • Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Invest.109(1), 41–50 (2002).
  • Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature390(6658), 350–351 (1997).
  • Gao Y, Herndon JM, Zhang H, Griffith TS, Ferguson TA. Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis. J. Exp. Med.188(5), 887–896 (1998).
  • Chen W, Frank ME, Jin W, Wahl SM. TGF-β released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity14(6), 715–725 (2001).
  • Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest.101(4), 890–898 (1998).
  • Kim S, Elkon KB, Ma X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity21(5), 643–653 (2004).
  • Kim S, Elkon KB, Ma X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity21(5), 643–653 (2004).
  • Cvetanovic M, Ucker DS. Innate immune discrimination of apoptotic cells: repression of proinflammatory macrophage transcription is coupled directly to specific recognition. J. Immunol.172(2), 880–889 (2004).
  • Lucas M, Stuart LM, Zhang A et al. Requirements for apoptotic cell contact in regulation of macrophage responses. J. Immunol.177(6), 4047–4054 (2006).
  • Dini L, Lentini A, Diez GD et al. Phagocytosis of apoptotic bodies by liver endothelial cells. J. Cell Sci.108(Pt 3), 967–973 (1995).
  • Hall SE, Savill JS, Henson PM, Haslett C. Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-specific lectin. J. Immunol.153(7), 3218–3227 (1994).
  • Kolb S, Vranckx R, Huisse MG, Michel JB, Meilhac O. The phosphatidylserine receptor mediates phagocytosis by vascular smooth muscle cells. J. Pathol212(3), 249–259 (2007).
  • Walsh GM, Sexton DW, Blaylock MG, Convery CM. Resting and cytokine-stimulated human small airway epithelial cells recognize and engulf apoptotic eosinophils. Blood94(8), 2827–2835 (1999).
  • Monks J, Rosner D, Jon Geske F et al. Epithelial cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. Cell Death Differ.12(2), 107–114 (2005).
  • Golpon HA, Fadok VA, Taraseviciene-Stewart L et al. Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J.18(14), 1716–1718 (2004).
  • Morimoto K, Amano H, Sonoda F et al. Alveolar macrophages that phagocytose apoptotic neutrophils produce hepatocyte growth factor during bacterial pneumonia in mice. Am. J. Respir. Cell Mol. Biol.24(5), 608–615 (2001).
  • Michlewska S, McColl A, Rossi AG, Megson IL, Dransfield I. Clearance of dying cells and autoimmunity. Autoimmunity40(4), 267–273 (2007).
  • Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS. Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum.48(10), 2888–2897 (2003).
  • O’Brien BA, Fieldus WE, Field CJ, Finegood DT. Clearance of apoptotic β-cells is reduced in neonatal autoimmune diabetes-prone rats. Cell Death Differ.9(4), 457–464 (2002).
  • Botto M, Dell’Agnola C, Bygrave AE et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet.19(1), 56–59 (1998).
  • Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am. J. Respir. Crit. Care Med.163(3 Pt 1), 737–744 (2001).
  • Tuder RM, Petrache I, Elias JA, Voelkel NF, Henson PM. Apoptosis and emphysema: the missing link. Am. J. Respir. Cell Mol. Biol.28(5), 551–554 (2003).
  • Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir. Res.7, 53 (2006).
  • Tang K, Rossiter HB, Wagner PD, Breen EC. Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J. Appl. Physiol.97(4), 1559–1566 (2004).
  • Kasahara Y, Tuder RM, Taraseviciene-Stewart L et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest.106(11), 1311–1319 (2000).
  • Tuder RM, Zhen L, Cho CY et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell Mol. Biol.29(1), 88–97 (2003).
  • Aoshiba K, Yokohori N, Nagai A. Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am. J. Respir. Cell Mol. Biol.28(5), 555–562 (2003).
  • Zheng T, Kang MJ, Crothers K et al. Role of cathepsin S-dependent epithelial cell apoptosis in IFN-γ-induced alveolar remodeling and pulmonary emphysema. J. Immunol.174(12), 8106–8115 (2005).
  • Petrache I, Natarajan V, Zhen L et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat. Med.11(5), 491–498 (2005).
  • Calabrese F, Giacometti C, Beghe B et al. Marked alveolar apoptosis/proliferation imbalance in end-stage emphysema. Respir. Res.6(1), 14 (2005).
  • Imai K, Mercer BA, Schulman LL, Sonett JR, D’Armiento JM. Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur. Respir. J.25(2), 250–258 (2005).
  • Yokohori N, Aoshiba K, Nagai A. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest125(2), 626–632 (2004).
  • Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol. Cell Biol.81(4), 289–296 (2003).
  • Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol.37(6), 748–755 (2007).
  • Richens TR, Linderman DJ, Xiao YQ et al. Cigarette smoke impairs removal of apoptotic cells (efferocytosis) through oxidant-dependent activation of RhoA. Presented at: American Thoracic Society Internation Conference. Toronto, Canada, 16–21 May 2008.
  • Sims M, Tal-Singer R, Kierstein S et al. Chronic obstructive pulmonary disease and inhaled steroids alter surfactant protein D (SP-D) levels: a cross-sectional study. Respir. Res.9(1), 13 (2008).
  • Clark H, Palaniyar N, Strong P, Edmondson J, Hawgood S, Reid KBM. Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J. Immunol.169(6), 2892–2899 (2002).
  • Vandivier RW, Fadok VA, Ogden CA et al. Impaired clearance of apoptotic cells from cystic fibrosis airways. Chest121(3 Suppl.), S89 (2002).
  • Vandivier RW, Fadok VA, Hoffmann PR et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J. Clin. Invest.109(5), 661–670 (2002).
  • Gοmez MI, Prince A. Opportunistic infections in lung disease: pseudomonas infections in cystic fibrosis. Curr. Opin. Pharmacol.7(3), 244–251 (2007).
  • Allen L, Dockrell DH, Pattery T et al. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J. Immunol.174(6), 3643–3649 (2005).
  • Bianchi SM, Prince LR, McPhillips K et al. Impairment of apoptotic cell engulfment by pyocyanin, a toxic metabolite of Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med.177(1), 35–43 (2008).
  • Ras GJ, Anderson R, Taylor GW et al. Proinflammatory interactions of pyocyanin and 1-hydroxyphenazine with human neutrophils in vitro. J. Infect. Dis.162(1), 178–185 (1990).
  • Hogan SP, Rosenberg HF, Moqbel R et al. Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy38(5), 709–750 (2008).
  • Woolley KL, Gibson PG, Carty K, Wilson AJ, Twaddell SH, Woolley MJ. Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am. J. Respir. Crit. Care Med.154(1), 237–243 (1996).
  • Kankaanranta H, Lindsay MA, Giembycz MA, Zhang X, Moilanen E, Barnes PJ. Delayed eosinophil apoptosis in asthma. J. Allergy Clin. Immunol.106(1 Pt 1), 77–83 (2000).
  • Tai PC, Sun L, Spry CJ. Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro. Clin. Exp. Immunol.85(2), 312–316 (1991).
  • Valerius T, Repp R, Kalden JR, Platzer E. Effects of IFN on human eosinophils in comparison with other cytokines. A novel class of eosinophil activators with delayed onset of action. J. Immunol.145(9), 2950–2958 (1990).
  • Huynh ML, Malcolm KC, Kotaru C et al. Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am. J. Respir. Crit. Care Med.172(8), 972–979 (2005).
  • Takai D, Nagase T, Shimizu T. New therapeutic key for cystic fibrosis: a role for lipoxins. Nat. Immunol.5(4), 357–358 (2004).
  • Kollef MH, Schuster DP. The acute respiratory distress syndrome. N. Engl. J. Med.332(1), 27–37 (1995).
  • Matute-Bello G, Liles WC, Steinberg KP et al. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J. Immunol.163(4), 2217–2225 (1999).
  • Tang PS, Mura M, Seth R, Liu M. Acute lung injury and cell death: how many ways can cells die? Am. J. Physiol. Lung Cell. Mol. Physiol.294(4), L632–L641 (2008).
  • Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am. J. Respir. Crit. Care Med.160(5 Pt 2), S5–S11 (1999).
  • Lesur O, Kokis A, Hermans C, Fulop T, Bernard A, Lane D. Interleukin-2 involvement in early acute respiratory distress syndrome: relationship with polymorphonuclear neutrophil apoptosis and patient survival. Crit. Care Med.28(12), 3814–3822 (2000).
  • Fowler AA, Hyers TM, Fisher BJ et al. The adult respiratory distress syndrome. Cell populations and soluble mediators in the air spaces of patients at high risk. Am. Rev. Respir. Dis.136(5), 1225–1231 (1987).
  • Teder P, Vandivier RW, Jiang D et al. Resolution of lung inflammation by CD44. Science296(5565), 155–158 (2002).
  • Hart SP, Dougherty GJ, Haslett C, Dransfield I. CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages. J. Immunol.159, 919–925 (1997).
  • McKee CM, Penno MB, Cowman M et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J. Clin. Invest.98(10), 2403–2413 (1996).
  • Hussain N, Wu F, Zhu L, Thrall RS, Kresch MJ. Neutrophil apoptosis during the development and resolution of oleic acid-induced acute lung injury in the rat. Am. J. Respir. Cell Mol. Biol.19, 867–874 (1998).
  • Wang L, Medan D, Mercer R et al. Role of neutrophil apoptosis in vanadium-induced pulmonary inflammation in mice. J. Environ. Pathol. Toxicol. Oncol.21(4), 343–350 (2002).
  • Cox G, Crossley J, Xing Z. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am. J. Respir. Cell Mol. Biol.12(2), 232–237 (1995).
  • Medan D, Wang L, Yang X, Dokka S, Castranova V, Rojanasakul Y. Induction of neutrophil apoptosis and secondary necrosis during endotoxin-induced pulmonary inflammation in mice. J. Cell Physiol.191(3), 320–326 (2002).
  • Joseph B, Lewensohn R, Zhivotovsky B. Role of apoptosis in the response of lung carcinomas to anti-cancer treatment. Ann. NY Acad. Sci.926, 204–216 (2000).
  • Nachmias B, Ashhab Y, Ben Yehuda D. The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin. Cancer Biol.14(4), 231–243 (2004).
  • Shivapurkar N, Reddy J, Chaudhary PM, Gazdar AF. Apoptosis and lung cancer: a review. J. Cell. Biochem.88(5), 885–898 (2003).
  • Krysko DV, Vandenabeele P. From regulation of dying cell engulfment to development of anti-cancer therapy. Cell Death Differ.15(1), 29–38 (2008).
  • Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med.191(3), 423–434 (2000).
  • Bondanza A, Zimmermann VS, Rovere-Querini P et al. Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J. Exp. Med.200(9), 1157–1165 (2004).
  • Popovic ZV, Sandhoff R, Sijmonsma TP et al. Sulfated glycosphingolipid as mediator of phagocytosis: sm4s enhances apoptotic cell clearance and modulates macrophage activity. J. Immunol.179(10), 6770–6782 (2007).
  • Morichika H, Hamanaka Y, Tai T, Ishizuka I. Sulfatides as a predictive factor of lymph node metastasis in patients with colorectal adenocarcinoma. Cancer78(1), 43–47 (1996).
  • Ward C, Dransfield I, Chilvers ER, Haslett C, Rossi AG. Pharmacological manipulation of granulocyte apoptosis: potential therapeutic targets. Trends Pharmacol. Sci.20(12), 503–509 (1999).
  • Ren Y, Silverstein RL, Allen J, Savill J. CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J. Exp. Med.181(5), 1857–1862 (1995).
  • Meagher LC, Cousin JM, Seckl JR, Haslett C. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J. Immunol.156(11), 4422–4428 (1996).
  • Liu Y, Cousin JM, Hughes J et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol.162(6), 3639–3646 (1999).
  • Giles KM, Ross K, Rossi AG, Hotchin NA, Haslett C, Dransfield I. Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation, and high levels of active Rac. J. Immunol.167(2), 976–986 (2001).
  • Brady HR, Serhan CN. Lipoxins: putative braking signals in host defense, inflammation and hypersensitivity. Curr. Opin. Nephrol. Hypertens.5(1), 20–27 (1996).
  • Lee TH, Horton CE, Kyan-Aung U, Haskard D, Crea AE, Spur BW. Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Clin. Sci. (Lond.)77(2), 195–203 (1989).
  • Soyombo O, Spur BW, Lee TH. Effects of lipoxin A4 on chemotaxis and degranulation of human eosinophils stimulated by platelet-activating factor and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Allergy49(4), 230–234 (1994).
  • Levy BD, De Sanctis GT, Devchand PR et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nat. Med.8(9), 1018–1023 (2002).
  • Karp CL, Flick LM, Park KW et al. Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat. Immunol.5(4), 388–392 (2004).
  • Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol.164(4), 1663–1667 (2000).
  • Mitchell S, Thomas G, Harvey K et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J. Am. Soc. Nephrol.13(10), 2497–2507 (2002).
  • Maderna P, Cottell DC, Berlasconi G, Petasis NA, Brady HR, Godson C. Lipoxins induce actin reorganization in monocytes and macrophages but not in neutrophils: differential involvement of Rho GTPases. Am. J. Pathol.160(6), 2275–2283 (2002).
  • Reville K, Crean JK, Vivers S, Dransfield I, Godson C. Lipoxin A4 redistributes myosin iia and cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes. J. Immunol.176(3), 1878–1888 (2006).
  • Olazabal IM, Caron E, May RC, Schilling K, Knecht DA, Machesky LM. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr. Biol.12(16), 1413–1418 (2002).
  • Luo F. Simvastatin induces eosinophil apoptosis in vitro. Chest126(4), S721 (2004).
  • Newton CJ, Ran G, Xie YX et al. Statin-induced apoptosis of vascular endothelial cells is blocked by dexamethasone. J. Endocrinol.174(1), 7–16 (2002).
  • Jacobson JR, Barnard JW, Grigoryev DN, Ma SF, Tuder RM, Garcia JGN. Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol.288(6), L1026–L1032 (2005).
  • Chiba Y, Arima J, Sakai H, Misawa M. Lovastatin inhibits bronchial hyperresponsiveness by reducing RhoA signaling in rat allergic asthma. Am. J. Physiol. Lung Cell. Mol. Physiol.294(4), L705–L713 (2008).
  • McKay A, Leung BP, McInnes IB, Thomson NC, Liew FY. A novel anti-inflammatory role of simvastatin in a murine model of allergic asthma. J. Immunol.172(5), 2903–2908 (2004).
  • Lee JH, Lee DS, Kim EK et al. Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am. J. Respir. Crit. Care Med.172(8), 987–993 (2005).
  • Mancini GBJ, Etminan M, Zhang B, Levesque LE, FitzGerald JM, Brophy JM. Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. J. Am. Coll. Cardiol.47(12), 2554–2560 (2006).
  • Soyseth V, Brekke PH, Smith P, Omland T. Statin use is associated with reduced mortality in COPD. Eur. Respir. J.29(2), 279–283 (2007).
  • Standiford TJ, Keshamouni VG, Reddy RC. Peroxisome proliferator-activated receptor-γ as a regulator of lung inflammation and repair. Proc. Am. Thorac. Soc.2(3), 226–231 (2005).
  • Hammad H, de Heer HJ, Soullie T et al. Activation of peroxisome proliferator-activated receptor-γ in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am. J. Pathol.164(1), 263–271 (2004).
  • Liu D, Zeng BX, Zhang SH, Yao SL. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor γ, reduces pulmonary inflammatory response in a rat model of endotoxemia. Inflamm. Res.54(11), 464–470 (2005).
  • Ward JE, Fernandes DJ, Taylor CC, Bonacci JV, Quan L, Stewart AG. The PPARγ ligand, rosiglitazone, reduces airways hyperresponsiveness in a murine model of allergen-induced inflammation. Pulm. Pharmacol. Ther.19(1), 39–46 (2006).
  • Straus DS, Glass CK. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol.28(12), 551–558 (2007).
  • Asada K, Sasaki S, Suda T, Chida K, Nakamura H. Antiinflammatory roles of peroxisome proliferator-activated receptor-g in human alveolar macrophages. Am. J. Respir. Crit. Care Med.169(2), 195–200 (2004).
  • Majai G, Sarang Z, Csomos K, Zahuczky G, Fesus L. PPARγ-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur. J. Immunol.37(5), 1343–1354 (2007).
  • Hodge S, Hodge G, Brozyna S, Jersmann H, Holmes M, Reynolds PN. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur. Respir. J.28(3), 486–495 (2006).
  • Yamaryo T, Oishi K, Yoshimine H, Tsuchihashi Y, Matsushima K, Nagatake T. Fourteen-member macrolides promote the phosphatidylserine receptor-dependent phagocytosis of apoptotic neutrophils by alveolar macrophages. Antimicrob. Agents Chemother.47(1), 48–53 (2003).
  • Hodge S, Hodge G, Jersmann H et al. azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.178(2), 139–148 (2008).
  • Ren Y, Savill J. Proinflammatory cytokines potentiate thrombospondin-mediated phagocytosis of neutrophils undergoing apoptosis. J. Immunol.154(5), 2366–2374 (1995).
  • Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G. MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF. J. Clin. Invest.117(7), 1902–1913 (2007).
  • Enzler T, Gillessen S, Manis JP et al. Deficiencies of GM-CSF and interferon-γ link inflammation and cancer. J. Exp. Med.197(9), 1213–1219 (2003).
  • Galati G, Rovere P, Citterio G et al.In vivo administration of GM-CSF promotes the clearance of apoptotic cells: effects on monocytes and polymorphonuclear leukocytes. J. Leukoc. Biol.67(2), 174–182 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.