168
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Potential new clinical therapies for Chagas disease

&

References

  • Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 2010;115(1-2):55-68
  • Hotez PJ, Bottazzi ME, Franco-Paredes C, et al. The neglected tropical diseases of latin america and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2008;2(9):e300
  • Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas’ Disease in the United States. Clin Microbiol Rev 2011;24(4):655-81
  • Gascon J, Bern C, Pinazo MJ. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop 2010;115(1-2):22-7
  • Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375(9723):1388-402
  • Reithinger R, Tarleton RL, Urbina JA, et al. Eliminating Chagas disease: challenges and a roadmap. BMJ 2009;338:b1283
  • Rodriques Coura J, de Castro SL. A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 2002;97(1):3-24
  • Viotti R, Vigliano C, Lococo B, et al. Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev Anti Infect Ther 2009;7(2):157-63
  • Nicoll-Griffith DA. Use of cysteine-reactive small molecules in drug discovery for trypanosomal disease. Expert Opin Drug Discov 2012;7(4):353-66
  • Buckner FS, Navabi N. Advances in Chagas disease drug development: 2009-2010. Curr Opin Infect Dis 2010;23(6):609-16
  • Chagas Drug Discovery Consortium. Available from: http://sites.google.com/site/chagasddc [Last accessed 30 January 2014]
  • Rohmer M, Bouvier P, Ourisson G. Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci USA 1979;76(2):847-51
  • Lepesheva GI, Villalta F, Waterman MR. Targeting Trypanosoma cruzi sterol 14alpha-demethylase (CYP51). Adv Parasitol 2011;75:65-87
  • de Almeida EA, Silva EL, Guariento ME, et al. Aetiological treatment with itraconazole or ketoconazole in individuals with Trypanosoma cruzi/HIV co-infection. Ann Trop Med Parasitol 2009;103(6):471-6
  • Toledo MJ, Bahia MT, Carneiro CM, et al. Chemotherapy with benznidazole and itraconazole for mice infected with different Trypanosoma cruzi clonal genotypes. Antimicrob Agents Chemother 2003;47(1):223-30
  • Araujo MS, Martins-Filho OA, Pereira ME, Brener Z. A combination of benznidazole and ketoconazole enhances efficacy of chemotherapy of experimental Chagas’ disease. J Antimicrob Chemother 2000;45(6):819-24
  • Urbina JA, Lira R, Visbal G, Bartroli J. In vitro antiproliferative effects and mechanism of action of the new triazole derivative UR-9825 against the protozoan parasite Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 2000;44(9):2498-502
  • Urbina JA, Payares G, Molina J, et al. Cure of short- and long-term experimental Chagas’ disease using D0870. Science 1996;273(5277):969-71
  • Corrales M, Cardozo R, Segura MA, et al. Comparative efficacies of TAK-187, a long-lasting ergosterol biosynthesis inhibitor, and benznidazole in preventing cardiac damage in a murine model of Chagas’ disease. Antimicrob Agents Chemother 2005;49(4):1556-60
  • Molina J, Martins-Filho O, Brener Z, et al. Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob Agents Chemother 2000;44(1):150-5
  • Ferraz ML, Gazzinelli RT, Alves RO, et al. The Anti-Trypanosoma cruzi activity of posaconazole in a murine model of acute Chagas’ disease is less dependent on gamma interferon than that of benznidazole. Antimicrob Agents Chemother 2007;51(4):1359-64
  • Clinical trial for the treatment of chronic chagas disease with posaconazole and benznidazole (CHAGASAZOL). Hospital Universitari Vall d’Hebron Research Institute. Clinicaltrials.gov: A service of the U.S. National Institutes of Health. Identifier: NCT01162967. Available from: http://clinicaltrials.gov/ct2/show/NCT01162967 [Last accessed 30 January 2014]
  • John Vandeberg, Chagas Drug Discovery Consortium 2012 Meeting. Available from: https://sites.google.com/site/chagasddc/ [Last accessed 30 January 2014]
  • Israel Molina. Chagas Drug Discovery Consortium 2012 Meeting. Available from: https://sites.google.com/site/chagasddc/and International Congress of Tropical Medicine. Available from: http://ictmm2012.ioc.fiocruz.br/program_25_sept.html [Last accessed 30 January 2014]
  • A Study of the Use of Oral Posaconazole (POS) in the Treatment of Asymptomatic Chronic Chagas Disease (P05267) (STOP CHAGAS). Merck Sharp & Dohme Corp. Clinicaltrials.gov: A service of the U.S. National Institutes of Health. Identifier: NCT01377480. Available from: http://clinicaltrials.gov/show/NCT01377480 [Last accessed 30 January 2014]
  • Diniz Lde F, Caldas IS, Guedes PM, et al. Effects of ravuconazole treatment on parasite load and immune response in dogs experimentally infected with Trypanosoma cruzi. Antimicrob Agents Chemother 2010;54(7):2979-86
  • Urbina JA, Payares G, Sanoja C, et al. In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease. Int J Antimicrob Agents 2003;21(1):27-38
  • Proof-of-Concept Study of E1224 to treat adult patients with chagas disease. Drugs for neglected diseases initiative. Clinicaltrials.gov: A service of the U.S. National Institutes of Health. Identifier: NCT01489228. Available from: http://clinicaltrials.gov/show/NCT01489228 [Last accessed 30 January 2014]
  • Kraus JM, Tatipaka HB, McGuffin SA, et al. Second generation analogues of the cancer drug clinical candidate tipifarnib for anti-Chagas disease drug discovery. J Med Chem 2010;53(10):3887-98
  • Buckner FS, Bahia MT, Suryadevara PK, et al. Pharmacological characterization, structural studies, and in vivo activities of anti-Chagas disease lead compounds derived from tipifarnib. Antimicrob Agents Chemother 2012;56(9):4914-21
  • Soeiro Mde N, de Souza EM, da Silva CF, et al. In vitro and in vivo studies of the antiparasitic activity of sterol 14alpha-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi. Antimicrob Agents Chemother 2013;57(9):4151-63
  • Villalta F, Dobish MC, Nde PN, et al. VNI cures acute and chronic experimental Chagas disease. J Infect Dis 2013;208(3):504-11
  • Gunatilleke SS, Calvet CM, Johnston JB, et al. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51. PLoS Negl Trop Dis 2012;6(7):e1736
  • Bontempi E, Martinez J, Cazzulo JJ. Subcellular localization of a cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol 1989;33(1):43-7
  • Cazzulo JJ, Cazzulo FM, Martinez J, Franke dCB. Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochim Biophys Acta 1990;1037(2):186-91
  • Engel JC, Doyle PS, Hsieh I, McKerrow JH. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 1998;188(4):725-34
  • McKerrow JH. Development of cysteine protease inhibitors as chemotherapy for parasitic diseases: insights on safety, target validation, and mechanism of action. Int J Parasitol 1999;29(6):833-7
  • Barr SC, Warner KL, Kornreic BG, et al. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob Agents Chemother 2005;49(12):5160-1
  • Brak K, Kerr ID, Barrett KT, et al. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. J Med Chem 2010;53(4):1763-73
  • Ndao M, Beaulieu C, Black WC, et al. Reversible cysteine protease inhibitors show promise for a chagas cure. Antimicrob Agents Chemother 2014;58(2):1167-78
  • Docampo R, de Souza W, Miranda K, et al. Acidocalcisomes – conserved from bacteria to man. Nat Rev Microbiol 2005;3(3):251-61
  • Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000;289(5484):1508-14
  • Bergstrom JD, Bostedor RG, Masarachia PJ, et al. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 2000;373(1):231-41
  • Montalvetti A, Bailey BN, Martin MB, et al. Bisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase. J Biol Chem 2001;276(36):33930-7
  • Bouzahzah B, Jelicks LA, Morris SA, et al. Risedronate in the treatment of Murine Chagas’ disease. Parasitol Res 2005;96(3):184-7
  • Garzoni LR, Waghabi MC, Baptista MM, et al. Antiparasitic activity of risedronate in a murine model of acute Chagas’ disease. Int J Antimicrob Agents 2004;23(3):286-90
  • Sanz-Rodriguez CE, Concepcion JL, Pekerar S, et al. Bisphosphonates as inhibitors of Trypanosoma cruzi hexokinase: kinetic and metabolic studies. J Biol Chem 2007;282(17):12377-87
  • Hudock MP, Sanz-Rodriguez CE, Song Y, et al. Inhibition of Trypanosoma cruzi hexokinase by bisphosphonates. J Med Chem 2006;49(1):215-23
  • Aripirala S, Szajnman SH, Jakoncic J, et al. Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase. J Med Chem 2012;55(14):6445-54
  • Demoro B, Caruso F, Rossi M, et al. Bisphosphonate metal complexes as selective inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase. Dalton Trans 2012;41(21):6468-76
  • Recher M, Barboza AP, Li ZH, et al. Design, synthesis and biological evaluation of sulfur-containing 1,1-bisphosphonic acids as antiparasitic agents. Eur J Med Chem 2013;60:431-40
  • Rodrigues-Poveda CA, Gonzalez-Pacanowska D, Szajnman SH, Rodriguez JB. 2-alkylaminoethyl-1,1-bisphosphonic acids are potent inhibitors of the enzymatic activity of Trypanosoma cruzi squalene synthase. Antimicrob Agents Chemother 2012;56(8):4483-6
  • Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 1992;46:695-729
  • Schmidt A, Krauth-Siegel RL. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Curr Top Med Chem 2002;2(11):1239-59
  • de Oliveira RB, Vaz AB, Alves RO, et al. Arylfurans as potential trypanosoma cruzi trypanothione reductase inhibitors. Mem Inst Oswaldo Cruz 2006;101(2):169-73
  • Meiering S, Inhoff O, Mies J, et al. Inhibitors of Trypanosoma cruzi trypanothione reductase revealed by virtual screening and parallel synthesis. J Med Chem 2005;48(15):4793-802
  • Bustamante JM, Presti MS, Rivarola HW, et al. Treatment with benznidazole or thioridazine in the chronic phase of experimental Chagas disease improves cardiopathy. Int J Antimicrob Agents 2007;29(6):733-7
  • Lo Presti MS, Rivarola HW, Bustamante JM, et al. Thioridazine treatment prevents cardiopathy in Trypanosoma cruzi infected mice. Int J Antimicrob Agents 2004;23(6):634-6
  • Rivarola HW, Fernandez AR, Enders JE, et al. Thioridazine treatment modifies the evolution of Trypanosoma cruzi infection in mice. Ann Trop Med Parasitol 1999;93(7):695-702
  • Fauro R, Lo Presti S, Bazan C, et al. Use of clomipramine as chemotherapy of the chronic phase of Chagas disease. Parasitology 2013;140(7):917-27
  • Paulino M, Iribarne F, Dubin M, et al. The chemotherapy of chagas’ disease: an overview. Mini Rev Med Chem 2005;5(5):499-519
  • Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 2003;19(11):495-501
  • Gobbi P, Baez A, Lo Presti MS, et al. Association of clomipramine and allopurinol for the treatment of the experimental infection with Trypanosoma cruzi. Parasitol Res 2010;107(5):1279-83
  • Gobbi P, Lo Presti MS, Fernandez AR, et al. Allopurinol is effective to modify the evolution of Trypanosoma cruzi infection in mice. Parasitol Res 2007;101(5):1459-62
  • Gallerano RR, Sosa RR. [Interventional study in the natural evolution of Chagas disease. Evaluation of specific antiparasitic treatment. Retrospective-prospective study of antiparasitic therapy]. Rev Fac Cien Med Univ Nac Cordoba 2000;57(2):135-62
  • Apt W, Arribada A, Zulantay I, et al. Itraconazole or allopurinol in the treatment of chronic American trypanosomiasis: the regression and prevention of electrocardiographic abnormalities during 9 years of follow-up. Ann Trop Med Parasitol 2003;97(1):23-9
  • Rassi A, Luquetti AO, Rassi A Jr, et al. Specific treatment for Trypanosoma cruzi: lack of efficacy of allopurinol in the human chronic phase of Chagas disease. Am J Trop Med Hyg 2007;76(1):58-61
  • Freymann DM, Wenck MA, Engel JC, et al. Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi. Chem Biol 2000;7(12):957-68
  • Medrano FJ, Wenck MA, Eakin AE, Craig SP 3rd. Functional roles for amino acids in active site loop II of a hypoxanthine phosphoribosyltransferase. Biochim Biophys Acta 2003;1650(1-2):105-16
  • Raviolo MA, Solana ME, Novoa MM, et al. Synthesis, physicochemical properties of allopurinol derivatives and their biological activity against Trypanosoma cruzi. Eur J Med Chem 2013;69:455-64
  • Minning TA, Weatherly DB, Atwood J 3rd, et al. The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics 2009;10:370
  • Atwood JA 3rd, Weatherly DB, Minning TA, et al. The Trypanosoma cruzi proteome. Science 2005;309(5733):473-6
  • Collins MH, Craft JM, Bustamante JM, Tarleton RL. Oral exposure to Trypanosoma cruzi elicits a systemic CD8 T cell response and protection against heterotopic challenge. Infect Immun 2011;79(8):3397-406
  • Hall BS, Wilkinson SR. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother 2012;56(1):115-23
  • Hall BS, Bot C, Wilkinson SR. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem 2011;286(15):13088-95
  • Wilkinson SR, Taylor MC, Horn D, et al. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci USA 2008;105(13):5022-7
  • Walton MI, Workman P. Nitroimidazole bioreductive metabolism. Quantitation and characterisation of mouse tissue benznidazole nitroreductases in vivo and in vitro. Biochem Pharmacol 1987;36(6):887-96
  • Castro JA, Diaz de Toranzo EG. Toxic effects of nifurtimox and benznidazole, two drugs used against American trypanosomiasis (Chagas’ disease). Biomed Environ Sci 1988;1(1):19-33
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Novel 3-nitro-1H-1,2,4-triazole-based compounds as potential anti-Chagasic drugs: in vivo studies. Future Med Chem 2013;5(15):1763-76
  • Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Novel 3-nitro-1H-1,2,4-triazole-based piperazines and 2-amino-1,3-benzothiazoles as antichagasic agents. Bioorg Med Chem 2013;21(21):6600-7
  • Canavaci AM, Bustamante JM, Padilla AM, et al. In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl Trop Dis 2010;4(7):e740
  • Raether W, Seidenath H. The activity of fexinidazole (HOE 239) against experimental infections with Trypanosoma cruzi, trichomonads and Entamoeba histolytica. Ann Trop Med Parasitol 1983;77(1):13-26
  • Papadopoulou MV, Trunz BB, Bloomer WD, et al. Novel 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines as anti-chagasic agents. J Med Chem 2011;54(23):8214-23
  • Bahia MT, de Andrade IM, Martins TA, et al. Fexinidazole: a potential new drug candidate for Chagas disease. PLoS Negl Trop Dis 2012;6(11):e1870
  • Human African Trypanosomiasis: first in Man Clinical Trial of a New Medicinal Product, the Fexinidazole. Drugs for Neglected Diseases Initiative. Clinicaltrials.gov: A service of the U.S. National Institutes of Health. Identifier: NCT00982904. Available from: http://clinicaltrials.gov/show/NCT00982904 [Last accessed 30 January 2014]
  • Jacobs RT, Plattner JJ, Keenan M. Boron-based drugs as antiprotozoals. Curr Opin Infect Dis 2011;24(6):586-92
  • Baker SJ, Ding CZ, Akama T, et al. Therapeutic potential of boron-containing compounds. Future Med Chem 2009;1(7):1275-88
  • Seiradake E, Mao W, Hernandez V, et al. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: a structural basis for the rational design of antifungal benzoxaboroles. J Mol Biol 2009;390(2):196-207
  • Jacobs RT, Plattner JJ, Nare B, et al. Benzoxaboroles: a new class of potential drugs for human African trypanosomiasis. Future Med Chem 2011;3(10):1259-78
  • Jacobs RT, Nare B, Wring SA, et al. SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis. PLoS Negl Trop Dis 2011;5(6):e1151
  • Human African Trypanosomiasis: first in Man Clinical Trial of a New Medicinal Product, the SCYX-7158. Drugs for neglected diseases initiative. Clinicaltrials.gov: A service of the U.S. National Institutes of Health. Identifier: NCT01533961. Available from: http://clinicaltrials.gov/show/NCT01533961 [Last accessed 30 January 2014]
  • Bustamante JM, Craft JM, Crowe BD, et al. New, Combined, and Reduced Dosing Treatment Protocols Cure Trypanosoma cruzi Infection in Mice. J Infect Dis 2014;209(1):150-62
  • Dybul M, Fauci AS, Bartlett JG, et al. Guidelines for using antiretroviral agents among HIV-infected adults and adolescents. Ann Intern Med 2002;137(5 Pt 2):381-433
  • Lienhardt C, Raviglione M, Spigelman M, et al. New drugs for the treatment of tuberculosis: needs, challenges, promise, and prospects for the future. J Infect Dis 2012;205(Suppl 2):S241-9
  • WHO. Antimalarial drug combination therapy. Report of a WHO Technical Consultation. WHO; Geneva, Switzerland: 2001
  • Cencig S, Coltel N, Truyens C, Carlier Y. Evaluation of benznidazole treatment combined with nifurtimox, posaconazole or AmBisome(R) in mice infected with Trypanosoma cruzi strains. Int J Antimicrob Agents 2012;40(6):527-32
  • Diniz Lde F, Urbina JA, de Andrade IM, et al. Benznidazole and posaconazole in experimental Chagas disease: positive interaction in concomitant and sequential treatments. PLoS Negl Trop Dis 2013;7(8):e2367
  • Moreira da Silva R, Oliveira LT, Silva Barcellos NM, et al. Preclinical monitoring of drug association in experimental chemotherapy of Chagas’ disease by a new HPLC-UV method. Antimicrob Agents Chemother 2012;56(6):3344-8
  • Batista Dda G, Batista MM, de Oliveira GM, et al. Combined treatment of heterocyclic analogues and benznidazole upon Trypanosoma cruzi in vivo. PLoS One 2011;6(7):e22155
  • Grosso NL, Alarcon ML, Bua J, et al. Combined treatment with benznidazole and allopurinol in mice infected with a virulent Trypanosoma cruzi isolate from Nicaragua. Parasitology 2013;140(10):1225-33
  • Manne J, Snively CS, Levy MZ, Reich MR. Supply chain problems for Chagas disease treatment. Lancet Infect Dis 2012;12(3):173-5
  • Navarro M, Norman FF, Perez-Molina JA, Lopez-Velez R. Benznidazole shortage makes chagas disease a neglected tropical disease in developed countries: data from Spain. Am J Trop Med Hyg 2012;87(3):489-90
  • BENEFIT: evaluation of the Use of antiparasital drug (Benznidazole) in the treatment of chronic chagas’ disease. population health research institute. Clinicaltrials.gov: A service of the U.S. National Institutes of Health. Identifier: NCT00123916. Available from: http://clinicaltrials.gov/show/NCT00123916 [Last accessed 30 January 2014]
  • Viotti R, de Noya BA, Araujo-Jorge T, et al. Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob Agents Chemother 2014;58(2):635-9
  • Viotti R, Vigliano C. Etiological treatment of chronic Chagas disease: neglected ‘evidence’ by evidence-based medicine. Expert Rev Anti Infect Ther 2007;5(4):717-26
  • Viotti R, Vigliano C, Lococo B, et al. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann Intern Med 2006;144(10):724-34
  • Rodriguez A, Tarleton RL. Transgenic parasites accelerate drug discovery. Trends Parasitol 2012;28(3):90-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.