51
Views
13
CrossRef citations to date
0
Altmetric
Review

Cytokine therapy of tuberculosis at the crossroads

, &
Pages 53-66 | Published online: 09 Jan 2014

References

  • Trapero-Marugan M, Garcia-Buey L, Munoz C et al. Sustained virological response to peginterferon plus ribavirin in chronic hepatitis C genotype 1 patients is associated with a persistent Th1 immune response. Aliment. Pharmacol. Ther.24, 117–128 (2006).
  • Asnis GM, De La Garza R. Interferon-induced depression in chronic hepatitis C: a review of its prevalence, risk factors, biology, and treatment approaches. J. Clin. Gastroenterol.40, 322–335 (2006).
  • Gallin JI. Interferon-γ in the management of chronic granulomatous-disease. Rev. Infect. Dis.13, 973–978 (1991).
  • Marciano BE, Wesley R, De Carlo ES et al. Long-term interferon-γ therapy for patients with chronic granulomatous disease. Clin. Infect. Dis.39, 692–699 (2004).
  • Weening RS, Leitz GJ, Seger RA. Recombinant human interferon-γ in patients with chronic granulomatous-disease – European follow-up-study. Eur. J. Pediatr.154, 295–298 (1995).
  • Pappas PG, Bustamante B, Ticona E et al. Recombinant interferon-γ 1b as adjunctive therapy for AIDS-related acute cryptococcal meningitis. J. Infect. Dis.189, 2185–2191 (2004).
  • Antachopoulos C, Roilides E. Cytokines and fungal infections. Br. J. Haematol.129, 583–596 (2005).
  • Flynn TN, Kelsey SM, Hazel DL, Guest JF. Cost effectiveness of amphotericin B plus G-CSF compared with amphotericin B monotherapy – treatment of presumed deep-seated fungal infection in neutropenic patients in the UK. Pharmacoeconomics16, 543–550 (1999).
  • Holland SM, Eisenstein EM, Kuhns DB et al. Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon-γ – a preliminary-report. N. Engl. J. Med.330, 1348–1355 (1994).
  • Chatte G, Panteix G, Perrinfayolle M, Pacheco Y. Aerosolized interferon-γ for Mycobacterium avium-complex lung-disease. Am. J. Resp. Crit. Care Med.152, 1094–1096 (1995).
  • Kemper CA, Bermudez LE, Deresinski SC, Immunomodulatory treatment of Mycobacterium avium complex bacteremia in patients with AIDS by use of recombinant granulocyte–macrophage colony-stimulating factor. J. Infect. Dis.177, 914–920 (1998).
  • Kedzierska K, Mak J, Mijch A et al. Granulocyte–macrophage colony-stimulating factor augments phagocytosis of Mycobacterium avium complex by human immunodeficiency virus type 1-infected monocytes/macrophages in vitro and in vivo. J. Infect. Dis.181, 390–394 (2000).
  • Cinti S, Coffey M, Sullivan A, Kazanjian P. Killing of Mycobacterium avium by neutrophils and monocytes from AIDS patients treated with recombinant granulocyte–macrophage colony-stimulating factor. J. Infect. Dis.180, 229–233 (1999).
  • Lauw FN, van der Meer JTM, de Metz J, Danner SA, van der Poll T. No beneficial effect of interferon-γ treatment in 2 human immunodeficiency virus-infected patients with Mycobacterium avium complex infection. Clin. Infect. Dis.32, E81–E82 (2001).
  • Sekiguchi Y, Yasui K, Yamazaki T, Agematsu K, Kobayashi N, Koike K. Effective combination therapy using interferon-γ and interleukin-2 for disseminated Mycobacterium avium complex infection in a pediatric patient with AIDS. Clin. Infect. Dis.41, 104–106 (2005).
  • Ward CM, Jyonouchi H, Kotenko SV et al. Adjunctive treatment of disseminated Mycobacterium avium complex infection with interferon α-2b in a patient with complete interferon-γ receptor R1 deficiency. Eur. J. Pediatr.166, 981–985 (2007).
  • de Silva TI, Cope A, Goepel J, Greig JM. The use of adjuvant granulocyte–macrophage colony-stimulating factor in HIV-related disseminated atypical mycobacterial infection. J. Infect.54, 207–210 (2007).
  • Milanes-Virelles MT, Garcia-Garcia I, Santos-Herrera Y et al. Adjuvant interferon γ in patients with pulmonary atypical mycobacteriosis: a randomized, double-blind, placebo-controlled study. BMC Infect. Dis.8, 17 (2008).
  • Toossi Z. The inflammatory response in Mycobacterium tuberculosis infection. Arch. Immunol. Ther. Exp.48, 513–519 (2000).
  • Vankayalapati R, Wizel B, Weis SE et al. Serum cytokine concentrations do not parallel Mycobacterium tuberculosis-induced cytokine production in patients with tuberculosis. Clin. Infect. Dis.36, 24–28 (2003).
  • Tomioka H. Adjunctive immunotherapy of mycobacterial infections. Curr. Pharm. Des.10, 3297–3312 (2004).
  • Wallis RS. Reconsidering adjuvant immunotherapy for tuberculosis. Clin. Infect. Dis.41, 201–208 (2005).
  • Holland SM. Cytokine therapy of mycobacterial infections. Adv. Intern. Med.45, 431–452 (2000).
  • Reljic R. IFN-γ therapy of tuberculosis and related infections. J. Interferon Cytokine Res.27, 353–363 (2007).
  • Lederer JA, Perez VL, DesRoches L, Kim SM, Abbas AK, Lichtman AH. Cytokine transcriptional events during helper T cell subset differentiation. J. Exp. Med.184, 397–406 (1996).
  • Yoshida A, Koide Y, Uchijima M, Yoshida TO. IFN-γ induces IL-12 messenger-RNA expression by a murine macrophage cell-line, J774. Biochem. Biophys. Res. Comm.198, 857–861 (1994).
  • Liew FY, Li Y, Severn A et al. A possible novel pathway of regulation by murine T-helper type-2 (Th2) cells of a Th1 cell-activity via the modulation of the induction of nitric-oxide synthase on macrophages. Eur. J. Immunol.21, 2489–2494 (1991).
  • Darnell JE, Kerr IM, Stark GR. JAK–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science264, 1415–1421 (1994).
  • Ihle JN. STATs: signal transducers and activators of transcription. Cell84, 331–334 (1996).
  • Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-γ. Annu. Rev. Immunol.15, 749–795 (1997).
  • Honda K, Takaoka A, Taniguchi T. Type I inteferon gene induction by the interferon regulatory factor family of transcription factors. Immunity25, 349–360 (2006).
  • Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon-γ gene-disrupted mice. J. Exp. Med.178, 2243–2247 (1993).
  • Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med.178, 2249–2254 (1993).
  • Mansouri D, Adimi P, Mirsaeidi M et al. Inherited disorders of the IL-12–IFN-γ axis in patients with disseminated BCG infection. Eur. J. Pediatr.164, 753–757 (2005).
  • Remiszewski P, Roszkowska-Sliz B, Winek J et al. Disseminated Mycobacterium avium infection in a 20-year-old female with partial recessive IFN γ R1 deficiency. Respiration73, 375–378 (2006).
  • Seneviratne SL, Doffinger R, Macfarlane J et al. Disseminated Mycobacterium tuberculosis infection due to interferon γ deficiency. Response to replacement therapy. Thorax62, 97–99 (2007).
  • Raad I, Hachem R, Leeds N, Sawaya R, Salem Z, Atweh S. Use of adjunctive treatment with interferon-γ in an immunocompromised patient who had refractory multidrug-resistant tuberculosis of the brain. Clin. Infect. Dis.22, 572–574 (1996).
  • Condos R, Raju B, Canova A et al. Recombinant γ interferon stimulates signal transduction and gene expression in alveolar macrophages in vitro and in tuberculosis patients. Infect. Immun.71, 2058–2064 (2003).
  • Kamijo R, Le JM, Shapiro D et al. Mice that lack the interferon-γ receptor have profoundly altered responses to infection with bacillus-Calmette–Guerin and subsequent challenge with lipopolysaccharide. J. Exp. Med.178, 1435–1440 (1993).
  • Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-γ via aerosol. Lancet349, 1513–1515 (1997).
  • Koh WJ, Kwon OJ, Suh GY et al. Six-month therapy with aerosolized interferon-γ for refractory multidrug-resistant pulmonary tuberculosis. J. Korean Med. Sci.19, 167–171 (2004).
  • Gilks CF, Brindle RJ, Otieno LS et al. Extrapulmonary and disseminated tuberculosis in HIV-1-seropositive patients presenting to the acute medical-services in Nairobi. AIDS4, 981–985 (1990).
  • Ulrichs T, Fieschi C, Nevicka E et al. Variable outcome of experimental interferon-γ therapy of disseminated bacillus Calmette–Guerin infection in two unrelated interleukin-12R β 1-deficient Slovakian children. Eur. J. Pediatr.164, 166–172 (2005).
  • Suarez-Mendez R, Garcia-Garcia I, Fernandez-Olivera N et al. Adjuvant interferon γ in patients with drug-resistant pulmonary tuberculosis: a pilot study. BMC Infect. Dis.4, 44(2004).
  • Park SK, Cho S, Lee IH et al. Subcutaneously administered interferon-γ for the treatment of multidrug-resistant pulmonary tuberculosis. Int. J. Infect. Dis.11, 434–440 (2007).
  • Coulter JBS, Baretto RL, Mallucci CL et al. Tuberculous meningitis: protracted course and clinical response to interferon-γ. Lancet Infect. Dis.7, 225–232 (2007).
  • Hussain S, Zwilling BS, Lafuse WP. Mycobacterium avium infection of mouse macrophages inhibits IFN-γ Janus kinase–STAT signaling and gene induction by down-regulation of the IFN-γ receptor. J. Immunol.163, 2041–2048 (1999).
  • Wojciechowski W, DeSanctis J, Skamene E, Radzioch D. Attenuation of MHC class II expression in macrophages infected with Mycobacterium bovis bacillus Calmette–Guerin involves class II transactivator and depends on the Nramp1 gene. J. Immunol.163, 2688–2696 (1999).
  • Benson CA, Kaplan JE, Masur H, Pau A, Holmes KK. Treating opportunistic infections among HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association/Infectious Diseases Society of America. Clin. Infect. Dis.40, S131–S235 (2005).
  • Murray HW. Interferon-γ and host antimicrobial defense – current and future clinical-applications. Am. J. Med.97, 459–467 (1994).
  • Steinmann GG, Rosenkaimer F, Leitz G. Clinical-experiences with interferon-α and interferon-γ. Int. Rev. Exp. Pathol.34, 193–207 (1993).
  • Panitch HS, Haley AS, Hirsch RL, Johnson KP. Exacerbations of multiple-sclerosis in patients treated with γ interferon. Lancet1, 893–895 (1987).
  • Murray HW. Interferon-γ, the activated macrophage, and host defense against microbial challenge. Ann. Intern. Med.108, 595–608 (1988).
  • Briken V, Porcelli SA, Besra GS, Kremer L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol.53, 391–403 (2004).
  • Ryll R, Kumazawa Y, Yano I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids – a review. Microbiol. Immunol.45, 801–811 (2001).
  • Strohmeier GR, Fenton MJ. Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect.1, 709–717 (1999).
  • Jankovic D, Sher A, Yap G. Th1/Th2 effector choice in parasitic infection: decision making by committee. Curr. Opin. Immunol.13, 403–409 (2001).
  • Altare F, Durandy A, Lammas D et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science280, 1432–1435 (1998).
  • de Jong R, Altare F, Haagen IA et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science280, 1435–1438 (1998).
  • Flynn JL, Goldstein MM, Triebold KJ, Sypek J, Wolf S, Bloom BR. IL-12 Increases resistance of Balb/C mice to Mycobacterium tuberculosis infection. J. Immunol.155, 2515–2524 (1995).
  • Silva RA, Pais TF, Appelberg R. Evaluation of IL-12 in immunotherapy and vaccine design in experimental Mycobacterium avium infections. J. Immunol.161, 5578–5585 (1998).
  • Kobayashi K, Kasama T, Yamazaki J et al. Protection of mice from Mycobacterium avium infection by recombinant interleukin-12. Antimicrob. Agents Chemother.39, 1369–1371 (1995).
  • Nolt D, Flynn JL. Interleukin-12 therapy reduces the number of immune cells and pathology in lungs of mice infected with Mycobacterium tuberculosis. Infect. Immun.72, 2976–2988 (2004).
  • Marchant A, Amedei A, Azzurri A et al. Polarization of PPD-specific T-cell response of patients with tuberculosis from Th0 to Th1 profile after successful antimycobacterial therapy or in vitro conditioning with interferon-α or interleukin-12. Am. J. Respir. Cell Mol. Biol.24, 187–194 (2001).
  • Feng CG, Jankovic D, Kullberg M et al. Maintenance of pulmonary Th1 effector function in chronic tuberculosis requires persistent IL-12 production. J. Immunol.174, 4185–4192 (2005).
  • Holscher C, Atkinson RA, Arendse B et al. A protective and agonistic function of IL-12p40 in mycobacterial infection. J. Immunol.167, 6957–6966 (2001).
  • Ha SJ, Park SH, Kim HJ et al. Enhanced immunogenicity and protective efficacy with the use of interleukin-12-encapsulated microspheres plus AS01B in tuberculosis subunit vaccination. Infect. Immun.74, 4954–4959 (2006).
  • Greinert U, Ernst M, Schlaak M, Entzian P. Interleukin-12 as successful adjuvant in tuberculosis treatment. Eur. Resp. J.17, 1049–1051 (2001).
  • Leonard JP, Sherman ML, Fisher GL et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-γ production. Blood90, 2541–2548 (1997).
  • Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13, 715–725 (2000).
  • Wozniak TM, Ryan AA, Triccas JA, Britton WJ. Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection. Infect. Immun.74, 557–565 (2006).
  • Happel KI, Lockhart EA, Mason CM et al. Pulmonary interleukin-23 gene delivery increases local T-cell immunity and controls growth of Mycobacterium tuberculosis in the lungs. Infect. Immun.73, 5782–5788 (2005).
  • Peng MY, Wang ZH, Yao CY et al. Interleukin 17-producing γ δ T cells increased in patients with active pulmonary tuberculosis. Cell. Mol. Immunol.5, 203–208 (2008).
  • Devergne O, Hummel M, Koeppen H et al. A novel interleukin-12 p40-related protein induced by latent Epstein–Barr virus infection in B lymphocytes. J. Virol.70, 1143–1153 (1996).
  • Pflanz S, Timans JC, Cheung J et al. IL-27, a heterodimeric cytokine composed of EB13 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity16, 779–790 (2002).
  • Holscher C, Holscher A, Ruckerl D et al. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J. Immunol.174, 3534–3544 (2005).
  • Yoshida S, Tanaka T, Kita Y et al. DNA vaccine using hemagglutinating virus of Japan-liposome encapsulating combination encoding mycobacterial heat shock protein 65 and interleukin-12 confers protection against Mycobacterium tuberculosis by T cell activation. Vaccine24, 1191–1204 (2006).
  • Freidag BL, Melton GB, Collins F et al. CpG oligodeoxynucleotides and interleukin-12 improve the efficacy of Mycobacterium bovis BCG vaccination in mice challenged with M. tuberculosis. Infect. Immun.68, 2948–2953 (2000).
  • Palendira U, Kamath AT, Feng CG et al. Coexpression of interleukin-12 chains by a self-splicing vector increases the protective cellular immune response of DNA and Mycobacterium bovis BCG vaccines against Mycobacterium tuberculosis. Infect. Immun.70, 1949–1956 (2002).
  • Yu DH, Li M, Hu XD, Cai H. A combined DNA vaccine enhances protective immunity against Mycobacterium tuberculosis and Brucella abortus in the presence of an IL-12 expression vector. Vaccine25, 6744–6754 (2007).
  • Martin E, Kamath AT, Briscoe H, Britton WJ. The combination of plasmid interleukin-12 with a single DNA vaccine is more effective than Mycobacterium bovis (bacille Calmette–Guerin) in protecting against systemic Mycobacterim avium infection. Immunology109, 308–314 (2003).
  • Silva RA, Pais TF, Appelberg R. Effects of interleukin-12 in the long-term protection conferred by a Mycobacterium avium subunit vaccine. J. Immunol. (Scand.)52, 531–533 (2000).
  • Malek TR. The biology of interleukin-2. Annu. Rev. Immunol.26, 453–479 (2007).
  • Davey RT, Chaitt DG, Piscitelli SC et al. Subcutaneous administration of interleukin-2 in human immunodeficiency virus type 1-infected persons. J. Infect. Dis.175, 781–789 (1997).
  • Hengge UR, Goos M, Esser S et al. Randomized, controlled Phase II trial of subcutaneous interleukin-2 in combination with highly active antiretroviral therapy (HAART) in HIV patients. AIDS12, F225–F234 (1998).
  • Sanchez FO, Rodriguez JI, Agudelo G, Garcia LF. Immune responsiveness and lymphokine production in patients with tuberculosis and healthy controls. Infect. Immun.62, 5673–5678 (1994).
  • Toossi Z, Ellner JJ. Interaction of Leu-11 reactive lymphocytes and adherent cells in suppression of Ppd-induced IL-2 production in tuberculosis. Clin. Res.34, A535 (1986).
  • Toossi Z, Kleinhenz ME, Ellner JJ. Defective interleukin-2 production and responsiveness in human pulmonary tuberculosis. J. Exp. Med.163, 1162–1172 (1986).
  • Shiratsuchi H, Okuda Y, Tsuyuguchi I. Recombinant human interleukin-2 reverses in vitro-deficient cell-mediated immune-responses to tuberculin purified protein derivative by lymphocytes of tuberculous patients. Infect. Immun.55, 2126–2131 (1987).
  • Jeevan A, Asherson GL. Recombinant interleukin-2 limits the replication of Mycobacterium-lepraemurium and Mycobacterium-bovis BCG in mice. Infect. Immun.56, 660–664 (1988).
  • Johnson BJ, Ress SR, Willcox P et al. Clinical and immune-responses of tuberculosis patients treated with low-dose IL-2 and multidrug therapy. Cytokines Mol. Ther.1, 185–196 (1995).
  • Johnson BJ, Bekker LG, Rickman R et al. RhuIL-2 adjunctive therapy in multidrug resistant tuberculosis: a comparison of two treatment regimens and placebo. Tuber. Lung Dis.78, 195–203 (1997).
  • Johnson JL, Ssekasanvu E, Okwera A et al.; Uganda Case Western Reserve University. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am. J. Resp. Crit. Care Med.168, 185–191 (2003).
  • Barnes PF. Immunotherapy for tuberculosis – wave of the future or tilting at windmills? Am. J. Resp. Crit. Care Med.168, 142–143 (2003).
  • Chu NH, Zhu LZ, Yie ZZ et al. A controlled clinical study on the efficacy of recombinant human interleukin-2 in the treatment of pulmonary tuberculosis. Zhonghua Jie He He Hu Xi Za Zhi26, 548–551 (2003).
  • Sakhno LV, Tikhonova MA, Ostanin AA, Nikonov SD, Zhdanov OA, Chernykh ER. Interleukin-2 in the correction of T-cell anergy in patients with pulmonary tuberculosis. Probl. Tuberk. Bolezn. Legk.1, 48–52 (2006).
  • Skvortsova LA, Pavlova MV, Vinogradova TI, Archakova LI. Combined therapy of pulmonary tuberculosis by using recombinant interleukins. Probl. Tuberk. Bolezn. Legk.10, 9–12 (2003).
  • Martinez-Moczygemba M, Huston DP. Biology of common β receptor-signaling cytokines: IL-3, IL-5, and GM-CSF. J. Allergy Clin. Immunol.112, 653–665 (2003).
  • Armitage JO. Emerging applications of recombinant human granulocyte–macrophage colony-stimulating factor. Blood92, 4491–4508 (1998).
  • Bermudez LE, Martinelli J, Petrofsky M, Kolonoski P, Young LS. Recombinant granulocyte–macrophage colony-stimulating factor enhances the effects of antibiotics against Mycobacterium-avium complex infection in the beige mouse model. J. Infect. Dis.169, 575–580 (1994).
  • Onyeji CO, Nightingale CH, Tessier PR, Nicolau DP, Bow LM. Activities of clarithromycin, azithromycin, and ofloxacin in combination with liposomal or unencapsulated granulocyte–macrophage colony-stimulating factor against intramacrophage Mycobacterium-avium Mycobacterium-intracellulare. J. Infect. Dis.172, 810–816 (1995).
  • Kedzierska K, Maerz A, Warby T et al. Granulocyte–macrophage colony-stimulating factor inhibits HIV-1 replication in monocyte-derived macrophages. AIDS14, 1739–1748 (2000).
  • Pedral-Sampaio DB, Netto EM, Brites C et al. Use of Rhu-GM-CSF in pulmonary tuberculosis patients: results of a randomized clinical trial. J. Infect. Dis. (Braz.)7, 245–252 (2003).
  • Ryan AA, Wozniak TM, Shklovskaya E et al. Improved protection against disseminated tuberculosis by Mycobacterium bovis bacillus Calmette–Guerin secreting murine GM-CSF is associated with expansion and activation of APCs. J. Immunol.179, 8418–8424 (2007).
  • Wang J, Zganiacz A, Xing Z. Enhanced immunogenicity of BCG vaccine by using a viral-based GM-CSF transgene adjuvant formulation. Vaccine20, 2887–2898 (2002).
  • Kamath AT, Hanke T, Briscoe H, Britton WJ. Co-immunization with DNA vaccines expressing granulocyte–macrophage colony-stimulating factor and mycobacterial secreted proteins enhances T-cell immunity, but not protective efficacy against Mycobacterium tuberculosis. Immunology96, 511–516 (1999).
  • Flynn JL, Goldstein MM, Chan J et al. Tumor-necrosis-factor-α is required in the protective immune-response against Mycobacterium-tuberculosis in mice. Immunity2, 561–572 (1995).
  • Wallis RS, Broder M, Wong J, Beenhouwer D. Granulomatous infections due to tumor necrosis factor blockade: correction. Clin. Infect. Dis.39, 1254–1255 (2004).
  • Wallis RS, Broder MS, Wong JY, Hanson ME, Beenhouwer DO. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin. Infect. Dis.38, 1261–1265 (2004).
  • Tramontana JM, Utaipat U, Molloy A et al. Thalidomide treatment reduces tumor-necrosis-factor-α production and enhances weight-gain in patients with pulmonary tuberculosis. Mol. Med.1, 384–397 (1995).
  • Schoeman JF, Springer P, van Rensburg AJ et al. Adjunctive thalidomide therapy for childhood tuberculous meningitis: results of a randomized study. J. Child Neurol.19, 250–257 (2004).
  • Wallis RS, Kyambadde P, Johnson JL et al. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. AIDS18, 257–264 (2004).
  • Mayanja-Kizza H, Jones-Lopez E, Okwera A et al.; Uganda-Case Western Res Collaborat. Immunoadjuvant prednisolone therapy for HIV-associated tuberculosis: a Phase 2 clinical trial in Uganda. J. Infect. Dis.191, 856–865 (2005).
  • Rook GAW, Hernandez-Pando R, Dheda K, Seah GT. IL-4 in tuberculosis: implications for vaccine design. Trends Immunol.25, 483–488 (2004).
  • Buccheri S, Reljic R, Caccamo N et al. IL-4 depletion enhances host resistance and passive IgA protection against tuberculosis infection in BALB/c mice. Eur. J. Immunol.37, 729–737 (2007).
  • Roy E, Lowrie DB, Jolles SR. Current strategies in TB immunotherapy. Curr. Mol. Med.7, 373–386 (2007).
  • Hart TK, Blackburn MN, Brigham-Burke M et al. Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin. Exp. Immunol.130, 93–100 (2002).
  • Steinke JW, Borish L. Th2 cytokines and asthma interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Resp. Res.2, 66–70 (2001).
  • van Crevel R, Karyadi E, Preyers F et al. Increased production of interleukin 4 by CD4+ and CD8+ T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J. Infect. Dis.181, 1194–1197 (2000).
  • Rook GAW, Dheda K, Zumla A. Do successful tuberculosis vaccines need to be immunoregulatory rather than merely Th1-boosting? Vaccine23, 2115–2120 (2005).
  • Elias D, Akuffo H, Pawlowski A, Haile M, Schon T, Britton S. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine23, 1326–1334 (2005).
  • Demissie A, Wassie L, Abebe M et al. The 6-kilodalton early secreted antigenic target-responsive, asymptomatic contacts of tuberculosis patients express elevated levels of interleukin-4 and reduced levels of γ interferon. Infect. Immun.74, 2817–2822 (2006).
  • Silva RA, Pais TF, Appelberg R. Blocking the receptor for IL-10 improves antimycobacterial chemotherapy and vaccination. J. Immunol.167, 1535–1541 (2001).
  • Kedzierska K, Paukovics G, Handley A et al. Interferon-γ therapy activates human monocytes for enhanced phagocytosis of Mycobacterium avium complex in HIV-infected individuals. HIV Clin. Trials5, 80–85 (2004).
  • Palmero D, Eiguchi K, Rendo P, Zorrilla LC, Abbate E, Montaner LJG. Phase II trial of recombinant interferon-α 2b in patients with advanced intractable multidrug-resistant pulmonary tuberculosis: long-term follow-up. Int. J. Tuberc. Lung Dis.3, 214–218 (1999).
  • Giosue S, Casarini M, Ameglio F et al. Aerosolized interferon-α treatment in patients with multi-drug-resistant pulmonary tuberculosis. Eur. Cytokine Netw.11, 99–103 (2000).
  • Riddell LA, Pinching AJ, Hill S et al. A Phase III study of recombinant human interferon γ to prevent opportunistic infections in advanced HIV disease. AIDS Res. Hum. Retroviruses17, 789–797 (2001).
  • Angel JB, High K, Rhame F et al.; Leukine HIV Study Group. Phase III study of granulocyte–macrophage colony-stimulating factor in advanced HIV disease: effect on infections, CD4 cell counts and HIV suppression. AIDS14, 387–395 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.