135
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Perinatal factors in neonatal and pediatric lung diseases

, , , , &
Pages 515-531 | Published online: 09 Jan 2014

References

  • Asher MI, Montefort S, Bjorksten B et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 368(9537), 733–743 (2006).
  • Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18(5), 716–725 (2012).
  • Bush A, Menzies-Gow A. Phenotypic differences between pediatric and adult asthma. Proc. Am. Thorac. Soc. 6(8), 712–719 (2009).
  • Holgate ST. Innate and adaptive immune responses in asthma. Nat. Med. 18(5), 673–683 (2012).
  • Reich ES. Pre-term births on the rise. Nature 485(7396), 20 (2012).
  • Petrou S, Khan K. Economic costs associated with moderate and late preterm birth: primary and secondary evidence. Semin. Fetal. Neonatal. Med. 17(3), 170–178 (2012).
  • Jaakkola JJ, Ahmed P, Ieromnimon A et al. Preterm delivery and asthma: a systematic review and meta-analysis. J. Allergy Clin. Immunol. 118(4), 823–830 (2006).
  • Kumar R, Yu Y, Story RE et al. Prematurity, chorioamnionitis, and the development of recurrent wheezing: a prospective birth cohort study. J. Allergy Clin. Immunol. 121(4), 878–884 e876 (2008).
  • Duijts L. Fetal and infant origins of asthma. Eur. J. Epidemiol. 27(1), 5–14 (2012).
  • Jobe AH. The new bronchopulmonary dysplasia. Curr. Opin. Pediatr. 23(2), 167–172 (2011).
  • Henschen M, Stocks J, Brookes I, Frey U. New aspects of airway mechanics in pre-term infants. Eur. Respir. J. 27(5), 913–920 (2006).
  • Martin RJ, Prakash YS, Hibbs AM. Why do former preterm infants wheeze? J. Pediatr. 162(3), 443–444 (2013).
  • McEvoy C, Venigalla S, Schilling D, Clay N, Spitale P, Nguyen T. Respiratory function in healthy late preterm infants delivered at 33-36 weeks of gestation. J. Pediatr. 162(3), 464–469 (2013).
  • Warner JO. The early life origins of asthma and related allergic disorders. Arch. Dis. Child. 89(2), 97–102 (2004).
  • Turner S. Perinatal programming of childhood asthma: early fetal size, growth trajectory during infancy, and childhood asthma outcomes. Clin. Dev. Immunol. 2012, 962923 (2012).
  • Fahey JO. Clinical management of intra-amniotic infection and chorioamnionitis: a review of the literature. J. Midwifery Womens Health 53(3), 227–235 (2008).
  • Rusconi F, Galassi C, Forastiere F et al. Maternal complications and procedures in pregnancy and at birth and wheezing phenotypes in children. Am. J. Respir. Crit. Care Med. 175(1), 16–21 (2007).
  • Getahun D, Strickland D, Zeiger RS et al. Effect of chorioamnionitis on early childhood asthma. Arch. Pediatr. Adolesc. Med. 164(2), 187–192 (2010).
  • Velten M, Heyob KM, Rogers LK, Welty SE. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. J. Appl. Physiol. 108(5), 1347–1356 (2010).
  • Muratore CS, Luks FI, Zhou Y, Harty M, Reichner J, Tracy TF. Endotoxin alters early fetal lung morphogenesis. J. Surg. Res. 155(2), 225–230 (2009).
  • Weinstein M, Xu X, Ohyama K, Deng CX. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125(18), 3615–3623 (1998).
  • Benjamin JT, Carver BJ, Plosa EJ et al. NF-kappaB activation limits airway branching through inhibition of Sp1-mediated fibroblast growth factor-10 expression. J. Immunol. 185(8), 4896–4903 (2010).
  • Miller JD, Benjamin JT, Kelly DR, Frank DB, Prince LS. Chorioamnionitis stimulates angiogenesis in saccular stage fetal lungs via CC chemokines. Am. J. Physiol. Lung Cell. Mol. Physiol. 298(5), L637–L645 (2010).
  • Jobe AH, Newnham JP, Willet KE et al. Endotoxin-induced lung maturation in preterm lambs is not mediated by cortisol. Am. J. Respir. Crit. Care Med. 162(5), 1656–1661 (2000).
  • Watterberg KL, Demers LM, Scott SM, Murphy S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 97(2), 210–215 (1996).
  • Moss TJ, Newnham JP, Willett KE, Kramer BW, Jobe AH, Ikegami M. Early gestational intra-amniotic endotoxin: lung function, surfactant, and morphometry. Am. J. Respir. Crit. Care Med. 165(6), 805–811 (2002).
  • Prince LS, Okoh VO, Moninger TO, Matalon S. Lipopolysaccharide increases alveolar type II cell number in fetal mouse lungs through Toll-like receptor 4 and NF-kappaB. Am. J. Physiol. Lung Cell. Mol. Physiol. 287(5), L999–L1006 (2004).
  • Westover AJ, Hooper SB, Wallace MJ, Moss TJ. Prostaglandins mediate the fetal pulmonary response to intrauterine inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 302(7), L664–L678 (2012).
  • Morsy MA, Isohama Y, Miyata T. Prostaglandin E(2) increases surfactant secretion via the EP(1) receptor in rat alveolar type II cells. Eur. J. Pharmacol. 426(1–2), 21–24 (2001).
  • May M, Marx A, Seidenspinner S, Speer CP. Apoptosis and proliferation in lungs of human fetuses exposed to chorioamnionitis. Histopathology 45(3), 283–290 (2004).
  • Collins JJ, Kunzmann S, Kuypers E et al. Antenatal glucocorticoids counteract LPS changes in TGF-beta pathway and caveolin-1 in ovine fetal lung. Am. J. Physiol. Lung. Cell Mol. Physiol. 304(6), L438–L444 (2013).
  • Hartman WR, Smelter DF, Sathish V et al. Oxygen dose responsiveness of human fetal airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 303(8), L711–L719 (2012).
  • Sweet DG, Curley AE, Chesshyre E et al. The role of matrix metalloproteinases -9 and -2 in development of neonatal chronic lung disease. Acta. Paediatr. 93(6), 791–796 (2004).
  • Kuypers E, Collins JJ, Kramer BW et al. Intra-amniotic LPS and antenatal betamethasone: inflammation and maturation in preterm lamb lungs. Am. J. Physiol. Lung Cell. Mol. Physiol. 302(4), L380–L389 (2012).
  • Tang JR, Seedorf GJ, Muehlethaler V et al. Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin. Am. J. Physiol. Lung Cell. Mol. Physiol. 299(6), L735–L748 (2010).
  • Tamashiro KL, Moran TH. Perinatal environment and its influences on metabolic programming of offspring. Physiol. Behav. 100(5), 560–566 (2010).
  • Pike KC, Crozier SR, Lucas JS et al. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. Thorax 65(12), 1099–1106 (2010).
  • Sharma P, McKay K, Rosenkrantz TS, Hussain N. Comparisons of mortality and pre-discharge respiratory outcomes in small-for-gestational-age and appropriate-for-gestational-age premature infants. BMC Pediatr. 4, 9 (2004).
  • Gortner L, Hilgendorff A, Bahner T, Ebsen M, Reiss I, Rudloff S. Hypoxia-induced intrauterine growth retardation: effects on pulmonary development and surfactant protein transcription. Biol. Neonate 88(2), 129–135 (2005).
  • Rozance PJ, Seedorf GJ, Brown A et al. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am. J. Physiol. Lung Cell. Mol. Physiol. 301(6), L860–L871 (2011).
  • Maritz GS, Cock ML, Louey S, Joyce BJ, Albuquerque CA, Harding R. Effects of fetal growth restriction on lung development before and after birth: a morphometric analysis. Pediatr. Pulmonol. 32(3), 201–210 (2001).
  • Joyce BJ, Louey S, Davey MG, Cock ML, Hooper SB, Harding R. Compromised respiratory function in postnatal lambs after placental insufficiency and intrauterine growth restriction. Pediatr. Res. 50(5), 641–649 (2001).
  • Calvani M, Alessandri C, Sopo SM et al. Infectious and uterus related complications during pregnancy and development of atopic and nonatopic asthma in children. Allergy 59(1), 99–106 (2004).
  • Collier CH, Risnes K, Norwitz ER, Bracken MB, Illuzzi JL. Maternal Infection in Pregnancy and Risk of Asthma in Offspring. Matern. Child Health J. doi:10.1007/s10995-013-1220-2 (2013) (Epub ahead of print).
  • Ege MJ, Mayer M, Normand AC et al. Exposure to environmental microorganisms and childhood asthma. N. Engl J. Med. 364(8), 701–709 (2011).
  • Klebanoff M, Searle K. The role of inflammation in preterm birth-focus on periodontitis. BJOG 113(Suppl. 3), 43–45 (2006).
  • Hasegawa K, Furuichi Y, Shimotsu A et al. Associations between systemic status, periodontal status, serum cytokine levels, and delivery outcomes in pregnant women with a diagnosis of threatened premature labor. J. Periodontol 74(12), 1764–1770 (2003).
  • Tong VT, Jones JR, Dietz PM, D’Angelo D, Bombard JM. Trends in smoking before, during, and after pregnancy - Pregnancy Risk Assessment Monitoring System (PRAMS), United States, 31 sites, 2000–2005. MMWR Surveill. Summ. 58(4), 1–29 (2009).
  • Burke H, Leonardi-Bee J, Hashim A et al. Prenatal and passive smoke exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediatrics 129(4), 735–744 (2012).
  • Li YF, Langholz B, Salam MT, Gilliland FD. Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest 127(4), 1232–1241 (2005).
  • Herrmann M, King K, Weitzman M. Prenatal tobacco smoke and postnatal secondhand smoke exposure and child neurodevelopment. Curr. Opin. Pediatr. 20(2), 184–190 (2008).
  • Rehan VK, Wang Y, Sugano S et al. In utero nicotine exposure alters fetal rat lung alveolar type II cell proliferation, differentiation, and metabolism. Am. J. Physiol. Lung. Cell. Mol. Physiol. 292(1), L323–L333 (2007).
  • Landau LI. Tobacco smoke exposure and tracking of lung function into adult life. Paediatr. Respir. Rev. 9(1), 39–43; quiz 43–34 (2008).
  • Blacquiere MJ, Timens W, Melgert BN, Geerlings M, Postma DS, Hylkema MN. Maternal smoking during pregnancy induces airway remodelling in mice offspring. Eur. Respir. J. 33(5), 1133–1140 (2009).
  • Blacquiere MJ, Timens W, van den Berg A, Geerlings M, Postma DS, Hylkema MN. Maternal smoking during pregnancy decreases Wnt signalling in neonatal mice. Thorax 65(6), 553–554 (2010).
  • Collins MH, Moessinger AC, Kleinerman J et al. Fetal lung hypoplasia associated with maternal smoking: a morphometric analysis. Pediatr. Res. 19(4), 408–412 (1985).
  • Wongtrakool C, Grooms K, Ping XD et al. In utero nicotine exposure promotes M2 activation in neonatal mouse alveolar macrophages. Pediatr. Res. 72(2), 147–153 (2012).
  • Wongtrakool C, Wang N, Hyde DM, Roman J, Spindel ER. Prenatal nicotine exposure alters lung function and airway geometry through alpha7 nicotinic receptors. Am. J. Respir. Cell. Mol. Biol. 46(5), 695–702 (2012).
  • Sekhon HS, Keller JA, Proskocil BJ, Martin EL, Spindel ER. Maternal nicotine exposure upregulates collagen gene expression in fetal monkey lung. Association with alpha7 nicotinic acetylcholine receptors. Am. J. Respir. Cell. Mol. Biol. 26(1), 31–41 (2002).
  • Elliot JG, Carroll NG, James AL, Robinson PJ. Airway alveolar attachment points and exposure to cigarette smoke in utero. Am. J. Respir. Crit. Care Med. 167(1), 45–49 (2003).
  • Dietert RR. Maternal and childhood asthma: risk factors, interactions, and ramifications. Reprod. Toxicol. 32(2), 198–204 (2011).
  • Paul G, Brehm JM, Alcorn JF, Holguin F, Aujla SJ, Celedon JC. Vitamin D and asthma. Am. J. Respir. Crit. Care Med. 185(2), 124–132 (2012).
  • Ross AC, Manson JE, Abrams SA et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 96(1), 53–58 (2011).
  • Devereux G, Litonjua AA, Turner SW et al. Maternal vitamin D intake during pregnancy and early childhood wheezing. Am. J. Clin. Nutr. 85(3), 853–859 (2007).
  • Camargo CA Jr, Rifas-Shiman SL, Litonjua AA et al. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am. J. Clin. Nutr. 85(3), 788–795 (2007).
  • Pike KC, Inskip HM, Robinson S et al. Maternal late-pregnancy serum 25-hydroxyvitamin D in relation to childhood wheeze and atopic outcomes. Thorax 67(11), 950–956 (2012).
  • Hypponen E, Sovio U, Wjst M et al. Infant vitamin d supplementation and allergic conditions in adulthood: northern Finland birth cohort 1966. Ann. NY Acad. Sci. 1037. 84–95 (2004).
  • Agrawal T, Gupta GK, Agrawal DK. Vitamin D deficiency decreases the expression of VDR and prohibitin in the lungs of mice with allergic airway inflammation. Exp. Mol. Pathol. 93(1), 74–81 (2012).
  • Banerjee A, Damera G, Bhandare R et al. Vitamin D and glucocorticoids differentially modulate chemokine expression in human airway smooth muscle cells. Br. J. Pharmacol. 155(1), 84–92 (2008).
  • Damera G, Fogle HW, Lim P et al. Vitamin D inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1. Br. J. Pharmacol. 158(6), 1429–1441 (2009).
  • Prescott SL, Calder PC. N-3 polyunsaturated fatty acids and allergic disease. Curr. Opin. Clin. Nutr. Metab. Care 7(2), 123–129 (2004).
  • Maslova E, Strom M, Oken E et al. Fish intake during pregnancy and the risk of child asthma and allergic rhinitis - longitudinal evidence from the Danish National Birth Cohort. Br. J. Nutr. 1–13 (2013).
  • Romieu I, Torrent M, Garcia-Esteban R et al. Maternal fish intake during pregnancy and atopy and asthma in infancy. Clin. Exp. Allergy 37(4), 518–525 (2007).
  • Bilal S, Haworth O, Wu L, Weylandt KH, Levy BD, Kang JX. Fat-1 transgenic mice with elevated omega-3 fatty acids are protected from allergic airway responses. Biochim. Biophys. Acta. 1812(9), 1164–1169 (2011).
  • Rogers LK, Valentine CJ, Pennell M et al. Maternal docosahexaenoic acid supplementation decreases lung inflammation in hyperoxia-exposed newborn mice. J. Nutr. 141(2), 214–222 (2011).
  • Yogev Y, Visser GH. Obesity, gestational diabetes and pregnancy outcome. Semin. Fetal. Neonatal. Med. 14(2), 77–84 (2009).
  • Cnattingius S, Villamor E, Johansson S et al. Maternal obesity and risk of preterm delivery. JAMA 309(22), 2362–2370 (2013).
  • Challier JC, Basu S, Bintein T et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 29(3), 274–281 (2008).
  • Basu S, Haghiac M, Surace P et al. Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation. Obesity (Silver Spring) 19(3), 476–482 (2011).
  • Haberg SE, Stigum H, London SJ, Nystad W, Nafstad P. Maternal obesity in pregnancy and respiratory health in early childhood. Paediatr. Perinat. Epidemiol. 23(4), 352–362 (2009).
  • Azad MB, Becker AB, Kozyrskyj AL. Association of maternal diabetes and child asthma. Pediatr Pulmonol, (2012).
  • Adamo KB, Ferraro ZM, Goldfield G et al. The Maternal Obesity Management (MOM) Trial Protocol: A lifestyle intervention during pregnancy to minimize downstream obesity. Contemp Clin Trials, 35(1), 87–96 (2013).
  • Kumar R, Story RE, Pongracic JA et al. Maternal pre-pregnancy obesity and recurrent wheezing in early childhood. Pediatr. Allergy Immunol. Pulmonol. 23(3), 183–190 (2010).
  • Reichman NE, Nepomnyaschy L. Maternal pre-pregnancy obesity and diagnosis of asthma in offspring at age 3 years. Matern. Child Health J. 12(6), 725–733 (2008).
  • Harpsoe MC, Basit S, Bager P et al. Maternal obesity, gestational weight gain, and risk of asthma and atopic disease in offspring: a study within the Danish National Birth Cohort. J. Allergy Clin. Immunol. 131(4), 1033–1040 (2013).
  • Ornoy A, Rand SB, Bischitz N. Hyperglycemia and hypoxia are interrelated in their teratogenic mechanism: studies on cultured rat embryos. Birth Defects Res. B Dev. Reprod. Toxicol. 89(2), 106–115 (2010).
  • Koskinen A, Lukkarinen H, Moritz N, Aho H, Kaapa P, Soukka H. Fetal hyperglycemia alters lung structural development in neonatal rat. Pediatr. Pulmonol. 47(3), 275–282 (2012).
  • Bourbon JR, Farrell PM. Fetal lung development in the diabetic pregnancy. Pediatr. Res. 19(3), 253–267 (1985).
  • Koskinen A, Laiho A, Lukkarinen H, Kaapa P, Soukka H. Maternal hyperglycemia modifies extracellular matrix signaling pathways in neonatal rat lung. Neonatology 98(4), 387–396 (2010).
  • Dye JA, Madden MC, Richards JH, Lehmann JR, Devlin RB, Costa DL. Ozone effects on airway responsiveness, lung injury, and inflammation. Comparative rat strain and in vivo/in vitro investigations. Inhal. Toxicol. 11(11), 1015–1040 (1999).
  • Auten RL, Gilmour MI, Krantz QT, Potts EN, Mason SN, Foster WM. Maternal diesel inhalation increases airway hyperreactivity in ozone-exposed offspring. Am. J. Respir. Cell. Mol. Biol. 46(4), 454–460 (2012).
  • Fedulov AV, Leme A, Yang Z et al. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am. J. Respir. Cell. Mol. Biol. 38(1), 57–67 (2008).
  • Auten RL, Potts EN, Mason SN, Fischer B, Huang Y, Foster WM. Maternal exposure to particulate matter increases postnatal ozone-induced airway hyperreactivity in juvenile mice. Am. J. Respir. Crit. Care Med. 180(12), 1218–1226 (2009).
  • Lim RH, Kobzik L. Maternal transmission of asthma risk. Am. J. Reprod. Immunol. 61(1), 1–10 (2009).
  • Hillman NH, Polglase GR, Pillow JJ, Saito M, Kallapur SG, Jobe AH. Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am. J. Physiol. Lung Cell. Mol. Physiol. 300(2), L232–L241 (2011).
  • Velten M, Britt RD Jr, Heyob KM et al. Prenatal inflammation exacerbates hyperoxia-induced functional and structural changes in adult mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303(3), R279–R290 (2012).
  • Fakhoury KF, Sellers C, Smith EO, Rama JA, Fan LL. Serial measurements of lung function in a cohort of young children with bronchopulmonary dysplasia. Pediatrics 125(6), e1441–e1447 (2010).
  • Halvorsen T, Skadberg BT, Eide GE, Roksund O, Aksnes L, Oymar K. Characteristics of asthma and airway hyper-responsiveness after premature birth. Pediatr. Allergy Immunol. 16(6), 487–494 (2005).
  • Goyal NK, Fiks AG, Lorch SA. Association of late-preterm birth with asthma in young children: practice-based study. Pediatrics 128(4), e830–e838 (2011).
  • Hershenson MB, Aghili S, Punjabi N et al. Hyperoxia-induced airway hyperresponsiveness and remodeling in immature rats. Am. J. Physiol. 262(3 Pt 1), L263–L269 (1992).
  • Iben SC, Haxhiu MA, Farver CF, Miller MJ, Martin RJ. Short-term mechanical ventilation increases airway reactivity in rat pups. Pediatr. Res. 60(2), 136–140 (2006).
  • Alejandre-Alcazar MA, Kwapiszewska G, Reiss I et al. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 292(2), L537–L549 (2007).
  • Alejandre-Alcazar MA, Michiels-Corsten M, Vicencio AG et al. TGF-beta signaling is dynamically regulated during the alveolarization of rodent and human lungs. Dev. Dyn. 237(1), 259–269 (2008).
  • Warburton D, Shi W, Xu B. TGF-beta-Smad3 signaling in emphysema and pulmonary fibrosis: an epigenetic aberration of normal development? Am. J. Physiol. Lung Cell. Mol. Physiol. 304(2), L83–L85 (2013).
  • Been JV, Debeer A, van Iwaarden JF et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia. Pediatr. Res. 67(1), 83–89 (2010).
  • Kaarteenaho-Wiik R, Paakko P, Herva R, Risteli J, Soini Y. Type I and III collagen protein precursors and mRNA in the developing human lung. J. Pathol. 203(1), 567–574 (2004).
  • Cederqvist K, Sorsa T, Tervahartiala T et al. Matrix metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics 108(3), 686–692 (2001).
  • Sweet DG, McMahon KJ, Curley AE, O’Connor CM, Halliday HL. Type I collagenases in bronchoalveolar lavage fluid from preterm babies at risk of developing chronic lung disease. Arch. Dis. Child Fetal. Neonatal. Ed. 84(3), F168–F171 (2001).
  • Bozyk PD, Bentley JK, Popova AP et al. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication. PLoS ONE 7(2), e31336 (2012).
  • Mhanna MJ, Haxhiu MA, Jaber MA et al. Hyperoxia impairs airway relaxation in immature rats via a cAMP-mediated mechanism. J. Appl. Physiol. 96(5), 1854–1860 (2004).
  • Agani FH, Kuo NT, Chang CH et al. Effect of hyperoxia on substance P expression and airway reactivity in the developing lung. Am. J. Physiol. 273(1 Pt 1), L40–L45 (1997).
  • Belik J, Jankov RP, Pan J, Yi M, Chaudhry I, Tanswell AK. Chronic O2 exposure in the newborn rat results in decreased pulmonary arterial nitric oxide release and altered smooth muscle response to isoprostane. J. Appl. Physiol. 96(2), 725–730 (2004).
  • Yao Q, Haxhiu MA, Zaidi SI, Liu S, Jafri A, Martin RJ. Hyperoxia enhances brain-derived neurotrophic factor and tyrosine kinase B receptor expression in peribronchial smooth muscle of neonatal rats. Am. J. Physiol. Lung Cell Mol. Physiol. 289(2), L307–L314 (2005).
  • Abcejo AJ, Sathish V, Smelter DF et al. Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle. PLoS ONE 7(8), e44343 (2012).
  • Aravamudan B, Thompson M, Pabelick C, Prakash YS. Brain-derived neurotrophic factor induces proliferation of human airway smooth muscle cells. J. Cell. Mol. Med. 16(4), 812–823 (2012).
  • O’Reilly M, Hooper SB, Allison BJ et al. Persistent bronchiolar remodeling following brief ventilation of the very immature ovine lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 297(5), L992–L1001 (2009).
  • Fukunaga T, Davies P, Zhang L, Hashida Y, Motoyama EK. Prolonged high intermittent positive-pressure ventilation induces airway remodeling and reactivity in young rats. Am. J. Physiol. 275(3 Pt 1), L567–L573 (1998).
  • Pandya HC, Snetkov VA, Twort CH, Ward JP, Hirst SJ. Oxygen regulates mitogen-stimulated proliferation of fetal human airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 283(6), L1220–L1230 (2002).
  • Ambalavanan N, Carlo WA, D’Angio CT et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics 123(4), 1132–1141 (2009).
  • Brostrom EB, Katz-Salamon M, Lundahl J, Hallden G, Winbladh B. Eosinophil activation in preterm infants with lung disease. Acta. Paediatr. 96(1), 23–28 (2007).
  • Bhattacharya S, Go D, Krenitsky DL et al. Genome-wide transcriptional profiling reveals connective tissue mast cell accumulation in bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 186(4), 349–358 (2012).
  • Brock TG, Di Giulio C. Prolonged exposure to hyperoxia increases perivascular mast cells in rat lungs. J. Histochem. Cytochem. 54(11), 1239–1246 (2006).
  • Schultz ED, Potts EN, Mason SN, Foster WM, Auten RL. Mast cells mediate hyperoxia-induced airway hyper-reactivity in newborn rats. Pediatr. Res. 68(1), 70–74 (2010).
  • Kim do K, Choi SH, Yu J, Yoo Y, Kim B, Koh YY. Bronchial responsiveness to methacholine and adenosine 5'-monophosphate in preschool children with bronchopulmonary dysplasia. Pediatr. Pulmonol. 41(6), 538–543 (2006).
  • Fitzpatrick AM, Teague WG, Holguin F, Yeh M, Brown LA. Airway glutathione homeostasis is altered in children with severe asthma: evidence for oxidant stress. J. Allergy Clin. Immunol. 123(1), 146–152 e148 (2009).
  • Chawes BL, Buchvald F, Bischoff AL et al. Elevated exhaled nitric oxide in high-risk neonates precedes transient early but not persistent wheeze. Am. J. Respir. Crit. Care Med. 182(2), 138–142 (2010).
  • Zacharasiewicz A, Wilson N, Lex C et al. Clinical use of noninvasive measurements of airway inflammation in steroid reduction in children. Am. J. Respir. Crit. Care Med. 171(10), 1077–1082 (2005).
  • Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr. Pulmonol. 46(4), 369–375 (2011).
  • Kurukulaaratchy RJ, Matthews S, Holgate ST, Arshad SH. Predicting persistent disease among children who wheeze during early life. Eur. Respir. J. 22(5), 767–771 (2003).
  • Morgan WJ, Stern DA, Sherrill DL et al. Outcome of asthma and wheezing in the first 6 years of life: follow-up through adolescence. Am. J. Respir. Crit. Care Med. 172(10), 1253–1258 (2005).
  • Palmer LJ, Rye PJ, Gibson NA, Burton PR, Landau LI, Lesouef PN. Airway responsiveness in early infancy predicts asthma, lung function, and respiratory symptoms by school age. Am. J. Respir. Crit. Care Med. 163(1), 37–42 (2001).
  • Bisgaard H, Jensen SM, Bonnelykke K. Interaction between asthma and lung function growth in early life. Am. J. Respir. Crit. Care Med. 185(11), 1183–1189 (2012).
  • Hovland V, Riiser A, Mowinckel P, Carlsen KH, Lodrup Carlsen KC. The significance of early recurrent wheeze for asthma outcomes in late childhood. Eur. Respir. J. 41(4), 838–845 (2013).
  • Saglani S, Payne DN, Zhu J et al. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers. Am. J. Respir. Crit. Care Med. 176(9), 858–864 (2007).
  • Turato G, Barbato A, Baraldo S et al. Nonatopic children with multitrigger wheezing have airway pathology comparable to atopic asthma. Am. J. Respir. Crit. Care Med. 178(5), 476–482 (2008).
  • Payne DN, Qiu Y, Zhu J et al. Airway inflammation in children with difficult asthma: relationships with airflow limitation and persistent symptoms. Thorax, 59(10), 862–869 (2004).
  • Saglani S, Malmstrom K, Pelkonen AS et al. Airway remodeling and inflammation in symptomatic infants with reversible airflow obstruction. Am. J. Respir. Crit. Care Med. 171(7), 722–727 (2005).
  • Kusel MM, de Klerk NH, Kebadze T et al. Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma. J. Allergy Clin. Immunol. 119(5), 1105–1110 (2007).
  • Jackson DJ, Gangnon RE, Evans MD et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am. J. Respir. Crit. Care Med. 178(7), 667–672 (2008).
  • Holt PG, Sly PD. Viral infections and atopy in asthma pathogenesis: new rationales for asthma prevention and treatment. Nat. Med. 18(5), 726–735 (2012).
  • Mandelcwajg A, Moulin F, Menager C, Rozenberg F, Lebon P, Gendrel D. Underestimation of influenza viral infection in childhood asthma exacerbations. J. Pediatr. 157(3), 505–506 (2010).
  • Resch B, Pasnocht A, Gusenleitner W, Muller W. Rehospitalisations for respiratory disease and respiratory syncytial virus infection in preterm infants of 29-36 weeks gestational age. J. Infect. 50(5), 397–403 (2005).
  • Blanken MO, Rovers MM, Molenaar JM et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N. Engl J. Med. 368(19), 1791–1799 (2013).
  • Becnel D, You D, Erskin J, Dimina DM, Cormier SA. A role for airway remodeling during respiratory syncytial virus infection. Respir. Res. 6, 122 (2005).
  • You D, Becnel D, Wang K, Ripple M, Daly M, Cormier SA. Exposure of neonates to respiratory syncytial virus is critical in determining subsequent airway response in adults. Respir. Res. 7, 107 (2006).
  • Ripple MJ, You D, Honnegowda S et al. Immunomodulation with IL-4R alpha antisense oligonucleotide prevents respiratory syncytial virus-mediated pulmonary disease. J. Immunol. 185(8), 4804–4811 (2010).
  • Siegle JS, Hansbro N, Dong C, Angkasekwinai P, Foster PS, Kumar RK. Blocking induction of T helper type 2 responses prevents development of disease in a model of childhood asthma. Clin. Exp. Immunol. 165(1), 19–28 (2011).
  • Al-Garawi A, Fattouh R, Botelho F et al. Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood. Mucosal. Immunol. 4(6), 682–694 (2011).
  • Horvat JC, Starkey MR, Kim RY et al. Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. J. Allergy Clin. Immunol. 125(3), 617–625, 625 e611–625 e616 (2010).
  • Illi S, von Mutius E, Lau S, Niggemann B, Gruber C, Wahn U. Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study. Lancet 368(9537), 763–770 (2006).
  • Salo PM, Arbes SJ Jr, Crockett PW, Thorne PS, Cohn RD, Zeldin DC. Exposure to multiple indoor allergens in US homes and its relationship to asthma. J. Allergy Clin. Immunol. 121(3), 678–684 e672 (2008).
  • Arshad SH, Bateman B, Matthews SM. Primary prevention of asthma and atopy during childhood by allergen avoidance in infancy: a randomised controlled study. Thorax 58(6), 489–493 (2003).
  • Mihrshahi S, Peat JK, Marks GB et al. Eighteen-month outcomes of house dust mite avoidance and dietary fatty acid modification in the Childhood Asthma Prevention Study (CAPS). J. Allergy Clin. Immunol. 111(1), 162–168 (2003).
  • Arshad SH. Does exposure to indoor allergens contribute to the development of asthma and allergy? Curr. Allergy Asthma Rep. 10(1), 49–55 (2010).
  • Holt PG, Upham JW, Sly PD. Contemporaneous maturation of immunologic and respiratory functions during early childhood: implications for development of asthma prevention strategies. J. Allergy Clin. Immunol. 116(1), 16–24; quiz 25 (2005).
  • Carnieli DS, Yoshioka E, Silva LF et al. Inflammation and remodeling in infantile, juvenile, and adult allergic sensitized mice. Pediatr. Pulmonol. 46(7), 650–665 (2011).
  • Saglani S, Mathie SA, Gregory LG, Bell MJ, Bush A, Lloyd CM. Pathophysiological features of asthma develop in parallel in house dust mite-exposed neonatal mice. Am. J. Respir. Cell. Mol. Biol. 41(3), 281–289 (2009).
  • Evans MJ, Fanucchi MV, Miller LA, Carlson MA, Nishio SJ, Hyde DM. Reduction of collagen VII anchoring fibrils in the airway basement membrane zone of infant rhesus monkeys exposed to house dust mite. Am. J. Physiol. Lung Cell. Mol. Physiol. 298(4), L543–L547 (2010).
  • Brunekreef B, Janssen NA, de Hartog J, Harssema H, Knape M, van Vliet P. Air pollution from truck traffic and lung function in children living near motorways. Epidemiology 8(3), 298–303 (1997).
  • Carlsten C, Dybuncio A, Becker A, Chan-Yeung M, Brauer M. Traffic-related air pollution and incident asthma in a high-risk birth cohort. Occup. Environ. Med. 68(4), 291–295 (2011).
  • Clark NA, Demers PA, Karr CJ et al. Effect of early life exposure to air pollution on development of childhood asthma. Environ. Health Perspect. 118(2), 284–290 (2010).
  • Miyabara Y, Ichinose T, Takano H, Lim HB, Sagai M. Effects of diesel exhaust on allergic airway inflammation in mice. J. Allergy Clin. Immunol. 102(5), 805–812 (1998).
  • Thevenot PT, Saravia J, Jin N et al. Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 48(2), 188–197 (2013).
  • Balakrishna S, Saravia J, Thevenot P et al. Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs. Part Fibre Toxicol. 8, 11 (2011).
  • Finkelstein JN, Johnston CJ. Enhanced sensitivity of the postnatal lung to environmental insults and oxidant stress. Pediatrics 113(4 Suppl.), 1092–1096 (2004).
  • Chan JK, Kodani SD, Charrier JG et al. Age-specific effects on rat lung glutathione and antioxidant enzymes after inhaling ultrafine soot. Am, J. Respir. Cell. Mol. Biol. 48(1), 114–124 (2013).
  • Lee D, Wallis C, Wexler AS et al. Small particles disrupt postnatal airway development. J. Appl. Physiol. 109(4), 1115–1124 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.