66
Views
11
CrossRef citations to date
0
Altmetric
Review

Role of the serotonin transporter in pulmonary arterial hypertension

&
Pages 749-757 | Published online: 10 Jan 2014

References

  • Kramer MS, Lane DA. Aminorex, dexfenfluramine, and primary pulmonary hypertension. J. Clin. Epidemiol.51(4), 361–364 (1998).
  • Abenhaim L, Moride Y, Brenot F et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N. Engl. J. Med.335(9), 609–616 (1996).
  • Rothman RB, Ayestas MA, Dersch CM, Baumann MH. Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates: implications for primary pulmonary hypertension. Circulation100(8), 869–875 (1999).
  • Eddahibi S, Humbert M, Fadel E et al. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J. Clin. Invest.108(8), 1141–1150 (2001).
  • Eddahibi S, Chaouat A, Morrell N et al. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease. Circulation108(15), 1839–1844 (2003).
  • Long L, Aldashev AA, Hensiek A et al. Preliminary identification of genetic loci associated with high altitude pulmonary hypertension by association mapping. Thorax57(Suppl. 3), S110 (2002).
  • Olson TP, Snyder EM, Frantz RP, Turner ST, Johnson BD. Repeat length polymorphism of the serotonin transporter gene influences pulmonary artery pressure in heart failure 1. Am. Heart J.153(3), 426–432 (2007).
  • Meyrick B, Reid L. Pulmonary-hypertension. Anatomic and physiologic correlates. Clin. Chest Med.4(2), 199–217 (1983).
  • Heath D, Smith P, Gosney J et al. The pathology of the early and late stages of primary pulmonary hypertension. Br. Heart J.58(3), 204–213 (1987).
  • Simonneau G, Galie N, Rubin LJ et al. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol.43(12), 5S–12S (2004).
  • Loyd JE, Butler MG, Foroud TM, Conneally PM, Phillips JA, Newman JH. Genetic anticipation and abnormal gender ratio at birth in familial primary pulmonary-hypertension. Am. J. Resp. Crit. Care Med.152(1), 93–97 (1995).
  • Machado RD, Pauciulo MW, Thomson JR et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am. J. Hum. Gen.68(1), 92–102 (2001).
  • Fujiwara M, Yagi H, Matsuoka R et al. Implications of mutations of activin receptor-like kinase 1 gene (ALK1) in addition to bone morphogenetic protein receptor II gene (BMPR2) in children with pulmonary arterial hypertension. Circ. J.72(1), 127–133 (2008).
  • Sankelo M, Flanagan JA, Machado R et al. BMPR2 mutations have short lifetime expectancy in primary pulmonary hypertension. Hum. Mutat.26(2), 119–124 (2005).
  • Baloira A, Vilarino C, Leiro V, Valverde D. Mutations in the gene encoding bone morphogenetic protein receptor 2 in patients with idiopathic pulmonary arterial hypertension 1. Arch. Bronconeumol.44(1), 29–34 (2008).
  • Thomson JR, Machado RD, Pauciulo MW et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family. J. Med. Gen.37(10), 741–745 (2000).
  • Lane KB, Machado RD, Pauciulo MW et al. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat. Genet.26(1), 81–84 (2000).
  • Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J. Appl. Physiol.98(1), 390–403 (2005).
  • Silvani P, Camporesi A. Drug-induced pulmonary hypertension in newborns: a review. Curr. Vasc. Pharmacol.5(2), 129–133 (2007).
  • MacLean MR, Herve P, Eddahibi S, Adnot S. 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br. J. Pharmacol.131(2), 161–168 (2000).
  • Murphy DL, Lerner A, Rudnick G, Lesch KP. Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol. Interv.4(2), 109–123 (2004).
  • Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat. Rev. Neurosci.4(1), 13–25 (2003).
  • Rothman RB, Baumann MH. Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol. Ther.95(1), 73–88 (2002).
  • Ramamoorthy S, Bauman AL, Moore KR et al. Antidepressant-sensitive and cocaine-sensitive human serotonin transporter–molecular-cloning, expression, and chromosomal localization. Proc. Natl Acad. Sci. USA90(6), 2542–2546 (1993).
  • Lesch KP, Wolozin BL, Murphy DL, Riederer P. Primary structure of the human platelet serotonin uptake site–identity with the brain-serotonin transporter. J. Neurochem.60(6), 2319–2322 (1993).
  • Fumeron F, Betoulle D, Nicaud V et al. Serotonin transporter gene polymorphism and myocardial infarction–Etude Cas-te’moins de’ l’infarctus du myocarde (ECTIM) 1. Circulation105(25), 2943–2945 (2002).
  • Coto E, Reguero JR, Alvarez V et al. 5-hydroxytryptamine 5-HT2A receptor and 5-hydroxytryptamine transporter polymorphisms in acute myocardial infarction. Clin. Sci.104(3), 241–245 (2003).
  • Narita N, Narita M, Takashima S, Nakayama M, Nagai T, Okado N. Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population. Pediatrics107(4), 690–692 (2001).
  • Weese-Mayer DE, Berry-Kravis EM, Maher BS, Silvestri JM, Curran ME, Marazita ML. Sudden infant death syndrome: association with a promoter polymorphism of the serotonin transporter gene. Am. J. Med. Genet. A117(3), 268–274 (2003).
  • Narita M, Nishigami N, Narita N et al. Association between serotonin transporter gene polymorphism and chronic fatigue syndrome. Biochem. Biophys. Res. Comm.311(2), 264–266 (2003).
  • Willers ED, Newman JH, Loyd JE et al. Serotonin transporter polymorphisms in familial and idiopathic pulmonary arterial hypertension. Am. J. Resp. Crit. Care Med.173(7), 798–802 (2006).
  • Machado RD, Koehler R, Glissmeyer E et al. Genetic association of the serotonin transporter in pulmonary arterial hypertension. Am. J. Resp. Crit. Care Med.173(7), 793–797 (2006).
  • MacLean MR, Deuchar GA, Hicks MN et al. Overexpression of the 5-hydroxytryptamine transporter gene. Effect on pulmonary hemodynamics and hypoxia-induced pulmonary hypertension. Circulation109(17), 2150–2155 (2004).
  • Guignabert C, Izikki M, Tu LI et al. Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circ. Res.98(10), 1323–1330 (2006).
  • Eddahibi S, Hanoun N, Lanfumey L et al. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J. Clin. Invest.105(11), 1555–1562 (2000).
  • Morecroft I, Loughlin L, Nilsen M et al. Functional interactions between 5-hydroxytryptamine receptors and the serotonin transporter in pulmonary arteries. J. Pharmacol. Exp. Ther.313(2), 539–548 (2005).
  • Nagaoka T, Gebb SA, Karoor V et al. Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J. Appl. Physiol.100(3), 996–1002 (2006).
  • Marcos E, Adnot S, Pham MH et al. Serotonin transporter inhibitors protect against hypoxic pulmonary hypertension. Am. J. Resp. Crit. Care Med.168(4), 487–493 (2003).
  • Guignabert C, Raffestin B, Benferhat R et al. Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation111(21), 2812–2819 (2005).
  • Laudi S, Trump S, Schmitz V et al. Serotonin transporter protein in pulmonary hypertensive rats treated with atorvastatin. Am. J. Physiol. Lung Cell. Mol. Physiol.293(3), L630–L638 (2007).
  • Marcos E, Fadel E, Sanchez O et al. Serotonin-induced smooth muscle hyperplasia in various forms of human pulmonary hypertension. Circ. Res.94(9), 1263–1270 (2004).
  • Lawrie A, Spiekerkoetter E, Martinez EC et al. Interdependent serotonin transporter and receptor pathways regulate S100A4/Mts1, a gene associated with pulmonary vascular disease. Circ. Res.97(3), 227–235 (2005).
  • Liu YL, Suzuki YJ, Day RM, Fanburg BL. Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ. Res.95(6), 579–586 (2004).
  • Lee SL, Wang WW, Lanzillo JJ, Fanburg BL. Serotonin produces both hyperplasia and hypertrophy of bovine pulmonary-artery smooth-muscle cells in culture. Am. J. Physiol.266(1), L46–L52 (1994).
  • Welsh DJ, Harnett M, MacLean M, Peacock AJ. Proliferation and signaling in fibroblasts. Role of 5-hydroxytryptamine(2A) receptor and transporter. Am. J. Resp. Crit. Care Med.170(3), 252–259 (2004).
  • Dempsie Y, Morecroft I, Welsh DJ et al. Converging evidence in support of the serotonin hypothesis of dexfenfluramine-induced pulmonary hypertension with novel transgenic mice. Circulation117(22), 2978–2937 (2008).
  • Mair K, MacLean M, Morecroft I, Dempsie Y, Palmer T. Novel interactions between the 5-HT transporter, 5-HT1B receptors and Rho kinase in vivo and in pulmonary fibroblasts. Br. J. Pharmacol.155(4), 606–616 (2008).
  • Morecroft I, Heeley RP, Prentice HM, Kirk A, MacLean MR. 5-hydroxytryptamine receptors mediating contraction in human small muscular pulmonary arteries: importance of the 5-HT1B receptor. Br. J. Pharmacol.128(3), 730–734 (1999).
  • Keegan A, Morecroft I, Smillie D, Hicks MN, MacLean MR. Contribution of the 5-HT1B receptor to hypoxia-induced pulmonary hypertension. Converging evidence using 5-HT1B-receptor knockout mice and the 5-HT1B/1D-receptor antagonist GR127935. Circ. Res.89(12), 1231–1239 (2001).
  • MacLean MR, Clayton RA, Templeton AGB, Morecroft I. Evidence for 5-HT1-like receptor-mediated vasoconstriction in human pulmonary artery. Br. J. Pharmacol.119(2), 277–282 (1996).
  • Launay JM, Herve P, Peoc’h K et al. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat. Med.8(10), 1129–1135 (2002).
  • Walther DJ, Peter JU, Winter S et al. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-granule release. Cell115(7), 851–862 (2003).
  • Guilluy C, Rolli-Derkinderen M, Tharaux PL, Melino G, Pacaud P, Loirand G. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells. J. Biol. Chem.282(5), 2918–2928 (2007).
  • Liu JQ, Folz RJ. Extracellular superoxide enhances 5-HT-induced murine pulmonary artery vasoconstriction. Am. J. Physiol. Lung Cell. Mol. Physiol.287(1), L111–L118 (2004).
  • Lee SL, Wang WW, Fanburg BL. Superoxide as an intermediate signal for serotonin-induced mitogenesis. Free Radic. Biol. Med.24(5), 855–858 (1998).
  • Lee SL, Wang WW, Finlay GA, Fanburg BL. Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. Am. J. Physiol. Lung Cell. Mol. Physiol.277(2), L282–L291 (1999).
  • Greenway S, van Suylen RJ, Sarvaas GD et al. S100A4/Mts1 produces murine pulmonary artery changes resembling plexogenic arteriopathy and is increased in human plexogenic arteriopathy. Am. J. Pathol.164(1), 253–262 (2004).
  • Das M, Bouchey DM, Moore MJ, Hopkins DC, Nemenoff RA, Stenmark KR. Hypoxia-induced proliferative response of vascular adventitial fibroblasts is dependent on G protein-mediated activation of mitogen-activated protein kinases. J. Biol. Chem.276(19), 15631–15640 (2001).
  • Mortimer HJ, Peacock AJ, Kirk A, Welsh DJ. p38 MAP kinase: essential role in hypoxia-mediated human pulmonary artery fibroblast proliferation. Pulm. Pharmacol. Ther.20(6), 718–725 (2007).
  • Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S. A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J. Neurosci.25(1), 29–41 (2005).
  • Zhu CB, Carneiro AM, Dostmann WR, Hewlett WA, Blakely RD. p38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process. J. Biol. Chem.280(16), 15649–15658 (2005).
  • Kimura K, Ito M, Amano M et al. Regulation of myosin phosphatase by Rho and Rho-Associated kinase (Rho-kinase). Science273(5272), 245–248 (1996).
  • Fagan KA, Oka M, Bauer NR et al. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am. J. Physiol. Lung Cell. Mol. Physiol.287(4), L656–L664 (2004).
  • Robertson TP, Dipp M, Ward JP, Aaronson PI, Evans AM. Inhibition of sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br. J. Pharmacol.131(1), 5–9 (2000).
  • Weigand L, Sylvester JT, Shimoda LA. Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am. J. Physiol. Lung Cell. Mol. Physiol.290(2), L284–L290 (2006).
  • Janssen LJ, Premji M, Netherton S, Coruzzi J, Lu-Chao H, Cox PG. Vasoconstrictor actions of isoprostanes via tyrosine kinase and Rho kinase in human and canine pulmonary vascular smooth muscles. Br. J. Pharmacol.132(1), 127–134 (2001).
  • Han W, Tang X, Wu H, Liu Y, Zhu D. Role of ERK1/2 signaling pathways in 4-aminopyridine-induced rat pulmonary vasoconstriction. Eur. J. Pharmacol.569(1–2), 138–144 (2007).
  • Mitani Y, Mutlu A, Russell JC, Brindley DN, DeAlmeida J, Rabinovitch M. Dexfenfluramine protects against pulmonary hypertension in rats. J. Appl. Physiol.93(5), 1770–1778 (2002).
  • Rochefort GY, Lemaire MC, Eder V et al. Dexfenfluramine does not worsen but moderates progression of chronic hypoxia-induced pulmonary hypertension. Eur. J. Pharmacol.550(1–3), 149–154 (2006).
  • Weir EK, Reeve HL, Huang JMC et al. Anorexic agents aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction. Circulation94(9), 2216–2220 (1996).
  • Reeve HL, Archer SL, Soper M, Weir EK. Dexfenfluramine increases pulmonary smooth muscle intracellular Ca2+ independent of membrane potential. Am. J. Physiol. Lung Cell. Mol. Physiol.277(3), L662–L666 (1999).
  • Higenbottam T, Marriott H, Cremona G, Laude E, Bee D. The acute effects of dexfenfluramine on human and porcine pulmonary vascular tone and resistance. Chest116(4), 921–930 (1999).
  • Patnaude LA, Undem BJ, O’Rourke ST. Dexfenfluramine-induced contraction of human and rat isolated pulmonary arteries. Eur. J. Pharmacol.401(2), 229–234 (2000).
  • Lee SL, Wang WW, Fanburg BL. Dexfenfluramine as a mitogen signal via the formation of superoxide anion. FASEB J.15(7), 1324–1325 (2001).
  • Hironaka E, Hongo M, Sakai A et al. Serotonin receptor antagonist inhibits monocrotaline-induced pulmonary hypertension and prolongs survival in rats. Cardiovasc. Res.60(3), 692–699 (2003).
  • Morecroft I, Dempsie Y, Bader M et al. Effect of tryptophan hydroxylase 1 deficiency on the development of hypoxia-induced pulmonary hypertension. Hypertension49(1), 232–236 (2007).
  • Chin KM, Channick RN, Rubin LJ. Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest130(6), 1657–1663 (2006).
  • Lu J, Shimpo H, Shimamoto A et al. Specific inhibition of p38 mitogen-activated protein kinase with FR167653 attenuates vascular proliferation in monocrotaline-induced pulmonary hypertension in rats. J. Thorac. Cardiovasc.Surg.128(6), 850–859 (2004).
  • Massague J, Seoane J, Wotton D. Smad transcription factors 2. Genes Dev.19(23), 2783–2810 (2005).
  • Yang XD, Long L, Southwood M et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ. Res.96(10), 1053–1063 (2005).
  • Long L, MacLean MR, Jeffery TK et al. Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ. Res.98(6), 818–827 (2006).
  • Kretzschmar M, Doody J, Massague J. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature389(6651), 618–622 (1997).
  • Humbert M, Deng Z, Simonneau G et al. BMPR2 germline mutations in pulmonary hypertension associated with fenfluramine derivatives. Eur. Resp. J.20(3), 518–523 (2002).
  • Linder AE, Diaz J, Ni W, Szasz T, Burnett R, Watts SW. Vascular reactivity, 5-HT uptake, and blood pressure in the serotonin transporter knockout rat. Am. J. Physiol. Heart Circ. Physiol.294(4), H1745–H1752 (2008).
  • Villalon CM, Centurion D. Cardiovascular responses produced by 5-hydroxytriptamine:a pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn Schmiedebergs Arch. Pharmacol.376(1–2), 45–63 (2007).
  • Sharma SK, Zahradka P, Chapman D, Kumamoto H, Takeda N, Dhalla NS. Inhibition of serotonin-induced vascular smooth muscle cell proliferation by sarpogrelate. J. Pharmacol. Exp. Ther.290(3), 1475–1481 (1999).
  • Kawut SM, Horn EM, Berekashvili KK et al. Selective serotonin reuptake inhibitor use and outcomes in pulmonary arterial hypertension. Pulm. Pharmacol. Ther.19(5), 370–374 (2006).
  • Chambers CD, Hernandez-Diaz S, Van Marter LJ et al. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N. Engl. J. Med.354(6), 579–587 (2006).
  • Fornaro E, Li D, Pan J, Belik J. Prenatal exposure to fluoxetine induces fetal pulmonary hypertension in the rat. Am. J. Respir. Crit. Care Med.176(10), 1035–1040 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.