283
Views
12
CrossRef citations to date
0
Altmetric
Reviews

New treatment and markers of prognosis for idiopathic pulmonary fibrosis: lessons learned from translational research

, &
Pages 465-478 | Published online: 09 Jan 2014

References

  • Martinez FJ, Safrin S, Weycker D et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann. Intern. Med. 142, 963–967 (2005).
  • Collard HR, King TE Jr, Bartelson BB et al. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 168, 538–542, (2003).
  • Richeldi L, Davies HR, Ferrara G, Franco F. Corticosteroids for idiopathic pulmonary fibrosis. Cochrane Database Syst. Rev. CD002880 (2003).
  • American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am. J. Respir. Crit. Care Med. 161, 646–664 (2000).
  • American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am. J. Respir. Crit. Care Med. 165, 277–304 (2002).
  • Spagnolo P, Del Giovane C, Luppi F et al. Non-steroid agents for idiopathic pulmonary fibrosis. Cochrane Database Syst. Rev. CD003134, (2010).
  • Raghu G, Collard HR, Egan JJ et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir.Crit. Care Med. 183, 788–824, (2011).
  • Demedts M, Behr J, Buhl R et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N. Engl J. Med. 353, 2229–2242, (2005).
  • Raghu G, Anstrom KJ, King TE Jr, Lasky JA, Martinez FJ. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl J. Med. 366, 1968–1977, (2012).
  • Narayanan AS, Whithey J, Souza A, Raghu G. Effect of gamma-interferon on collagen synthesis by normal and fibrotic human lung fibroblasts. Chest 101, 1326–1331 (1992).
  • Clark JG, Dedon TF, Wayner EA, Carter WG. Effects of interferon-gamma on expression of cell surface receptors for collagen and deposition of newly synthesized collagen by cultured human lung fibroblasts. J. Clin. Invest. 83, 1505–1511, (1989).
  • Gurujeyalakshmi G, Giri SN. Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-beta and procollagen I and III gene expression. Exp. Lung Res. 21, 791–808, (1995).
  • Ziesche R, Hofbauer E, Wittmann K, Petkov V, Block LH. A preliminary study of long-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N. Engl J. Med. 341, 1264–1269, (1999).
  • Raghu G, Brown KK, Bradford WZ et al. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N. Engl J. Med. 350, 125–133, (2004).
  • King TE Jr, Albera C, Bradford WZ et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet 374, 222–228, (2009).
  • Thannickal VJ, Flaherty KR, Martinez FJ, Lynch JP 3rd. Idiopathic pulmonary fibrosis: emerging concepts on pharmacotherapy. Expert Opin. Pharmacother. 5, 1671–1686, (2004).
  • 17 Park, S. H., Saleh, D., Giaid, A. & Michel, R. P. Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am. J. Respir. Crit. Care Med. 156, 600–608 (1997).
  • Peacock AJ, Dawes KE, Shock A, Gray AJ, Reeves JT, Laurent GJ. Endothelin-1 and endothelin-3 induce chemotaxis and replication of pulmonary artery fibroblasts. Am. J. Respir. Mol Biol. 7, 492–499 (1992).
  • Shahar I, Fireman E, Topilsky M et al. Effect of endothelin-1 on alpha-smooth muscle actin expression and on alveolar fibroblasts proliferation in interstitial lung diseases. Int. Immunopharmacol. 21, 759–775 (1999).
  • McAnulty RJ. Fibroblasts and myofibroblasts: their source, function and role in disease. Int. J. Biochem. Cell Biol. 39, 666–671, (2007).
  • Ross B, D'Orleans-Juste P, Giaid A. Potential role of endothelin-1 in pulmonary fibrosis: from the bench to the clinic. Am. J. Respir. Cell Mol. Biol. 42, 16–20, (2010).
  • Xu S, Denton CP, Holmes A, Dashwood MR, Abraham DJ, Black CM. Endothelins: effect on matrix biosynthesis and proliferation in normal and scleroderma fibroblasts. J. Cardiovasc. Pharmacol. 31(Suppl. 1), S360–S363 (1998).
  • King TE Jr, Behr J, Brown KK et al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 177, 75–81, (2008).
  • King TE Jr, Brown KK, Raghu G et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 184, 92–99, (2011).
  • Raghu, G. Behr J, Brown KK et al. ARTEMIS-IPF Investigators*.Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann. Intern. Med. 158, 641–649, (2013).
  • Nash JR, McLaughlinPJ, Butcher D, Corrin B. Expression of tumour necrosis factor-alpha in cryptogenic fibrosing alveolitis. Histopathology 22, 343–347 (1993).
  • Piguet PF, Ribaux C, Karpuz V, Grau GE, Kapanci Y. Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis. Am. J. Pathol. 143, 651–655 (1993).
  • Ziegenhagen MW, Schrum S, Zissel G, Zipfel PF, Schlaak M, Müller-Quernheim J. Increased expression of proinflammatory chemokines in bronchoalveolar lavage cells of patients with progressing idiopathic pulmonary fibrosis and sarcoidosis. J. Investig. Med. 46, 223–231 (1998).
  • Piguet PF, Collart MA, Grau GE, Kapanci Y, Vassalli P. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J. Exp. Med. 170, 655–663 (1989).
  • Raghu G, Brown KK, Costabel U et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 178, 948–955 (2008).
  • Aono Y, Nishioka Y, Inayama M et al. Imatinib as a novel antifibrotic agent in bleomycin-induced pulmonary fibrosis in mice. Am.J. Respir. Criti. Care Med. 171, 1279–1285, (2005).
  • Daniels, C. E. Wilkes MC, Edens M et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J. Clin. Investig. 114, 1308–1316, (2004).
  • Chaudhary NI, Schnapp A, Park JE. Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am. J. Respir. Crit. Care Med. 173, 769–776, (2006).
  • Vittal R, Zhang H, Han MK, Moore BB, Horowitz JC, Thannickal VJ. Effects of the protein kinase inhibitor, imatinib mesylate, on epithelial/mesenchymal phenotypes: implications for treatment of fibrotic diseases. J. Pharmacol. Exp. Therap. 321, 35–44 (2007).
  • Daniels CE, Lasky JA, Limper AH, Mieras K, Gabor E, Schroeder DR; Imatinib-IPF Study Investigators. Imatinib treatment for idiopathic pulmonary fibrosis: Randomized placebo-controlled trial results. Am. J. Respir. Crit. Care Med. 181, 604–610 (2010).
  • Chambers RC. Procoagulant signalling mechanisms in lung inflammation and fibrosis: novel opportunities for pharmacological intervention? Br. J. Pharmacol. 153(Suppl. 1), S367–S378 (2008).
  • Imokawa S, Sato A, Hayakawa H, Kotani M, Urano T, Takada A. Tissue factor expression and fibrin deposition in the lungs of patients with idiopathic pulmonary fibrosis and systemic sclerosis. Am. J. Respir.Crit. Care Med. 156, 631–636 (1997).
  • Hernandez-Rodriguez NA, Cambrey AD, Chambers RC et al. Role of thrombin in pulmonary fibrosis. Lancet 346, 1071–1073 (1995).
  • Scotton CJ, Krupiczojc MA, Königshoff M et al. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J. Clin. Investigation 119, 2550–2563, (2009).
  • Blanc-Brude OP, Chambers RC, Leoni P, Dik WA, Laurent GJ. Factor Xa is a fibroblast mitogen via binding to effector-cell protease receptor-1 and autocrine release of PDGF. Am. J. Physiol. Cell Physiol. 281, C681–C689 (2001).
  • Chambers RC, Leoni P, Blanc-Brude OP, Wembridge DE, Laurent GJ. Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. J. Biol. Chem. 275, 35584–35591, (2000).
  • Eitzman DT, McCoy RD, Zheng X et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J. Clin. Investig. 97, 232–237, (1996).
  • Howell DC, Goldsack NR, Marshall RP et al. Direct thrombin inhibition reduces lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 159, 1383–1395, (2001).
  • Gunther, A. Lübke N, Ermert M et al. Prevention of bleomycin-induced lung fibrosis by aerosolization of heparin or urokinase in rabbits. Am. J. Respir.Crit. Care Med. 168, 1358-1365, (2003).
  • Kubo H, Nakayama K, Yanai M et al. Anticoagulant therapy for idiopathic pulmonary fibrosis. Chest 128, 1475–1482, (2005).
  • Noth I, Anstrom KJ, Calvert SB et al. A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am. J. Respir.Crit. Care Med. 186, 88–95 (2012).
  • Hewitson, T. D. Kelynack KJ, Tait MG, et al. Pirfenidone reduces in vitro rat renal fibroblast activation and mitogenesis. J. Nephrol. 14, 453–460 (2001).
  • Di Sario A, Bendia E, Svegliati Baroni G et al. Effect of pirfenidone on rat hepatic stellate cell proliferation and collagen production. J. Hepatol. 37, 584–591 (2002).
  • Raghu G, Johnson WC, Lockhart D, Mageto Y. Treatment of idiopathic pulmonary fibrosis with a new antifibrotic agent, pirfenidone: results of a prospective, open-label Phase II study. Am. J. Respir. Crit. Care Med. 159, 1061–1069 (1999).
  • Nagai S, Hamada K, Shigematsu M, Taniyama M, Yamauchi S, Izumi T. Open-label compassionate use one year-treatment with pirfenidone to patients with chronic pulmonary fibrosis. Intern. Med. 41, 1118–1123 (2002).
  • Azuma A, Nukiwa T, Tsuboi E et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 171, 1040–1047, (2005).
  • Taniguchi, H. Ebina M, Kondoh Y et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur. Respir. J. 35, 821–829 (2010).
  • Noble PW, Albera C, Bradford WZ et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377, 1760–1769, (2011).
  • Grimminger F, Schermuly RT, Ghofrani HA. Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat. Rev. Drug Dis. 9, 956–970, (2010).
  • Garneau-Tsodikova S, Thannickal VJ. Protein kinase inhibitors in the treatment of pulmonary fibrosis. Curr. Med. Chem. 15, 2632–2640 (2008).
  • Chaudhary, N. I. Roth GJ, Hilberg F et al. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur. Respir. J. 29, 976–985, (2007).
  • Richeldi L, Costabel U, Selman M et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N. Engl J. Med. 365, 1079–1087, (2011).
  • Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 88, 660–672 (2003).
  • Payne SL, Hendrix MJ, Kirschmann DA. Paradoxical roles for lysyl oxidases in cancer--a prospect. J. Cell. Biochem. 101, 1338–1354 (2007).
  • Akiri G, Sabo E, Dafni H et al. Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res. 63, 1657–1666 (2003).
  • Barry-Hamilton, V. Spangler R, Marshall D et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).
  • Hancock A, Armstrong L, Gama R, Millar A. Production of interleukin 13 by alveolar macrophages from normal and fibrotic lung. Am. J. Respir. Cell Mol. Biol. 18, 60–65 (1998).
  • Kolodsick JE, Toews GB, Jakubzick C et al. Protection from fluorescein isothiocyanate-induced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts. J. Immunol. 172, 4068–4076 (2004).
  • Belperio JA, Dy M, Burdick MD et al. Interaction of IL-13 and C10 in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 27, 419–427 (2002).
  • Jakubzick C, Choi ES, Joshi BH et al. Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells. J. Immunol. 171, 2684–2693 (2003).
  • Ingram JL, Rice AB, Geisenhoffer K, Madtes DK, Bonner JC. IL-13 and IL-1beta promote lung fibroblast growth through coordinated up-regulation of PDGF-AA and PDGF-Ralpha. FASEB J. 18, 1132–1134, (2004).
  • Kaviratne M, Hesse M, Leusink M et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J. Immunol. 173, 4020–4029 (2004).
  • 68 LeeCG, Kang HR, Homer RJ, Chupp G, Elias JA. Transgenic modeling of transforming growth factor-beta(1): role of apoptosis in fibrosis and alveolar remodeling. Proc. Am. Thorac. Soc. 3, 418–423, (2006).
  • Baran CP. Opalek JM, McMaken S et al. Important roles for macrophage colony-stimulating factor, CC chemokine ligand 2, and mononuclear phagocytes in the pathogenesis of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 176, 78–89, (2007).
  • Moore BB. Kolodsick JE, Thannickal VJ et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am. J. Pathol. 166, 675–684, (2005).
  • Moore BB, Murray L, Das A et al. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am. J. Respir. Cell Mol. Biol. 35, 175–181, (2006).
  • Amara N, Goven D, Prost F, Muloway R, Crestani B, Boczkowski J. NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax 65, 733–738, (2010).
  • Hecker, L. Vittal R, Jones T et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 15, 1077–1081, (2009).
  • Laleu B, Gaggini F, Orchard M et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 53, 7715–7730, (2010).
  • McAnulty RJ, Hernandez-Rodriguez NA, Mutsaers SE, Coker RK, Laurent GJ. Indomethacin suppresses the anti-proliferative effects of transforming growth factor-beta isoforms on fibroblast cell cultures. Biochem. J. 321(Pt 3), 639–643 (1997).
  • Xu YD, Hua J, Mui A, O'Connor R, Grotendorst G, Khalil N. Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis. Am. J. Physiol. Lung Cell. mol. Physiol. 285, L527–L539, (2003).
  • Hagimoto, N. Kuwano K, Inoshima I et al. TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J. Immunol. 168, 6470–6478 (2002).
  • Zhang HY, Phan SH. Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am. J. Respir. Cell Mol. Biol. 21, 658–665 (1999).
  • Coker RK, Laurent GJ, Shahzeidi S et al. Transforming growth factors-beta 1, -beta 2, and -beta 3 stimulate fibroblast procollagen production in vitro but are differentially expressed during bleomycin-induced lung fibrosis. Am. J. Pathol. 150, 981–991 (1997).
  • Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J. Clin. Investig. 100, 768–776, (1997).
  • Wang Q, Wang Y, Hyde DM et al. Reduction of bleomycin induced lung fibrosis by transforming growth factor beta soluble receptor in hamsters. Thorax 54, 805–812 (1999).
  • Allen JT, Knight RA, Bloor CA, Spiteri MA. Enhanced insulin-like growth factor binding protein-related protein 2 (Connective tissue growth factor) expression in patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Am. J. Respir. Cell Mol. Biol. 21, 693–700 (1999).
  • Kelly M, Kolb M, Bonniaud P, Gauldie J. Re-evaluation of fibrogenic cytokines in lung fibrosis. Curr. Pharm. Des. 9, 39–49 (2003).
  • Bonniaud, P. Martin G, Margetts PJ et al. Connective tissue growth factor is crucial to inducing a profibrotic environment in “fibrosis-resistant” BALB/c mouse lungs. Am. J. Respir. Cell Mol. Biol. 31, 510–516, (2004).
  • Bonniaud P. Margetts PJ, Kolb M et al. Adenoviral gene transfer of connective tissue growth factor in the lung induces transient fibrosis. Am. J. Respir. Crit. Care Med. 168, 770–778, (2003).
  • Wang X, Wu G, Gou L et al. A novel single-chain-Fv antibody against connective tissue growth factor attenuates bleomycin-induced pulmonary fibrosis in mice. Respirology 16, 500–507, (2011).
  • King TE Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet 378, 1949–1961, (2011).
  • Bandoh S. Fujita J, Ohtsuki Y et al. Sequential changes of KL-6 in sera of patients with interstitial pneumonia associated with polymyositis/dermatomyositis. Ann Rheum. Dis. 59, 257–262 (2000).
  • Hirasawa Y. Kohno N, Yokoyama A, Inoue Y, Abe M, Hiwada K. KL-6, a human MUC1 mucin, is chemotactic for human fibroblasts. Am. J. Respir. Cell Mol. Biol. 17, 501–507 (1997).
  • Ohshimo, S. Yokoyama A, Hattori N, Ishikawa N, Hirasawa Y, Kohno N. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts. Biochem. Biophy. Res. Commun. 338, 1845–1852, (2005).
  • Ishii H, Mukae H, Kadota J et al. High serum concentrations of surfactant protein A in usual interstitial pneumonia compared with non-specific interstitial pneumonia. Thorax 58, 52–57 (2003).
  • Ohnishi H, Yokoyama A, Kondo K et al. Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am. J. Respir. Crit. Care Med. 165, 378–381 (2002).
  • Ishikawa, N., Hattori, N., Yokoyama, A. & Kohno, N. Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir. Invest. 50, 3–13 (2012).
  • Satoh H, Kurishima K, Ishikawa H, Ohtsuka M. Increased levels of KL-6 and subsequent mortality in patients with interstitial lung diseases. J. Inter. Med. 260, 429–434 (2006).
  • Yokoyama, A. Kohno N, Hamada H et al. Circulating KL-6 predicts the outcome of rapidly progressive idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 158, 1680–1684 (1998).
  • Yokoyama, A. Kondo K, Nakajima M et al. Prognostic value of circulating KL-6 in idiopathic pulmonary fibrosis. Respirology 11, 164–168, (2006).
  • Greene, K. E. King TE Jr, Kuroki Y et al. Serum surfactant proteins-A and -D as biomarkers in idiopathic pulmonary fibrosis. Eur. Resp. J. 19, 439–446 (2002).
  • Kuroki Y, Takahashi H, Chiba H, Akino T. Surfactant proteins A and D: disease markers. Biochimica et Biophys. Acta. 1408, 334–345 (1998).
  • Kuroki Y, Tsutahara S, Shijubo N et al. Elevated levels of lung surfactant protein A in sera from patients with idiopathic pulmonary fibrosis and pulmonary alveolar proteinosis. Am Rev. Respir. Dis. 147, 723–729 (1993).
  • Kinder, B. W. Fujishima T, Koba H et al. Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis. Chest 135, 1557–1563, (2009).
  • Takahashi H, Fujishima T, Koba H et al. Serum surfactant proteins A and D as prognostic factors in idiopathic pulmonary fibrosis and their relationship to disease extent. Am. J. Respir. Crit. Care Med. 162, 1109–1114 (2000).
  • Nagata N, Kitasato Y, Wakamatsu K et al. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias. Diag. Pathol. 6, 25, (2011).
  • Atamas SP, Luzina IG, Choi J et al. Pulmonary and activation-regulated chemokine stimulates collagen production in lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 29, 743–749, (2003).
  • Prasse A, Probst C, Bargagli E et al. Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 179, 717–723, (2009).
  • Prasse, A. Pechkovsky DV, Toews GB et al. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum 56, 1685–1693, (2007).
  • Tiev KP, Hua-Huy T, Kettaneh A et al. Serum CC chemokine ligand-18 predicts lung disease worsening in systemic sclerosis. Eur. Resp. J. 38, 1355–1360, (2011).
  • Oikonomidi S. Kostikas K, Tsilioni I, Tanou K, Gourgoulianis KI, Kiropoulos TS. Matrix metalloproteinases in respiratory diseases: from pathogenesis to potential clinical implications. Curr. Med. Chem. 16, 1214–1228 (2009).
  • Sauter W, Rosenberger A, Beckmann L et al. Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer. Cancer Epidemiol. Biomarkers Prev. 17, 1127–1135, (2008).
  • Zuo F, Kaminski N, Eugui E et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc. Natl Acad. Sci. USA 99, 6292–6297, (2002).
  • Fujishima S, Shiomi T, Yamashita S et al. Production and activation of matrix metalloproteinase 7 (matrilysin 1) in the lungs of patients with idiopathic pulmonary fibrosis. Arch. Pathol. Lab.y Med. 134, 1136–1142, (2010).
  • Vuorinen K, Myllärniemi M, Lammi L et al. Elevated matrilysin levels in bronchoalveolar lavage fluid do not distinguish idiopathic pulmonary fibrosis from other interstitial lung diseases. APMIS 115, 969–975, (2007).
  • Huh JW, Kim DS, Oh YM et al. Is metalloproteinase-7 specific for idiopathic pulmonary fibrosis? Chest 133, 1101–1106, (2008).
  • Rosas IO, Richards TJ, Konishi K et al. MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS medicine 5, e93, (2008).
  • Richards TJ, Kaminski N, Baribaud F et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 185, 67–76, (2012).
  • Elias, J. A., Homer, R. J., Hamid, Q. & Lee, C. G. Chitinases and chitinase-like proteins in T(H)2 inflammation and asthma. The Journal of allergy and clinical immunology 116, 497–500, (2005).
  • Badariotti, F. Kypriotou M, Lelong C, et al. The phylogenetically conserved molluscan chitinase-like protein 1 (Cg-Clp1), homologue of human HC-gp39, stimulates proliferation and regulates synthesis of extracellular matrix components of mammalian chondrocytes. J. Biol. Chem.281, 29583–29596, (2006).
  • Bigg HF, Wait R, Rowan AD, Cawston TE. The mammalian chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation. J. Biol. Chem. 281, 21082–21095, (2006).
  • Johansen J S. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Danish Med. Bull. 53, 172–209 (2006).
  • Koutroubakis IE, Petinaki E, Dimoulios P et al. Increased serum levels of YKL-40 in patients with inflammatory bowel disease. Int.J. Colorectal Dis. 18, 254–259, (2003).
  • Vos K, Steenbakkers P, Miltenburg AM et al. Raised human cartilage glycoprotein-39 plasma levels in patients with rheumatoid arthritis and other inflammatory conditions. Ann. Rheum. Dis. 59, 544–548 (2000).
  • van Bilsen, J. H. van Dongen H, Lard LR et al. Functional regulatory immune responses against human cartilage glycoprotein-39 in health vs. proinflammatory responses in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 101, 17180–17185, (2004).
  • Recklies, A. D., White, C. & Ling, H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem. J. 365, 119–126, (2002).
  • Letuve S, Kozhich A, Arouche N et al. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. J. Immunol. 181, 5167–5173 (2008).
  • Furuhashi K , Suda T, Nakamura Y et al. Increased expression of YKL-40, a chitinase-like protein, in serum and lung of patients with idiopathic pulmonary fibrosis. Respir Med. 104, 1204–1210, (2010).
  • Chupp, G. L. Lee CG, Jarjour N et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N. Engl J. Med. 357, 2016–2027, (2007).
  • Kruit A, Grutters JC, Ruven HJ, van Moorsel CC, van den Bosch JM. A CHI3L1 gene polymorphism is associated with serum levels of YKL-40, a novel sarcoidosis marker. Respir Med. 101, 1563–1571, (2007).
  • Korthagen NM, van Moorsel CH, Barlo NP et al. Serum and BALF YKL-40 levels are predictors of survival in idiopathic pulmonary fibrosis. Respir Med. 105, 106–113, (2011).
  • Johansen JS, Schultz NA, Jensen BV. Plasma YKL-40: a potential new cancer biomarker? Future Oncol. 5, 1065–1082, (2009).
  • Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab. Investig. 87, 858–870, (2007).
  • Abe S. Boyer C, Liu X et al. Cells derived from the circulation contribute to the repair of lung injury. Am. J. Respir. Crit. Care Med. 170, 1158–1163, (2004).
  • Hartlapp, I. Abe R, Saeed RW et al. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB 15, 2215–2224, (2001).
  • Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH. Bone marrow-derived progenitor cells in pulmonary fibrosis. J. Clin. Investig. 113, 243–252, (2004).
  • Andersson-Sjoland, A. de Alba CG, Nihlberg K et al. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int. J. Biochem. Cell Biol. 40, 2129–2140, (2008).
  • Moeller A, e Gilpin SE, Ask K et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 179, 588–594, (2009).
  • Kurosu K, Takiguchi Y, Okada O et al. Identification of annexin 1 as a novel autoantigen in acute exacerbation of idiopathic pulmonary fibrosis. J. Immunol. 181, 756–767 (2008).
  • Takahashi T, Wada I, Ohtsuka Y, Munakata M, Homma Y, Kuroki Y. Autoantibody to alanyl-tRNA synthetase in patients with idiopathic pulmonary fibrosis. Respirology 12, 642–653, (2007).
  • Magro CM, Waldman WJ, Knight DA et al. Idiopathic pulmonary fibrosis related to endothelial injury and antiendothelial cell antibodies. Hum. Immunol. 67, 284–297, (2006).
  • Dobashi N, Fujita J, Murota M et al. Elevation of anti-cytokeratin 18 antibody and circulating cytokeratin 18: anti-cytokeratin 18 antibody immune complexes in sera of patients with idiopathic pulmonary fibrosis. Lung 178, 171–179 (2000).
  • Wallace WA, Schofield JA, Lamb D, Howie SE. Localisation of a pulmonary autoantigen in cryptogenic fibrosing alveolitis. Thorax 49, 1139–1145 (1994).
  • Pignatti, P. Brunetti G, Moretto D et al. Role of the chemokine receptors CXCR3 and CCR4 in human pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 173, 310–317, (2006).
  • Papiris SA, Kollintza A, Karatza M et al. CD8+ T lymphocytes in bronchoalveolar lavage in idiopathic pulmonary fibrosis. J. Inflamm. (Lond) 4, 14, (2007).
  • Marchal-Somme J, Uzunhan Y, Marchand-Adam S et al. Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. J. Immunol. 176, 5735–5739 (2006).
  • Homolka J, Ziegenhagen MW, Gaede KI et al. Systemic immune cell activation in a subgroup of patients with idiopathic pulmonary fibrosis. Respiration 70, 262–269, (2003).
  • Shimizudani, N. Murata H, Keino H et al. Conserved CDR 3 region of T cell receptor BV gene in lymphocytes from broncho-alveolar lavage fluid of patients with idiopathic pulmonary fibrosis. Clin. Exp. Immunol. 129, 140–149 (2002).
  • Feghali-Bostwick, C. A. Tsai CG, Valentine VG et al. Cellular and humoral autoreactivity in idiopathic pulmonary fibrosis. J. Immunol. 179, 2592–2599 (2007).
  • Borchers AT, Chang C, Keen CL, Gershwin ME. Idiopathic pulmonary fibrosis-an epidemiological and pathological review. Clin. Rev. Allergy Immunol. 40, 117–134, (2011).
  • Parra ER, Kairalla RA, Ribeiro de Carvalho CR, Eher E, Capelozzi V. L. Inflammatory cell phenotyping of the pulmonary interstitium in idiopathic interstitial pneumonia. Respiration 74, 159–169, (2007).
  • Gilani SR, Vuga LJ, Lindell KO et al. CD28 down-regulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis. PloS one 5, e8959, (2010).
  • Tanaka K, Tanaka Y, Namba T, Azuma A, Mizushima T. Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice. Biochem. Pharmacol. 80, 920–931, (2010).
  • Kahloon RA, Xue J, Bhargava A et al. Patients with idiopathic pulmonary fibrosis with antibodies to heat shock protein 70 have poor prognoses. Am. J. Respir. Crit. Care Med. 187, 768–775, (2013).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.