522
Views
35
CrossRef citations to date
0
Altmetric
Reviews

Lipoic acid and lipoic acid analogs in cancer metabolism and chemotherapy

, &

References

  • Reed LJ, Crystalline Lipoic Acid A. Catalytic Agent Associated with Pyruvate Dehydrogenase. Science 1951;114(2952):93-4
  • Reed LJ. A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes. J Biol Chem 2001;276(42):38329-36
  • Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 1995;19(2):227-50
  • Shinto L, Quinn J, Montine T, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alzheimers Dis 2014;38(1):111-20
  • Mayr J, Feichtinger RG, Tort F, et al. Lipoic acid biosynthesis defects. J Inherit Metab Dis 2014;37(4):553-63
  • Rosenberg HR, Culik R. Effect of α-lipoic acid on vitamin C and vitamin E deficiencies. Arch Biochem Biophys 1959;80(1):86-93
  • Ou P, Tritschler HJ, Wolff SP. Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem Pharmacol 1995;50(1):123-6
  • Han D, Handelman G, Marcocci L, et al. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. BioFactors 1997;6(3):321-38
  • Shay KP, Moreau RF, Smith EJ, et al. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 2009;1790(10):1149-60
  • Searls RL, Sanadi DR. α-Ketoglutaric Dehydrogenase VIII. Isolation and some properties of a flavoprotein component. J Biol Chem 1960;235(8):2485-91
  • Jocelyn PC. The standard redox potential of cysteine-cystine from the thiol-disulphide exchange reaction with glutathione and lipoic acid. Eur J Biochem 1967;2(3):327-31
  • Prasad PD, Wang H, Kekuda R, et al. Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. J Biol Chem 1998;273(13):7501-6
  • Takaishi N, Yoshida K, Satsu H, Shimizu M. Transepithelial transport of alpha-lipoic acid across human intestinal Caco-2 cell monolayers. J Agri Food Chem 2007;55(13):5253-9
  • Jones W, Li X, Qu Z-C, et al. Uptake, recycling, and antioxidant actions of alpha-lipoic acid in endothelial cells. Free Radic Biol Med 2002;33(1):83-93
  • Holmquist L, Stuchbury G, Berbaum K, et al. Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharm Ther 2007;113(1):154-64
  • Korotchkina LG, Sidhu S, Patel MS. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase. Free Radic Res 2004;38(10):1083-92
  • Bunik VI, Sievers C. Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species. Eur J Biochem 2002;269(20):5004-15
  • Bunik VI. 2-Oxo acid dehydrogenase complexes in redox regulation. Role of the lipoate residues and thioredoxin. Eur J Biochem 2003;270(6):1036-42
  • Applegate MAB, Humphries KM, Szweda LI. Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008;47(1):473-8
  • Starkov AA, Fiskum G, Chinopoulos C, et al. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 2004;24(36):7779-88
  • Tretter L, Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 2004;24(36):7771-8
  • Lyubarev AE, Kurganov BI. Supramolecular organization of tricarboxylic acid cycle enzymes. Bio Sys 1989;22(2):91-102
  • Mclain AL, Szweda PA, Szweda LI. α-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 2011;45(1):29-36
  • Biewenga GP, Haenen G, Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol 1997;29(3):315-31
  • Fruehauf JP, Meyskens FL. Reactive oxygen species: a breath of life or death? Clin Cancer Res 2007;13(3):789-94
  • Bingham P, Stuart SD, Zachar Z. Cancer metabolism: a nexus of matter, energy and reactive oxygen species. In: Kanner S, editor. Tumor metabolom targeting and drug development. Springer; New York, NY, USA: 2014. p. 7-27
  • Van de Mark K, Chen JS, Steliou K, et al. alpha-lipoic acid induces p27(Kip)-dependent cell cycle arrest in non-transformed cell lines and apoptosis in tumor cell lines. J Cell Physiol 2003;194(3):325-40
  • Yamasaki M, Iwase M, Kawano K, et al. Alpha lipoic acid selectively inhibits proliferation and adhesion to fibronectin of v-H-ras-transformed 3Y1 cells. J Clin Biochem Nutr 2012;50(3):234-40
  • Shi DY, Liu HL, Stern JS, et al. Alpha-lipoic acid induces apoptosis in hepatoma cells via the PTEN/Akt pathway. FEBS Lett 2008;582(12):1667-71
  • Lee HS, Na MH, Kim WK. alpha-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells. Nutr Res 2010;30(6):403-9
  • Choi HJ, Kim TY, Ruiz-Llorente S, et al. Alpha-lipoic acid induces sodium iodide symporter expression in TPC-1 thyroid cancer cell line. Nucl Med Biol 2012;39(8):1275-80
  • Wenzel U, Nickel A, Daniel H. Alpha-lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O-2(-.)-generation. Apoptosis 2005;10(2):359-68
  • Simbula G, Columbano A, Ledda-Columbano GM, et al. Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis 2007;12(1):113-23
  • Dozio E, Ruscica M, Passafaro L, et al. The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells. Eur J Pharmacol 2010;641(1):29-34
  • Moungjaroen J, Nimmannit U, Callery PS, et al. Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J Pharmacol Exp Ther 2006;319(3):1062-9
  • Vig-Varga E, Benson EA, Limbil TL, et al. Alpha-lipoic acid modulates ovarian surface epithelial cell growth. Gynecol Oncol 2006;103(1):45-52
  • Elangovan S, Hsieh TC. Control of cellular redox status and upregulation of quinone reductase NQO1 via Nrf2 activation by alpha-lipoic acid in human leukemia HL-60 cells. Int J Oncol 2008;33(4):833-8
  • Guerriero E, Sorice A, Capone F, et al. Effects of Lipoic Acid, Caffeic Acid and a Synthesized Lipoyl-Caffeic Conjugate on Human Hepatoma Cell Lines. Molecules 2011;16(8):6365-77
  • Feuerecker BS, Pirsig C, Seidl M, et al. Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo. Cancer Biol Ther 2012;14:1425-35
  • Al Abdan M. Alpha-lipoic acid controls tumor growth and modulates hepatic redox state in ehrlich-ascites-carcinoma-bearing mice. Sci World J 2012; doi; 10.1100/2012/509838
  • Schwartz LM, Abolhassani A, Guais E, et al. A combination of alpha lipoic acid and calcium hydroxycitrate is efficient against mouse cancer models: preliminary results. Oncol Rep 2010;23(5):1407-16
  • Berkson BM, Rubin DM, Berkson AJ. Revisiting the ALA/N (alpha-lipoic acid/low-dose naltrexone) protocol for people with metastatic and nonmetastatic pancreatic cancer: a report of 3 new cases. Integr Cancer Ther 2009;8(4):416-22
  • Schwartz LL, Buhler P, Icard H, et al. Metabolic Treatment of Cancer: intermediate Results of a Prospective Case Series. Anticancer Res 2014;34(2):973-80
  • Packer L, Cadenas E. Lipoic acid: energy metabolism and redox regulation of transcription and cell signaling. J Clin Biochem Nutr 2011;48(1):26-32
  • Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927;8(6):519-30
  • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011;11(2):85-95
  • Bingham PM, Zachar Z. The Pyruvate Dehydrogenase Complex in Cancer: Implications for the Transformed State and Cancer Chemotherapy. In: Canuto R, editor. Dehydrogenases. InTech; 2012. p. 41-62; Available from: http://dx.doi.org/10.5772/48582
  • Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012;21(3):297-308
  • Dvorak HF. Tumors - wounds that do not heal - similarities between tumor stroma generation and wound-healing. N Engl J Med 1986;315(26):1650-9
  • Nagy JA, Chang SH, Dvorak AM, et al. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer 2009;100(6):865-9
  • Sotgia F, Martinez-Outschoorn UE, Ubaldo E, et al. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Ann Rev Pathol 2012;7(7):423-67
  • Pavlides S, Vera I, Gandara R, et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 2012;16(11):1264-84
  • Curry JM, Tuluc M, Whitaker-Menezes D, et al. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle 2013;12(9):1371-84
  • Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 2014;2014:25:47-60
  • Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans 2003;31(6):1143-51
  • Lu CW, Lin SC, Chien CW, et al. Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer. Am J Pathol 2011;179(3):1405-14
  • Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006;3(3):177-85
  • Papandreou I, Cairns RA, Fontana L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006;3(3):187-97
  • Stuart SD, Schauble A, Gupta S, et al. A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process. Cancer Metabol 2014.2:4. Available from: www.cancerandmetabolism.com/content/2/1/4
  • Zachar Z, Marecek J, Maturo C, et al. Non-redox-active lipoatederivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med 2011;89(11):1137-48
  • Pardee TS, Lee K, Luddy J, et al. A phase I study of the first-in-class anti-mitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies. Clin Cancer Res 2014; pii: clincanres.1019. PMID: 25165100. [Epub ahead of print]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.