291
Views
20
CrossRef citations to date
0
Altmetric
Review

An EGFRvIII-targeted bispecific T-cell engager overcomes limitations of the standard of care for glioblastoma

, , , , &
Pages 375-386 | Published online: 10 Jan 2014

References

  • Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro oncology 14(Suppl. 5), v1–v49 (2012).
  • Stupp R, Hegi ME, Mason WP et al.; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10(5), 459–466 (2009).
  • Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007).
  • Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
  • Kantoff PW, Higano CS, Shore ND et al.; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010).
  • Brahmer JR, Tykodi SS, Chow LQ et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366(26), 2455–2465 (2012).
  • Topalian SL, Hodi FS, Brahmer JR et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366(26), 2443–2454 (2012).
  • Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ; ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre Phase III trial. Lancet Oncol. 7(5), 392–401 (2006).
  • Walker MD, Strike TA, Sheline GE. An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 5(10), 1725–1731 (1979).
  • Stieber VW, Mehta MP. Advances in radiation therapy for brain tumors. Neurol. Clin. 25(4), 1005–1033, ix (2007).
  • Stupp R, Mason WP, van den Bent MJ et al.; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005).
  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 13(4), 1253–1259 (2007).
  • Kreisl TN, Kim L, Moore K et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27(5), 740–745 (2009).
  • Aggarwal S. What’s fueling the biotech engine–2008. Nat. Biotechnol. 27(11), 987–993 (2009).
  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. J. Immunol. 174(5), 2453–2455 (1975).
  • Modjtahedi H, Ali S, Essapen S. Therapeutic application of monoclonal antibodies in cancer: advances and challenges. Br. Med. Bull. 104, 41–59 (2012).
  • Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods 36(1), 3–10 (2005).
  • Lonberg N. Fully human antibodies from transgenic mouse and phage display platforms. Curr. Opin. Immunol. 20(4), 450–459 (2008).
  • Giusti RM, Shastri KA, Cohen MH, Keegan P, Pazdur R. FDA drug approval summary: panitumumab (Vectibix). Oncologist 12(5), 577–583 (2007).
  • Weinblatt ME, Keystone EC, Furst DE et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48(1), 35–45 (2003).
  • Van Cutsem E, Peeters M, Siena S et al. Open-label Phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol. 25(13), 1658–1664 (2007).
  • Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23(9), 1105–1116 (2005).
  • Stockmeyer B, Elsässer D, Dechant M et al. Mechanisms of G-CSF- or GM-CSF-stimulated tumor cell killing by Fc receptor-directed bispecific antibodies. J. Immunol. Methods 248(1–2), 103–111 (2001).
  • Schlachetzki F, Zhu C, Pardridge WM. Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier. J. Neurochem. 81(1), 203–206 (2002).
  • Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7(9), 715–725 (2007).
  • Skerra A, Plückthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240(4855), 1038–1041 (1988).
  • Better M, Chang CP, Robinson RR, Horwitz AH. Escherichia coli secretion of an active chimeric antibody fragment. Science 240(4855), 1041–1043 (1988).
  • Bird RE, Hardman KD, Jacobson JW et al. Single-chain antigen-binding proteins. Science 242(4877), 423–426 (1988).
  • Reiter Y, Brinkmann U, Webber KO, Jung SH, Lee B, Pastan I. Engineering interchain disulfide bonds into conserved framework regions of Fv fragments: improved biochemical characteristics of recombinant immunotoxins containing disulfide-stabilized Fv. Protein Eng. 7(5), 697–704 (1994).
  • Chames P, Baty D. Antibody engineering and its applications in tumor targeting and intracellular immunization. FEMS Microbiol. Lett. 189(1), 1–8 (2000).
  • Hu S, Shively L, Raubitschek A et al. Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 56(13), 3055–3061 (1996).
  • Choi BD, Cai M, Bigner DD, Mehta AI, Kuan CT, Sampson JH. Bispecific antibodies engage T cells for antitumor immunotherapy. Expert Opin. Biol. Ther. 11(7), 843–853 (2011).
  • De Jonge J, Brissinck J, Heirman C et al. Production and characterization of bispecific single-chain antibody fragments. Mol. Immunol. 32(17–18), 1405–1412 (1995).
  • Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl Acad. Sci. USA 90(14), 6444–6448 (1993).
  • Korn T, Nettelbeck DM, Völkel T, Müller R, Kontermann RE. Recombinant bispecific antibodies for the targeting of adenoviruses to CEA-expressing tumour cells: a comparative analysis of bacterially expressed single-chain diabody and tandem scFv. J. Gene Med. 6(6), 642–651 (2004).
  • Asano R, Ikoma K, Shimomura I et al. Cytotoxic enhancement of a bispecific diabody by format conversion to tandem single-chain variable fragment (taFv): the case of the hEx3 diabody. J. Biol. Chem. 286(3), 1812–1818 (2011).
  • Kipriyanov SM, Moldenhauer G, Braunagel M et al. Effect of domain order on the activity of bacterially produced bispecific single-chain Fv antibodies. J. Mol. Biol. 330(1), 99–111 (2003).
  • Mack M, Riethmüller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc. Natl Acad. Sci. USA 92(15), 7021–7025 (1995).
  • Hickey WF. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol. 1(2), 97–105 (1991).
  • Odoardi F, Sie C, Streyl K et al. T cells become licensed in the lung to enter the central nervous system. Nature 488(7413), 675–679 (2012).
  • Kivisäkk P, Mahad DJ, Callahan MK et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA 100(14), 8389–8394 (2003).
  • de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD. The blood-brain barrier in neuroinflammatory diseases. Pharmacol. Rev. 49(2), 143–155 (1997).
  • Yang I, Tihan T, Han SJ et al. CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J. Clin. Neurosci. 17(11), 1381–1385 (2010).
  • Lohr J, Ratliff T, Huppertz A et al. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-ß. Clin. Cancer Res. 17(13), 4296–4308 (2011).
  • Zalutsky MR, Moseley RP, Coakham HB, Coleman RE, Bigner DD. Pharmacokinetics and tumor localization of 131I-labeled anti-tenascin monoclonal antibody 81C6 in patients with gliomas and other intracranial malignancies. Cancer Res. 49(10), 2807–2813 (1989).
  • Scott AM, Lee FT, Tebbutt N et al. A Phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc. Natl Acad. Sci. USA 104(10), 4071–4076 (2007).
  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res. 51(8), 2164–2172 (1991).
  • Jaros E, Perry RH, Adam L et al. Prognostic implications of p53 protein, epidermal growth factor receptor, and Ki-67 labelling in brain tumours. Br. J. Cancer 66(2), 373–385 (1992).
  • Libermann TA, Nusbaum HR, Razon N et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313(5998), 144–147 (1985).
  • Wong AJ, Ruppert JM, Bigner SH et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA 89(7), 2965–2969 (1992).
  • Humphrey PA, Wong AJ, Vogelstein B et al. Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res. 48(8), 2231–2238 (1988).
  • Wikstrand CJ, McLendon RE, Friedman AH, Bigner DD. Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII. Cancer Res. 57(18), 4130–4140 (1997).
  • Wikstrand CJ, Hale LP, Batra SK et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res. 55(14), 3140–3148 (1995).
  • Humphrey PA, Wong AJ, Vogelstein B et al. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc. Natl Acad. Sci. USA 87(11), 4207–4211 (1990).
  • Pelloski CE, Ballman KV, Furth AF et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J. Clin. Oncol. 25(16), 2288–2294 (2007).
  • Heimberger AB, Hlatky R, Suki D et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin. Cancer Res. 11(4), 1462–1466 (2005).
  • Boockvar JA, Kapitonov D, Kapoor G et al. Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol. Cell. Neurosci. 24(4), 1116–1130 (2003).
  • Pedersen MW, Tkach V, Pedersen N, Berezin V, Poulsen HS. Expression of a naturally occurring constitutively active variant of the epidermal growth factor receptor in mouse fibroblasts increases motility. Int. J. Cancer 108(5), 643–653 (2004).
  • Montgomery RB, Guzman J, O’Rourke DM, Stahl WL. Expression of oncogenic epidermal growth factor receptor family kinases induces paclitaxel resistance and alters beta-tubulin isotype expression. J. Biol. Chem. 275(23), 17358–17363 (2000).
  • Nagane M, Narita Y, Mishima K et al. Human glioblastoma xenografts overexpressing a tumor-specific mutant epidermal growth factor receptor sensitized to cisplatin by the AG1478 tyrosine kinase inhibitor. J. Neurosurg. 95(3), 472–479 (2001).
  • Lammering G, Hewit TH, Holmes M et al. Inhibition of the type III epidermal growth factor receptor variant mutant receptor by dominant-negative EGFR-CD533 enhances malignant glioma cell radiosensitivity. Clin. Cancer Res. 10(19), 6732–6743 (2004).
  • Inda MM, Bonavia R, Mukasa A et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 24(16), 1731–1745 (2010).
  • Al-Nedawi K, Meehan B, Micallef J et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10(5), 619–624 (2008).
  • Morgan RA, Johnson LA, Davis JL et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum. Gene Ther. 23(10), 1043–1053 (2012).
  • Dirks PB. Cancer: stem cells and brain tumours. Nature 444(7120), 687–688 (2006).
  • Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 43(6), 763–771 (2006).
  • Haas C, Krinner E, Brischwein K et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology 214(6), 441–453 (2009).
  • Mack M, Gruber R, Schmidt S, Riethmüller G, Kufer P. Biologic properties of a bispecific single-chain antibody directed against 17-1A (EpCAM) and CD3: tumor cell-dependent T cell stimulation and cytotoxic activity. J. Immunol. 158(8), 3965–3970 (1997).
  • Brischwein K, Schlereth B, Guller B et al. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol. Immunol. 43(8), 1129–1143 (2006).
  • Dreier T, Lorenczewski G, Brandl C et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int. J. Cancer 100(6), 690–697 (2002).
  • Hoffmann P, Hofmeister R, Brischwein K et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int. J. Cancer 115(1), 98–104 (2005).
  • Brischwein K, Parr L, Pflanz S et al. Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J. Immunother. 30(8), 798–807 (2007).
  • Schlereth B, Fichtner I, Lorenczewski G et al. Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct. Cancer Res. 65(7), 2882–2889 (2005).
  • Bargou R, Leo E, Zugmaier G et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321(5891), 974–977 (2008).
  • Choi BD, Kuan CT, Cai M et al. Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proc. Natl Acad. Sci. USA 110(1), 270–275 (2013).
  • Amann M, Brischwein K, Lutterbuese P et al. Therapeutic window of MuS110, a single-chain antibody construct bispecific for murine EpCAM and murine CD3. Cancer Res. 68(1), 143–151 (2008).
  • Lutterbuese R, Raum T, Kischel R et al. T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Proc. Natl Acad. Sci. USA 107(28), 12605–12610 (2010).
  • Bluemel C, Hausmann S, Fluhr P et al. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen. Cancer Immunol. Immunother. 59(8), 1197–1209 (2010).
  • Nisticò P, Capone I, Palermo B et al. Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int. J. Cancer 124(1), 130–139 (2009).
  • Palermo B, Del Bello D, Sottini A et al. Dacarbazine treatment before peptide vaccination enlarges T-cell repertoire diversity of melan-a-specific, tumor-reactive CTL in melanoma patients. Cancer Res. 70(18), 7084–7092 (2010).
  • Sampson JH, Aldape KD, Archer GE et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-oncology 13(3), 324–333 (2011).
  • Tanchot C, Rosado MM, Agenes F, Freitas AA, Rocha B. Lymphocyte homeostasis. Semin. Immunol. 9(6), 331–337 (1997).
  • Sampson JH, Archer GE, Mitchell DA et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol. Cancer Ther. 8(10), 2773–2779 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.