536
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis

, &
Pages 553-576 | Published online: 09 Jan 2014

References

  • Heijerman H. Infection and inflammation in cystic fibrosis: a short review. J. Cyst. Fibros. 4(Suppl. 2), 3–5 (2005).
  • Rommens JM, Iannuzzi MC, Kerem B et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245(4922), 1059–1065 (1989).
  • Rowntree RK, Harris A. The phenotypic consequences of CFTR mutations. Ann. Hum. Genet. 67(Pt 5), 471–485 (2003).
  • Yankaskas JR, Marshall BC, Sufian B, Simon RH, Rodman D. Cystic fibrosis adult care: consensus conference report. Chest 125(1 Suppl.), 1S–39S (2004).
  • Boucher RC. Evidence for airway surface dehydration as the initiating event in CF airway disease. J. Intern. Med. 261(1), 5–16 (2007).
  • Lai SK, Wang YY, Wirtz D, Hanes J. Micro- and macrorheology of mucus. Adv. Drug. Deliv. Rev. 61(2), 86–100 (2009).
  • Thornton DJ, Rousseau K, Mcguckin MA. Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 70, 459–486 (2008).
  • Stoltz DA, Meyerholz DK, Pezzulo AA et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci. Transl. Med. 2(29), 29ra31 (2010).
  • Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 15(2), 194–222 (2002).
  • Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86(1), 245–278 (2006).
  • Armstrong DS, Grimwood K, Carlin JB et al. Lower airway inflammation in infants and young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 156(4 Pt 1), 1197–1204 (1997).
  • Dean TP, Dai Y, Shute JK, Church MK, Warner JO. Interleukin-8 concentrations are elevated in bronchoalveolar lavage, sputum, and sera of children with cystic fibrosis. Pediatr. Res. 34(2), 159–161 (1993).
  • Bhattacharyya S, Balakathiresan NS, Dalgard C et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J. Biol. Chem. 286(13), 11604–11615 (2011).
  • Roebuck KA. Regulation of interleukin-8 gene expression. J. Interferon. Cytokine. Res. 19(5), 429–438 (1999).
  • Bonfield TL, Panuska JR, Konstan MW et al. Inflammatory cytokines in cystic fibrosis lungs. Am. J. Respir. Crit. Care Med. 152(6 Pt 1), 2111–2118 (1995).
  • Dinwiddie R. Pathogenesis of lung disease in cystic fibrosis. Respiration 67(1), 3–8 (2000).
  • Elizur A, Cannon CL, Ferkol TW. Airway inflammation in cystic fibrosis. Chest 133(2), 489–495 (2008).
  • Hamutcu R, Rowland JM, Horn MV et al. Clinical findings and lung pathology in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 165(8), 1172–1175 (2002).
  • Tosi MF, Zakem H, Berger M. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J. Clin. Invest. 86(1), 300–308 (1990).
  • Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW. Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 151(4), 1075–1082 (1995).
  • Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin. Microbiol. Rev. 23(2), 299–323 (2010).
  • Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. Clin. Microbiol. Rev. 4(1), 35–51 (1991).
  • Baltimore RS, Christie CD, Smith GJ. Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am. Rev. Respir. Dis. 140(6), 1650–1661 (1989).
  • Worlitzsch D, Tarran R, Ulrich M et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109(3), 317–325 (2002).
  • Ramphal R, Arora SK. Recognition of mucin components by Pseudomonas aeruginosa. Glycoconj. J. 18(9), 709–713 (2001).
  • Alavi MR, Stojadinovic A, Izadjoo MJ. An overview of biofilm and its detection in clinical samples. J. Wound. Care 21(8), 376–383 (2012).
  • Moreau-Marquis S, Stanton BA, O'toole GA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm. Pharmacol. Ther. 21(4), 595–599 (2008).
  • Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60(3), 539–574 (1996).
  • Harmer CJ, Triccas JA, Hu H et al. Pseudomonas aeruginosa strains from the chronically infected cystic fibrosis lung display increased invasiveness of A549 epithelial cells over time. Microb. Pathog. 53(1), 37–43 (2012).
  • Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13(7), 448–462 (2012).
  • Sheehan JK, Kirkham S, Howard M et al. Identification of molecular intermediates in the assembly pathway of the MUC5AC mucin. J. Biol. Chem. 279(15), 15698–15705 (2004).
  • Brockhausen I, Schachter H, Stanley P. O-GalNAc glycans. In: Essentials of Glycobiology. Varki A, Cummings RD, Esko JD et al. (Eds). Cold Spring Harbor Laboratory Press, NY, USA, 115–127 (2009).
  • Van Den Steen P, Rudd PM, Dwek RA, Opdenakker G. Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33(3), 151–208 (1998).
  • Hovenberg HW, Davies JR, Carlstedt I. Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochem. J. 318(Pt 1), 319–324 (1996).
  • Groneberg DA, Peiser C, Dinh QT et al. Distribution of respiratory mucin proteins in human nasal mucosa. Laryngoscope 113(3), 520–524 (2003).
  • Li JD, Dohrman AF, Gallup M et al. Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl Acad. Sci. USA 94(3), 967–972 (1997).
  • Sharma P, Dudus L, Nielsen PA et al. MUC5B and MUC7 are differentially expressed in mucous and serous cells of submucosal glands in human bronchial airways. Am. J. Respir. Cell Mol. Biol. 19(1), 30–37 (1998).
  • Schulz BL, Sloane AJ, Robinson LJ et al. Mucin glycosylation changes in cystic fibrosis lung disease are not manifest in submucosal gland secretions. Biochem. J. 387(Pt 3), 911–919 (2005).
  • Shankar V, Pichan P, Eddy RL Jr et al. Chromosomal localization of a human mucin gene (MUC8) and cloning of the cDNA corresponding to the carboxy terminus. Am. J. Respir. Cell Mol. Biol. 16(3), 232–241 (1997).
  • Chen Y, Zhao YH, Kalaslavadi TB et al. Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am. J. Respir. Cell Mol. Biol. 30(2), 155–165 (2004).
  • Buisine MP, Devisme L, Copin MC et al. Developmental mucin gene expression in the human respiratory tract. Am. J. Respir. Cell Mol. Biol. 20(2), 209–218 (1999).
  • Thornton DJ, Davies JR, Kirkham S et al. Identification of a nonmucin glycoprotein (gp-340) from a purified respiratory mucin preparation: evidence for an association involving the MUC5B mucin. Glycobiology 11(11), 969–977 (2001).
  • Finkbeiner WE. Physiology and pathology of tracheobronchial glands. Respir. Physiol. 118(2–3), 77–83 (1999).
  • Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest 135(2), 505–512 (2009).
  • Evans CM, Koo JS. Airway mucus: the good, the bad, the sticky. Pharmacol. Ther. 121(3), 332–348 (2009).
  • Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu. Rev. Physiol. 70, 431–457 (2008).
  • Thaysen-Andersen M, Packer NH. Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology 22(11), 1440–1452 (2012).
  • Rudd PM, Dwek RA. Glycosylation: heterogeneity and the 3D structure of proteins. Crit. Rev. Biochem. Mol. Biol. 32(1), 1–100 (1997).
  • Parekh RB, Dwek RA, Sutton BJ et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316(6027), 452–457 (1985).
  • Mcguckin MA, Linden SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9(4), 265–278 (2011).
  • Tarran R, Button B, Boucher RC. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu. Rev. Physiol. 68, 543–561 (2006).
  • Smith A. Pathogenesis of bacterial bronchitis in cystic fibrosis. Pediatr. Infect. Dis. J. 16(1), 91–95; discussion 95–96, 123–126 (1997).
  • Boat TF, Cheng PW. Biochemistry of airway mucus secretions. Fed. Proc. 39(13), 3067–3074 (1980).
  • Matthews LW, Spector S, Lemm J, Potter JL. Studies on pulmonary secretions. i. the over-all chemical composition of pulmonary secretions from patients with cystic fibrosis, bronchiectasis, and laryngectomy. Am. Rev. Respir. Dis. 88, 199–204 (1963).
  • Scanlin TF, Glick MC. Terminal glycosylation in cystic fibrosis. Biochim. Biophys. Acta. 1455(2–3), 241–253 (1999).
  • Roelfs RE, Gibbs GE, Griffin GD. The composition of rectal mucus in cystic fibrosis. Am. J. Dis. Child. 113(4), 419–421 (1967).
  • Wang YM, Hare TR, Won B et al. Additional fucosyl residues on membrane glycoproteins but not a secreted glycoprotein from cystic fibrosis fibroblasts. Clin. Chim. Acta. 188(3), 193–210 (1990).
  • Van Halbeek H, Dorland L, Vliegenthart JF et al. Primary-structure determination of fourteen neutral oligosaccharides derived from bronchial-mucus glycoproteins of patients suffering from cystic fibrosis, employing 500-MHz 1H-NMR spectroscopy. Eur. J. Biochem. 127(1), 7–20 (1982).
  • Dische Z, Di Sant'agnese P, Pallavicini C, Youlos J. Composition of mucoprotein fractions from duodenal fluid of patients with cystic fibrosis of the pancreas and from controls. Pediatrics 24(1), 74–91 (1959).
  • Clamp JR, Gough M. Study of the oligosaccharide units from mucus glycoproteins of meconium from normal infants and from cases of cystic fibrosis with meconium ileus. Clin. Sci. (Lond.) 57(5), 445–451 (1979).
  • Carnoy C, Ramphal R, Scharfman A et al. Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa. Am. J. Respir. Cell Mol. Biol. 9(3), 323–334 (1993).
  • Margolies R, Boat TF. The carbohydrate content of IgG from patients with cystic fibrosis. Pediatr. Res. 17(12), 931–935 (1983).
  • Ben-Yoseph Y, Defranco CL, Nadler HL. Decreased sialic acid and altered binding to lectins of purified alpha 2-macroglobulin from patients with cystic fibrosis. Clin. Chim. Acta. 99(1), 31–35 (1979).
  • Pearson RD, Lubin AH. Increased heparin binding in cystic fibrosis: a reflection of altered glycoprotein biosynthesis? Pediatr. Res. 13(7), 834–840 (1979).
  • Roussel P. Airway glycoconjugates and cystic fibrosis. Glycoconj. J. 18(9), 645–647 (2001).
  • Schulz BL, Sloane AJ, Robinson LJ et al. Glycosylation of sputum mucins is altered in cystic brosis patients. Glycobiology 17(7), 698–712 (2007).
  • Konstan MW, Davis PB. Pharmacological approaches for the discovery and development of new anti-inflammatory agents for the treatment of cystic fibrosis. Adv. Drug. Deliv. Rev. 54(11), 1409–1423 (2002).
  • Larsson A, Flodin M, Kollberg H. Increased serum concentrations of carbohydrate-deficient transferrin (CDT) in patients with cystic fibrosis. Ups. J. Med. Sci. 103(3), 231–236 (1998).
  • Lamblin G, Boersma A, Klein A, Roussel P, Van Halbeek H, Vliegenthart JF. Primary structure determination of five sialylated oligosaccharides derived from bronchial mucus glycoproteins of patients suffering from cystic fibrosis. The occurrence of the NeuAc alpha(2–3)Gal beta(1–4)[Fuc alpha(1–3)] GlcNAc beta(1–.) structural element revealed by 500-MHz 1H NMR spectroscopy. J. Biol. Chem. 259(14), 9051–9058 (1984).
  • Lamblin G, Boersma A, Lhermitte M et al. Further characterization, by a combined high-performance liquid chromatography/1H-NMR approach, of the heterogeneity displayed by the neutral carbohydrate chains of human bronchial mucins. Eur. J. Biochem. 143(1), 227–236 (1984).
  • Breg J, Van Halbeek H, Vliegenthart JF, Lamblin G, Houvenaghel MC, Roussel P. Structure of sialyl-oligosaccharides isolated from bronchial mucus glycoproteins of patients (blood group O) suffering from cystic fibrosis. Eur. J. Biochem. 168(1), 57–68 (1987).
  • Lamblin G, Rahmoune H, Wieruszeski JM, Lhermitte M, Strecker G, Roussel P. Structure of two sulphated oligosaccharides from respiratory mucins of a patient suffering from cystic fibrosis. A fast-atom-bombardment m.s. and 1H-n.m.r. spectroscopic study. Biochem. J. 275(Pt 1), 199–206 (1991).
  • Mawhinney TP, Adelstein E, Morris DA, Mawhinney AM, Barbero GJ. Structure determination of five sulfated oligosaccharides derived from tracheobronchial mucus glycoproteins. J. Biol. Chem. 262(7), 2994–3001 (1987).
  • Mawhinney TP, Adelstein E, Gayer DA, Landrum DC, Barbero GJ. Structural analysis of monosulfated side-chain oligosaccharides isolated from human tracheobronchial mucous glycoproteins. Carbohydr. Res. 223, 187–207 (1992).
  • Mawhinney TP, Landrum DC, Gayer DA, Barbero GJ. Sulfated sialyl-oligosaccharides derived from tracheobronchial mucous glycoproteins of a patient suffering from cystic fibrosis. Carbohydr. Res. 235, 179–197 (1992).
  • Lo-Guidice JM, Wieruszeski JM, Lemoine J, Verbert A, Roussel P, Lamblin G. Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis. J. Biol. Chem. 269(29), 18794–18813 (1994).
  • Sangadala S, Bhat UR, Mendicino J. Quantitation and structures of oligosaccharide chains in human trachea mucin glycoproteins. Mol. Cell Biochem. 118(1), 75–90 (1992).
  • Thomsson KA, Carlstedt I, Karlsson NG, Karlsson H, Hansson GC. Different O-glycosylation of respiratory mucin glycopeptides from a patient with cystic fibrosis. Glycoconj. J. 15(8), 823–833 (1998).
  • Lamblin G, Lhermitte M, Boersma A, Roussel P, Reinhold V. Oligosaccharides of human bronchial glycoproteins. Neutral di- and trisaccharides isolated from a patient suffering from chronic bronchitis. J. Biol. Chem. 255(10), 4595–4598 (1980).
  • Klein A, Lamblin G, Lhermitte M et al. Primary structure of neutral oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis, determined by combination of 500-MHz 1H-NMR spectroscopy and quantitative sugar analysis. 1. Structure of 16 oligosaccharides having the Gal beta(1–3)GalNAc-ol core (type 1) or the Gal beta(1–3)[GlcNAc beta(1–6)]GalNac-ol core (type 2). Eur. J. Biochem. 171(3), 631–642 (1988).
  • Breg J, Van Halbeek H, Vliegenthart JF, Klein A, Lamblin G, Roussel P. Primary structure of neutral oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis, determined by combination of 500-MHz 1H-NMR spectroscopy and quantitative sugar analysis. 2. Structure of 19 oligosaccharides having the GlcNAc beta(1–3)GalNAc-ol core (type 3) or the GlcNAc beta(1–3)[GlcNAc beta(1–6)]GalNAc-ol core (type 4). Eur. J. Biochem. 171(3), 643–654 (1988).
  • Van Halbeek H, Breg J, Vliegenthart JF, Klein A, Lamblin G, Roussel P. Isolation and structural characterization of low-molecular-mass monosialyl oligosaccharides derived from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis. Eur. J. Biochem. 177(2), 443–460 (1988).
  • Klein A, Carnoy C, Lamblin G et al. Isolation and structural characterization of novel neutral oligosaccharide-alditols from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis. 1. Structure of 11 oligosaccharides having the GlcNAc beta(1–3)Gal beta(1–4)GlcNAc beta(1–6)GalNAc-o1 structural element in common. Eur. J. Biochem. 198(1), 151–168 (1991).
  • Van Kuik JA, De Waard P, Vliegenthart JF et al. Isolation and structural characterization of novel neutral oligosaccharide-alditols from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis. 2. Structure of twelve hepta-to-nonasaccharides, six of which possess the GlcNAc beta(1–3)[Gal beta(1–4)GlcNAc beta(1–6)]Gal beta(1–3)GalNAc-ol common structural element. Eur. J. Biochem. 198(1), 169–182 (1991).
  • Lhermitte M, Rahmoune H, Lamblin G, Roussel P, Strang AM, Van Halbeek H. Structures of neutral oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Le(a+b-)) patient suffering from chronic bronchitis. Glycobiology 1(3), 277–293 (1991).
  • Klein A, Carnoy C, Lamblin G, Roussel P, Van Kuik JA, Vliegenthart JF. Isolation and structural characterization of novel sialylated oligosaccharide-alditols from respiratory-mucus glycoproteins of a patient suffering from bronchiectasis. Eur. J. Biochem. 211(3), 491–500 (1993).
  • Van Halbeek H, Strang AM, Lhermitte M, Rahmoune H, Lamblin G, Roussel P. Structures of monosialyl oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Lea+b-) patient suffering from chronic bronchitis. Characterization of a novel type of mucin carbohydrate core structure. Glycobiology 4(2), 203–219 (1994).
  • Lo-Guidice Jm, Herz H, Lamblin G, Plancke Y, Roussel P, Lhermitte M. Structures of sulfated oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Le(a + b −)) patient suffering from chronic bronchitis. Glycoconj. J. 14(1), 113–125 (1997).
  • Degroote S, Maes E, Humbert P, Delmotte P, Lamblin G, Roussel P. Sulfated oligosaccharides isolated from the respiratory mucins of a secretor patient suffering from chronic bronchitis. Biochimie 85(3–4), 369–379 (2003).
  • Lamblin G, Degroote S, Perini JM et al. Human airway mucin glycosylation: a combinatory of carbohydrate determinants which vary in cystic fibrosis. Glycoconj. J. 18(9), 661–684 (2001).
  • Chen X, Varki A. Advances in the biology and chemistry of sialic acids. ACS Chem. biol. 5(2), 163–176 (2010).
  • Chace KV, Leahy DS, Martin R, Carubelli R, Flux M, Sachdev Gp. Respiratory mucous secretions in patients with cystic fibrosis: relationship between levels of highly sulfated mucin component and severity of the disease. Clin. Chim. Acta. 132(2), 143–155 (1983).
  • Davril M, Degroote S, Humbert P et al. The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection. Glycobiology 9(3), 311–321 (1999).
  • Xia B, Royall Ja, Damera G, Sachdev GP, Cummings RD. Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis. Glycobiology 15(8), 747–775 (2005).
  • Komiyama K, Habbick BF, Tumber SK. Role of sialic acid in saliva-mediated aggregation of Pseudomonas aeruginosa isolated from cystic fibrosis patients. Infect. Immun. 55(10), 2364–2369 (1987).
  • Shori DK, Genter T, Hansen J et al. Altered sialyl- and fucosyl-linkage on mucins in cystic fibrosis patients promotes formation of the sialyl-Lewis X determinant on salivary MUC-5B and MUC-7. Pflugers. Arch. 443(Suppl. 1), S55–61 (2001).
  • Couceiro JN, Paulson JC, Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res. 29(2), 155–165 (1993).
  • Baum LG, Paulson JC. Sialyloligosaccharides of the Respiratory epithelium in the selection of human influenza-virus receptor specificity. Acta. Histochemica. 40, 35–38 (1990).
  • Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Influenza virus receptors in the human airway. Nature 440(7083), 435–436 (2006).
  • Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. Human and avian influenza viruses target different cell types in cultures of human airway epithelium.Proc. Natl Acad. Sci. USA 101(13), 4620–4624 (2004).
  • Rogers GN, Paulson JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127(2), 361–373 (1983).
  • Roussel P, Lamblin G, Degand P. Heterogeneity of the carbohydrate chains of sulfated bronchial glycoproteins isolated from a patient suffering from cystic fibrosis. J. Biol. Chem. 250(6), 2114–2122 (1975).
  • Boat TF, Cheng PW, Iyer RN, Carlson DM, Polony I. Human respiratory tract secretion. Mucous glycoproteins of nonpurulent tracheobronchial secretions, and sputum of patients with bronchitis and cystic fibrosis. Arch. Biochem. Biophys. 177(1), 95–104 (1976).
  • Lamblin G, Lhermitte M, Lafitte JJ, Filliat M, Degand P, Roussel P. [Comparative study of bronchial mucins isolated from the sputum of patients suffering from cystic fibrosis or other chronic bronchial diseases (author's transl)]. Bull. Eur. Physiopathol. Respir. 13(1), 175–190 (1977).
  • Chace KV, Flux M, Sachdev GP. Comparison of physicochemical properties of purified mucus glycoproteins isolated from respiratory secretions of cystic fibrosis and asthmatic patients. Biochemistry 24(25), 7334–7341 (1985).
  • Frates RC Jr, Kaizu TT, Last JA. Mucus glycoproteins secreted by respiratory epithelial tissue from cystic fibrosis patients. Pediatr. Res. 17(1), 30–34 (1983).
  • Sangadala S, Bhat UR, Mendicino J. Structures of sulfated oligosaccharides in human trachea mucin glycoproteins. Mol. Cell Biochem. 126(1), 37–47 (1993).
  • Mendicino J, Sangadala S. Synthesis of sulfated oligosaccharides by cystic fibrosis trachea epithelial cells. Mol. Cell Biochem. 201(1–2), 141–149 (1999).
  • Zhang Y, Doranz B, Yankaskas JR, Engelhardt JF. Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis. J. Clin. Invest. 96(6), 2997–3004 (1995).
  • Cheng PW, Boat TF, Cranfill K, Yankaskas JR, Boucher RC. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J. Clin. Invest. 84(1), 68–72 (1989).
  • Shori DK, Kariyawasam HH, Knight RA et al. Sulphation of the salivary mucin MG1 (MUC-5B) is not correlated to the degree of its sialylation and is unaffected by cystic fibrosis. Pflugers. Arch. 443(Suppl. 1), S50–54 (2001).
  • Leir SH, Parry S, Palmai-Pallag T et al. Mucin glycosylation and sulphation in airway epithelial cells is not influenced by cystic fibrosis transmembrane conductance regulator expression. Am. J. Respir. Cell Mol. Biol. 32(5), 453–461 (2005).
  • Holmen JM, Karlsson NG, Abdullah LH et al. Mucins and their O-Glycans from human bronchial epithelial cell cultures. Am. J. Physiol. Lung Cell Mol. Physiol. 287(4), L824–834 (2004).
  • Lamblin G, Lhermitte M, Boersma A et al. Isolation and characterisation of neutral oligosaccharides from human bronchial glycoproteins. Adv. Exp. Med. Biol. 144, 353–355 (1982).
  • Davies JR, Svitacheva N, Lannefors L, Kornfalt R, Carlstedt I. Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions. Biochem. J. 344(Pt 2), 321–330 (1999).
  • Scanlin TF, Glick MC. Terminal glycosylation and disease: influence on cancer and cystic fibrosis. Glycoconj. J. 17(7–9), 617–626 (2000).
  • Rhim AD, Stoykova L, Glick MC, Scanlin TF. Terminal glycosylation in cystic fibrosis (CF): a review emphasizing the airway epithelial cell. Glycoconj. J. 18(9), 649–659 (2001).
  • Virella-Lowell I, Herlihy JD, Liu B et al. Effects of CFTR, interleukin-10, and Pseudomonas aeruginosa on gene expression profiles in a CF bronchial epithelial cell Line. Mol. Ther. 10(3), 562–573 (2004).
  • Wesley A, Forstner J, Qureshi R, Mantle M, Forstner G. Human intestinal mucin in cystic fibrosis. Pediatr. Res. 17(1), 65–69 (1983).
  • Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, Al-Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature 352(6330), 70–73 (1991).
  • Saiman L, Prince A. Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J. Clin. Invest. 92(4), 1875–1880 (1993).
  • Bryan R, Kube D, Perez A, Davis P, Prince A. Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells. Am. J. Respir. Cell Mol. Biol. 19(2), 269–277 (1998).
  • Imundo L, Barasch J, Prince A, Al-Awqati Q. Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc. Natl Acad. Sci. USA 92(7), 3019–3023 (1995).
  • Hassid S, Choufani G, Decaestecker C et al. Glycohistochemical characteristics of nasal polyps from patients with and without cystic fibrosis. Arch. Otolaryngol. Head Neck Surg. 126(6), 769–776 (2000).
  • Rhim AD, Kothari VA, Park PJ, Mulberg AE, Glick MC, Scanlin TF. Terminal glycosylation of cystic fibrosis airway epithelial cells. Glycoconj. J. 17(6), 385–391 (2000).
  • Kube D, Adams L, Perez A, Davis PB. Terminal sialylation is altered in airway cells with impaired CFTR-mediated chloride transport. Am. J. Physiol. Lung Cell Mol. Physiol. 280(3), L482–492 (2001).
  • Lazatin JO, Glick MC, Scanlin TF. Fucosylation in cystic fibrosis airway epithelial cells. Glycosyl. Dis. 1, 263–270 (1994).
  • Engelhardt JF, Yankaskas JR, Ernst SA et al. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat. Genet. 2(3), 240–248 (1992).
  • Engelhardt JF, Zepeda M, Cohn JA, Yankaskas JR, Wilson JM. Expression of the cystic fibrosis gene in adult human lung. J. Clin. Invest. 93(2), 737–749 (1994).
  • Pasyk EA, Foskett JK. Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3'-phosphate 5'-phosphosulfate channels in endoplasmic reticulum and plasma membranes. J. Biol. Chem. 272(12), 7746–7751 (1997).
  • Barasch J, Al-Awqati Q. Defective acidification of the biosynthetic pathway in cystic fibrosis. J. Cell Sci. Suppl. 17, 229–233 (1993).
  • Dosanjh A, Lencer W, Brown D, Ausiello DA, Stow JL. Heterologous expression of delta F508 CFTR results in decreased sialylation of membrane glycoconjugates. Am. J. Physiol. 266(2 Pt 1), C360–366 (1994).
  • Glick MC, Kothari VA, Liu A, Stoykova LI, Scanlin TF. Activity of fucosyltransferases and altered glycosylation in cystic fibrosis airway epithelial cells. Biochimie 83(8), 743–747 (2001).
  • Stoykova LI, Liu A, Scanlin TF, Glick MC. Alpha1,3fucosyltransferases in cystic fibrosis airway epithelial cells. Biochimie 85(3–4), 363–367 (2003).
  • Wei X, Eisman R, Xu J et al. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells. J. Cell Physiol. 168(2), 373–384 (1996).
  • Allan BB, Balch WE. Protein sorting by directed maturation of Golgi compartments. Science 285(5424), 63–66 (1999).
  • Weiss M, Nilsson T. Protein sorting in the Golgi apparatus: a consequence of maturation and triggered sorting. FEBS Lett. 486(1), 2–9 (2000).
  • Kirkham S, Sheehan JK, Knight D, Richardson PS, Thornton DJ. Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B. Biochem. J. 361(Pt 3), 537–546 (2002).
  • Henke MO, Renner A, Huber RM, Seeds MC, Rubin BK. MUC5AC and MUC5B mucins are decreased in cystic fibrosis airway secretions. Am. J. Respir. Cell Mol. Biol. 31(1), 86–91 (2004).
  • Peracaula R, Sarrats A, Rudd PM. Liver proteins as sensor of human malignancies and inflammation. Proteomics Clin. Appl. 4(4), 426–431 (2010).
  • Sarrats A, Saldova R, Pla E et al. Glycosylation of liver acute-phase proteins in pancreatic cancer and chronic pancreatitis. Proteomics Clin. Appl. 4(4), 432–448 (2010).
  • Delmotte P, Degroote S, Lafitte JJ, Lamblin G, Perini JM, Roussel P. Tumor necrosis factor alpha increases the expression of glycosyltransferases and sulfotransferases responsible for the biosynthesis of sialylated and/or sulfated Lewis x epitopes in the human bronchial mucosa. J. Biol. Chem. 277(1), 424–431 (2002).
  • Cacalano G, Kays M, Saiman L, Prince A. Production of the Pseudomonas aeruginosa neuraminidase is increased under hyperosmolar conditions and is regulated by genes involved in alginate expression. J. Clin. Invest. 89(6), 1866–1874 (1992).
  • Castric P, Cassels FJ, Carlson RW. Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem. 276(28), 26479–26485 (2001).
  • Callaghan M, Mcclean S. Bacterial host interactions in cystic fibrosis. Curr. Opin. Microbiol. 15(1), 71–77 (2012).
  • Karlsson KA. Pathogen-host protein-carbohydrate interactions as the basis of important infections. Adv. Exp. Med. Biol. 491, 431–443 (2001).
  • Landry RM, An D, Hupp JT, Singh PK, Parsek MR. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol. Microbiol. 59(1), 142–151 (2006).
  • Martino AT, Mueller C, Braag S et al. N-glycosylation augmentation of the cystic fibrosis epithelium improves Pseudomonas aeruginosa clearance. Am. J. Respir. Cell Mol. Biol. 44(6), 824–830 (2011).
  • Yu H, Zeidan YH, Wu BX et al. Defective acid sphingomyelinase pathway with Pseudomonas aeruginosa infection in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 41(3), 367–375 (2009).
  • Bajmoczi M, Gadjeva M, Alper SL, Pier GB, Golan DE. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa. Am. J. Physiol. Cell Physiol. 297(2), C263–277 (2009).
  • Lowe JB. Glycosylation in the control of selectin counter-receptor structure and function. Immunol. Rev. 186, 19–36 (2002).
  • Van Den Berg TK, Breve JJ, Damoiseaux JG et al. Sialoadhesin on macrophages: its identification as a lymphocyte adhesion molecule. J. Exp. Med. 176(3), 647–655 (1992).
  • Crocker PR, Kelm S, Dubois C et al. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J. 10(7), 1661–1669 (1991).
  • Scharfman A, Delmotte P, Beau J, Lamblin G, Roussel P, Mazurier J. Sialyl-Le(x) and sulfo-sialyl-Le(x) determinants are receptors for P. aeruginosa. Glycoconj. J. 17(10), 735–740 (2000).
  • Scharfman A, Arora SK, Delmotte P et al. Recognition of Lewis x derivatives present on mucins by flagellar components of Pseudomonas aeruginosa. Infect. Immun. 69(9), 5243–5248 (2001).
  • Powell LD, Varki A. The oligosaccharide binding specificities of CD22 beta, a sialic acid-specific lectin of B cells. J. Biol. Chem. 269(14), 10628–10636 (1994).
  • Chang XB, Hou YX, Jensen TJ, Riordan JR. Mapping of cystic fibrosis transmembrane conductance regulator membrane topology by glycosylation site insertion. J. Biol. Chem. 269(28), 18572–18575 (1994).
  • Chang XB, Mengos A, Hou YX et al. Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator. J. Cell Sci. 121(Pt 17), 2814–2823 (2008).
  • Riordan JR. Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein. Am. J. Hum. Genet. 64(6), 1499–1504 (1999).
  • Pier GB. Role of the cystic fibrosis transmembrane conductance regulator in innate immunity to Pseudomonas aeruginosa infections. Proc. Natl Acad. Sci. USA 97(16), 8822–8828 (2000).
  • Pier GB, Grout M, Zaidi TS et al. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271(5245), 64–67 (1996).
  • Pier GB, Grout M, Zaidi TS. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc. Natl Acad. Sci. USA 94(22), 12088–12093 (1997).
  • Carnoy C, Scharfman A, Van Brussel E, Lamblin G, Ramphal R, Roussel P. Pseudomonas aeruginosa outer membrane adhesins for human respiratory mucus glycoproteins. Infect. Immun. 62(5), 1896–1900 (1994).
  • Imberty A, Wimmerova M, Mitchell EP, Gilboa-Garber N. Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. Microbes. Infect. 6(2), 221–228 (2004).
  • Avichezer D, Katcoff DJ, Garber NC, Gilboa-Garber N. Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. J. Biol. Chem. 267(32), 23023–23027 (1992).
  • Chen CP, Song SC, Gilboa-Garber N, Chang KS, Wu AM. Studies on the binding site of the galactose-specific agglutinin PA-IL from Pseudomonas aeruginosa. Glycobiology 8(1), 7–16 (1998).
  • Garber N, Guempel U, Belz A, Gilboa-Garber N, Doyle RJ. On the specificity of the D-galactose-binding lectin (PA-I) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D-galactose and thiogalactose. Biochim. Biophys. Acta. 1116(3), 331–333 (1992).
  • Glick J, Garber N. The intracellular localization of Pseudomonas aeruginosa lectins. J. Gen. Microbiol. 129(10), 3085–3090 (1983).
  • Sabin C, Mitchell EP, Pokorna M et al. Binding of different monosaccharides by lectin PA-IIL from Pseudomonas aeruginosa: thermodynamics data correlated with X-ray structures. FEBS Lett. 580(3), 982–987 (2006).
  • Marotte K, Preville C, Sabin C, Moume-Pymbock M, Imberty A, Roy R. Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. Org. Biomol. Chem. 5(18), 2953–2961 (2007).
  • Marotte K, Sabin C, Preville C et al. X-ray structures and thermodynamics of the interaction of PA-IIL from Pseudomonas aeruginosa with disaccharide derivatives. ChemMedChem 2(9), 1328–1338 (2007).
  • Perret S, Sabin C, Dumon C et al. Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem. J. 389(Pt 2), 325–332 (2005).
  • Gilboa-Garber N, Sudakevitz D. The hemagglutinating activities of Pseudomonas aeruginosa lectins PA-IL and PA-IIL exhibit opposite temperature profiles due to different receptor types. FEMS Immunol. Med. Microbiol. 25(4), 365–369 (1999).
  • Adam EC, Mitchell BS, Schumacher DU, Grant G, Schumacher U. Pseudomonas aeruginosa II lectin stops human ciliary beating: therapeutic implications of fucose. Am. J. Respir. Crit. Care Med. 155(6), 2102–2104 (1997).
  • Mewe M, Tielker D, Schonberg R, Schachner M, Jaeger KE, Schumacher U. Pseudomonas aeruginosa lectins I and II and their interaction with human airway cilia. J. Laryngol. Otol. 119(8), 595–599 (2005).
  • Winzer K, Falconer C, Garber NC, Diggle SP, Camara M, Williams P. The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J. Bacteriol. 182(22), 6401–6411 (2000).
  • Bajolet-Laudinat O, Girod-De Bentzmann S, Tournier JM et al. Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect. Immun. 62(10), 4481–4487 (1994).
  • Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 8(6), 1095–1104 (2006).
  • Tielker D, Hacker S, Loris R et al. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151(Pt 5), 1313–1323 (2005).
  • Scharfman A, Degroote S, Beau J, Lamblin G, Roussel P, Mazurier J. Pseudomonas aeruginosa binds to neoglycoconjugates bearing mucin carbohydrate determinants and predominantly to sialyl-Lewis x conjugates. Glycobiology 9(8), 757–764 (1999).
  • Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R. The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect. Immun. 66(3), 1000–1007 (1998).
  • Lillehoj EP, Kim BT, Kim KC. Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am. J. Physiol. Lung Cell Mol. Physiol. 282(4), L751–756 (2002).
  • Lillehoj EP, Hyun SW, Kim BT et al. Muc1 mucins on the cell surface are adhesion sites for Pseudomonas aeruginosa. Am. J. Physiol. Lung Cell Mol. Physiol. 280(1), L181–187 (2001).
  • Baker N, Hansson GC, Leffler H, Riise G, Svanborg-Eden C. Glycosphingolipid receptors for Pseudomonas aeruginosa. Infect. Immun. 58(7), 2361–2366 (1990).
  • Xia B, Sachdev GP, Cummings RD. Pseudomonas aeruginosa mucoid strain 8830 binds glycans containing the sialyl-Lewis x epitope. Glycoconj. J. 24(1), 87–95 (2007).
  • Davies J, Dewar A, Bush A et al. Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGM1 antibody and neuraminidase inhibition. Eur. Respir. J. 13(3), 565–570 (1999).
  • Soong G, Muir A, Gomez MI et al. Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J. Clin. Invest. 116(8), 2297–2305 (2006).
  • Pastoriza Gallego M, Hulen C. Influence of sialic acid and bacterial sialidase on differential adhesion of Pseudomonas aeruginosa to epithelial cells. Colloids Surf. B. Biointerfaces 52(2), 154–156 (2006).
  • Vimr E, Lichtensteiger C. To sialylate, or not to sialylate: that is the question. Trends Microbiol. 10(6), 254–257 (2002).
  • Camara M, Boulnois GJ, Andrew PW, Mitchell TJ. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect. Immun. 62(9), 3688–3695 (1994).
  • Khatua B, Ghoshal A, Bhattacharya K, Mandal C, Saha B, Crocker PR. Sialic acids acquired by Pseudomonas aeruginosa are involved in reduced complement deposition and siglec mediated host-cell recognition. FEBS Lett. 584(3), 555–561 (2010).
  • Hare NJ, Soe CZ, Rose B et al. Proteomics of Pseudomonas aeruginosa Australian epidemic strain 1 (AES-1) cultured under conditions mimicking the cystic fibrosis lung reveals increased iron acquisition via the siderophore pyochelin. J. Proteome Res. 11(2), 776–795 (2012).
  • Hare NJ, Solis N, Harmer C et al. Proteomic profiling of Pseudomonas aeruginosa AES-1R, PAO1 and PA14 reveals potential virulence determinants associated with a transmissible cystic fibrosis-associated strain. BMC. Microbiol. 12, 16 (2012).
  • Hauber HP, Schulz M, Pforte A, Mack D, Zabel P, Schumacher U. Inhalation with fucose and galactose for treatment of Pseudomonas aeruginosa in cystic fibrosis patients. Int. J. Med. Sci. 5(6), 371–376 (2008).
  • Von Bismarck P, Schneppenheim R, Schumacher U. Successful treatment of Pseudomonas aeruginosa respiratory tract infection with a sugar solution--a case report on a lectin based therapeutic principle. Klin. Padiatr. 213(5), 285–287 (2001).
  • Lesman-Movshovich E, Lerrer B, Gilboa-Garber N. Blocking of Pseudomonas aeruginosa lectins by human milk glycans. Can. J. Microbiol. 49(3), 230–235 (2003).
  • Mitchell E, Houles C, Sudakevitz D et al. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat. Struct. Biol. 9(12), 918–921 (2002).
  • Kolomiets E, Swiderska MA, Kadam RU et al. Glycopeptide dendrimers with high affinity for the fucose-binding lectin LecB from Pseudomonas aeruginosa. ChemMedChem 4(4), 562–569 (2009).
  • Imberty A, Chabre YM, Roy R. Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins. Chemistry 14(25), 7490–7499 (2008).
  • Johansson EM, Crusz SA, Kolomiets E et al. Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem. Biol. 15(12), 1249–1257 (2008).
  • Kadam RU, Bergmann M, Hurley M et al. A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. Engl. 50(45), 10631–10635 (2011).
  • Kolomiets E, Johansson EM, Renaudet O, Darbre T, Reymond JL. Neoglycopeptide dendrimer libraries as a source of lectin binding ligands. Org. Lett. 9(8), 1465–1468 (2007).
  • Rubin BK. Mucus, phlegm, and sputum in cystic fibrosis. Respir. Care 54(6), 726–732; discussion 732 (2009).
  • Robinson M, Daviskas E, Eberl S et al. The effect of inhaled mannitol on bronchial mucus clearance in cystic fibrosis patients: a pilot study. Eur. Respir. J. 14(3), 678–685 (1999).
  • Daviskas E, Anderson SD, Gomes K et al. Inhaled mannitol for the treatment of mucociliary dysfunction in patients with bronchiectasis: effect on lung function, health status and sputum. Respirology 10(1), 46–56 (2005).
  • Jaques A, Daviskas E, Turton JA et al. Inhaled mannitol improves lung function in cystic fibrosis. Chest 133(6), 1388–1396 (2008).
  • Daviskas E, Anderson SD, Jaques A, Charlton B. Inhaled mannitol improves the hydration and surface properties of sputum in patients with cystic fibrosis. Chest 137(4), 861–868 (2010).
  • Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N. Engl. J. Med. 354(3), 241–250 (2006).
  • Reeves EP, Molloy K, Pohl K, Mcelvaney NG. Hypertonic saline in treatment of pulmonary disease in cystic fibrosis. ScientificWorldJournal 2012, 465230 (2012).
  • Robinson M, Hemming AL, Regnis JA et al. Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. Thorax 52(10), 900–903 (1997).
  • Elkins MR, Robinson M, Rose BR et al. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N. Engl. J. Med. 354(3), 229–240 (2006).
  • Kilpatrick DC. Introduction to mannan-binding lectin. Biochem. Soc. Trans. 31(Pt 4), 745–747 (2003).
  • Moller-Kristensen M, Ip WK, Shi L et al. Deficiency of mannose-binding lectin greatly increases susceptibility to postburn infection with Pseudomonas aeruginosa. J. Immunol. 176(3), 1769–1775 (2006).
  • Davies JC, Turner MW, Klein N. Impaired pulmonary status in cystic fibrosis adults with two mutated MBL-2 alleles. Eur. Respir. J. 24(5), 798–804 (2004).
  • Garred P, Pressler T, Madsen HO et al. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J. Clin. Invest. 104(4), 431–437 (1999).
  • Fidler KJ, Hilliard TN, Bush A et al. Mannose-binding lectin is present in the infected airway: a possible pulmonary defence mechanism. Thorax 64(2), 150–155 (2009).
  • Wilkinson BL, Stone RS, Capicciotti CJ et al. Total synthesis of homogeneous antifreeze glycopeptides and glycoproteins. Angew. Chem. Int. Ed. Engl. 51(15), 3606–3610 (2012).
  • Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H. Quantitative glycomics strategies. Mol. Cell Proteomics 12(4), 874–884 (2013).
  • Wuhrer M. Glycomics using mass spectrometry. Glycoconj. J. 30(1), 11–22 (2013).
  • Everest-Dass AV, Jin D, Thaysen-Andersen M, Nevalainen H, Kolarich D, Packer NH. Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology 22(11), 1465–1479 (2012).
  • Yin X, Bern M, Xing Q, Ho J, Viner R, Mayr M. Glycoproteomic analysis of the secretome of human endothelial cells. Mol. Cell Proteomics 12(4), 956–978 (2013).
  • Li F, Glinskii OV, Glinsky VV. Glycobioinformatics: current strategies and tools for data mining in MS-based glycoproteomics. Proteomics 13(2), 341–354 (2013).
  • Artemenko NV, Mcdonald AG, Davey GP, Rudd PM. Databases and tools in glycobiology. Methods Mol. Biol. 899, 325–350 (2012).
  • Jensen PH, Karlsson NG, Kolarich D, Packer NH. Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7(7), 1299–1310 (2012).
  • Mechref Y, Hu Y, Garcia A, Hussein A. Identifying cancer biomarkers by mass spectrometry-based glycomics. Electrophoresis 33(12), 1755–1767 (2012).
  • Pabst M, Altmann F. Glycan analysis by modern instrumental methods. Proteomics 11(4), 631–643 (2011).
  • Morelle W, Michalski JC. Analysis of protein glycosylation by mass spectrometry. Nat. Protoc. 2(7), 1585–1602 (2007).
  • An HJ, Froehlich JW, Lebrilla CB. Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr. Opin. Chem. Biol. 13(4), 421–426 (2009).
  • Kolarich D, Jensen PH, Altmann F, Packer NH. Determination of site-specific glycan heterogeneity on glycoproteins. Nat. Protoc. 7(7), 1285–1298 (2012).
  • Wuhrer M, Catalina MI, Deelder AM, Hokke CH. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 849(1–2), 115–128 (2007).
  • Wada Y, Dell A, Haslam SM et al. Comparison of methods for profiling O-glycosylation: Human Proteome Organisation Human Disease Glycomics/Proteome Initiative multi-institutional study of IgA1. Mol. Cell Proteomics 9(4), 719–727 (2010).
  • Wada Y, Azadi P, Costello CE et al. Comparison of the methods for profiling glycoprotein glycans--HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17(4), 411–422 (2007).
  • Button B, Cai LH, Ehre C et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337(6097), 937–941 (2012).
  • Thiagarajah JR, Song Y, Haggie PM, Verkman AS. A small molecule CFTR inhibitor produces cystic fibrosis-like submucosal gland fluid secretions in normal airways. FASEB J. 18(7), 875–877 (2004).
  • Merten MD, Figarella C. Constitutive hypersecretion and insensitivity to neurotransmitters by cystic fibrosis tracheal gland cells. Am. J. Physiol. 264(2 Pt 1), L93–99 (1993).
  • Scanlin TF, Liu A, Park PJ et al. Fucosylation and sialylation of cystic fibrosis (Cf) airway epithelial cells. Glycobiology 8(11), 1144–1144 (1998).
  • De Bentzmann S, Roger P, Dupuit F et al. Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect. Immun. 64(5), 1582–1588 (1996).
  • Krivan HC, Ginsburg V, Roberts DD. Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch. Biochem. Biophys. 260(1), 493–496 (1988).
  • Lingwood CA, Cheng M, Krivan HC, Woods D. Glycolipid receptor binding specificity of exoenzyme S from Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 175(3), 1076–1081 (1991).
  • Leymarie N, Griffin PJ, Jonscher K et al. Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol. Cell Proteomics doi:10.1074/mcp.M113.030643 (2013) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.