429
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Markers of bone turnover in patients with epilepsy and their relationship to management of bone diseases induced by antiepileptic drugs

Pages 267-286 | Received 17 Oct 2015, Accepted 19 Nov 2015, Published online: 17 Dec 2015

References

  • Hauser WA. Incidence and prevalence. In: Engel J, Pedley TA, editor. Epilepsy: a comprehensive textbook. Philadelphia: Lippincott-Raven; 1997. p. 47–57.
  • Kandil MR, Ahmed WA, Sayed AM, et al. Pattern of Epilepsy in Childhood and Adolescence: A Hospital-Based Study. African J Neurol Sci. 2007;26(1):33–45.
  • Engel J Jr. Etiology as a risk factor for medically refractory epilepsy: A case for early surgical intervention. Neurology. 1998;51(5):1243–1244.
  • Hamed SA, Abdellah MM, El-Melegy NT. Blood levels of trace elements, electrolytes and oxidative stress/antioxidant systems in epileptic patients. J Pharmacol Sci. 2004;96(4):465–473.
  • Hamed SA, Hamed EA, Kandil MR, et al. Serum thyroid hormone balance and lipid profile in patients with epilepsy. Epilepsy Res. 2005;66(1–3):173–183.
  • Hamed SA, Nabeshima T. The high atherosclerotic risk among epileptics: The atheroprotective role of multivitamins. J Pharmacol Sci. 2005;98(4):340–353.
  • Hamed SA, Mohamed KA, EL-taher A, et al. The sexual and reproductive health in men with generalized epilepsy: A multidisciplinary evaluation. Int J Impot Res. 2006;18(3):287–292.
  • Hamed SA, Hamed EA, Shokry M, et al. The reproductive conditions and lipid profile in females with epilepsy. Acta Neurol Scand. 2007;115(1):12–27.
  • Hamed SA, Hamed EA, Hamdy R, et al. Vascular risk factors and oxidative stress as independent predictors of asymptomatic atherosclerosis in adult patients with epilepsy. Epilepsy Res. 2007;74(2–3):183–192.
  • Hamed SA. Leptin and insulin homeostasis in epilepsy: Relation to weight adverse conditions. Epilepsy Res. 2007;75(1):1–9.
  • Hamed SA. Neuroendocrine hormonal conditions in epilepsy: relationship to reproductive and sexual functions. Neurologist. 2008;14(3):157–169.
  • Hamed SA, Fida NM, Hamed EA. States of serum leptin and insulin in children with epilepsy: Risk predictors of weight gain. Eur J Ped Neurol. 2009;13(3):261–268.
  • Hamed SA. Influences of bone and mineral metabolism in epilepsy. Expert Opin Drug Saf. 2011;10(2):265–280.
  • Hamed SA, Ahmad HK, Youssef AH, et al. Erectile function in men with epilepsy: relationship to demographic-, clinical-, endocrinal-, psychosocial- related variables. J Neurol Neurosci. 2013;4(2):5. DOI:10.3823/336.
  • Hamed SA, Radwan MEN, Haridi MA, et al. Thyroid gland volume in adults with epilepsy: relationship to thyroid hormonal function. J Neurol Neurosci. 2014;5(3):2. DOI:10.3823/349.
  • Hamed SA, Hermann BP, Moussa EM, et al. Evaluation of penile vascular status with epilepsy. Seizure. 2015;25:40–48.
  • Andress DL, Ozuna J, Tirschwell D, et al. Antiepileptic drug induced bone loss in young male patients who have seizures. Arch Neurol. 2002;59(5):781–790.
  • Souverein PC, Webb DJ, Petri H, et al. Incidence of fractures among epilepsy patients: a population based retrospective cohort study in the general practice research database. Epilepsia. 2005;46(2):304–310.
  • Jette N, Lix LM, Metge CJ, et al. Association of antiepileptic drugs with nontraumatic fractures: a population-based analysis. Arch Neurol. 2011;13(1):107–112.
  • Beerhorst K, Tan J, Tan IY, et al. Dual-energy X-ray absorptiometry versus quantitative ultrasonography in diagnosing osteoporosis in patients with refractory epilepsy and chronic antiepileptic drug use. Ther Adv Musculoskelet Dis. 2013;5(2):59–66.
  • Nilsson OS, Lindholm TS, Elmstedt E, et al. Fracture incidence and bone disease in epileptics receiving long-term anticonvulsant drug treatment. Arch Orthop Trauma Surg. 1986;105(3):146–149.
  • Prasad V, Kendrick D, Sayal K, et al. Injury among children and young adults with epilepsy. Pediatrics. 2014;133(5):827–835.
  • Reginster JY, Burlet N. Osteoporosis: A still increasing prevalence. Bone. 2006;38(2 Suppl 1):S4–9.
  • Linde J, Molholm Hansen J, Siersbaek-Nielsen K, et al. Bone density in patients receiving long-term anticonvulsant therapy. Acta Neurol Scand. 1971;47(5):650–651.
  • Morijiri Y, Sato T. Factors causing rickets in institutionalised handicapped children on anticonvulsant therapy. Arch Dis Child. 1981;13(6):446–449.
  • Gou CY, Ronen GM, Atkinson SA. Long-term valproate and lamotrigine treatment may be a marker for reduced growth and bone mass in children with epilepsy. Epilepsia. 2001;42(9):1141–1147.
  • Sato Y, Kondo I, Ishida S, et al. Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology. 2001;57(3):445–449.
  • Verrotti A, Greco R, Latini G, et al. Increased bone turnover in prepubertal, pubertal, and postpubertal patients receiving carbamazepine. Epilepsia. 2002;43(12):1488–1492.
  • Boluk A, Guzelipek M, Savli H, et al. The effect of valproate on bone mineral density in adult epileptic patients. Pharmacol Res. 2004;50(1):93–97.
  • Kim SH, Lee JW, Choi KG, et al. A 6-month longitudinal study of bone mineral density with antiepileptic drug monotherapy. Epilepsy Behav. 2007;10(2):291–295.
  • Nissen-Meyer LS, Svalheim S, Taubøll E, et al. Levetiracetam, phenytoin, and valproate act differently on rat bone mass, structure, and metabolism. Epilepsia. 2007;48(10):1850–1860.
  • Coppola G, Fortunato D, Auricchio G, et al. Bone mineral density in children, adolescents, and young adults with epilepsy. Epilepsia. 2009;50(9):2140–2146.
  • Krishnamoorthy G, Nair R, Sundar U, et al. Early predisposition to osteomalacia in Indian adults on phenytoin or valproate monotherapy and effective prophylaxis by simultaneous supplementation with calcium and 25-hydroxy vitamin D at recommended daily allowance dosage: a prospective study. Neurol India. 2010;58(2):213–219.
  • Hamed SA, Moussa EMM, Youssef AH, et al. Bone status in patients with epilepsy: relationship to markers of bone remodeling. Front Neurol. 2014;4.
  • Berkhout J, Stone JA, Verhamme KM, et al. Application of a systems Pharmacology-based pacebo population model to analyze long term data of postmenopausal osteoporosis. CPT Pharmacometrics Syst Pharmacol. 2015;4(9):516–526.
  • Farhat G, Yamout B, Mikati MA, et al. Effect of antiepileptic drugs on bone density in ambulatory patients. Neurology. 2002;58(9):1348–1353.
  • Nettekoven S, Ströhle A, Trunz B, et al. Effects of antiepileptic drug therapy on vitamin D status and biochemical markers of bone turnover in children with epilepsy. Eur J Pediatr. 2008;167(12):1369–1377.
  • Mintzer S, Boppana P, Toguri J, et al. Vitamin D levels and bone turnover in epilepsy patients taking carbamazepine or oxcarbazepine. Epilepsia. 2006;47(3):510–515.
  • Nicolaidou P, Georgouli H, Kotsalis H, et al. Effects of anticonvulsant therapy on vitamin D status in children: prospective monitoring study. J Child Neurol. 2006;21(3):205–209.
  • Tekgul H, Serdaroglu G, Huseyinov A, et al. Bone mineral status in pediatric outpatients on antiepileptic drug monotherapy. J Child Neurol. 2006;21(5):411–414.
  • Cansu A, Yesilkaya E, Serdaroğlu A, et al. Evaluation of bone turnover in epileptic children using oxcarbazepine. Pediatr Neurol. 2008;39(4):266–271.
  • Menon B, Harinarayan CV. The effect of antiepileptic drug therapy on serum 25-hydroxyvitamin D and parameters of calcium and bone metabolism–a longitudinal study. Seizure. 2010;19(3):153–158.
  • Hahn TJ. Steroid and drug-induced osteopenia. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 2nd ed. New York: Raven Press; 1993. p. 250–258.
  • Moro-Alvarez MJ, Díaz Curiel M, De La Piedra C, et al. Bone disease induced by phenytoin therapy: clinical and experimental study. Eur Neurol. 2009;62(4):219–230.
  • Auszmann JM, Vernillo AT, Fine SA, et al. The effect of phenytoin on parathyroid hormone stimulated cAMP activity in cultured murine osteoblasts. Life Sci. 1990;46(5):351–357.
  • Mikati MA, Dib L, Yamout B, et al. Two randomized vitamin D trials in ambulatory patients on anticonvulsants: impact on bone. Neurology. 2006;67(11):2005–2014.
  • Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–469.
  • Pento JT, Glick SM, Kagan A. Diphenylhydantoin inhibition of calcitonin secretion in the pig. Endocrinology. 1973;92(1):330–333.
  • Kruse K, Kracht U. Inhibition of calcitonin secretion/synthesis by anticonvulsant drugs. Acta Endocrinol. 1981;96(3):38–39.
  • Elliott JO, Jacobson MP, Haneef Z. Homocysteine and bone loss in epilepsy. Seizure. 2007;16(1):22–34.
  • Vernillo AT, Rifkin BR, Hauschka PV. Phenytoin affects osteocalcin secretion from osteoblastic rat osteosarcoma 17/2.8 cells in culture. Bone. 1990;11(5):309–312.
  • Patano N, Mancini L, Settanni MP, et al. L-Carnitine fumarate and isovaleryl-L-Carnitine fumarate accelerate the recovery of bone volume/total volume ratio after experimentally induced osteoporosis in pregnant mice. Calcif Tissue Int. 2008;82(3):221–228.
  • Tomkinson A, Gevers EF, Wit JM, et al. The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res. 1998;13(8):1243–1250.
  • Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359(9320):1841–1850.
  • Parfitt AM. The physiologic and pathogenetic significance of bone histomorphometric data. In: Coe FL, Favus MJ, editors. Disorders of bone and mineral metabolism. New York: Raven Press; 2002. p. 469–488.
  • Rauch F. Bone growth in length and width: the Yin and Yang of bone stability. J Musculoskelet Neuronal Interact. 2005;5(3):194–201.
  • Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–649.
  • Corral DA, Amling M, Priemel M, et al. Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc Natl Acad Sci U S A. 1998;95(23):13835–13840.
  • Bonewald LF. Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci. 2007;1116:281–290.
  • Li Y, Toraldo G, Li A, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839–3848.
  • Kacena MA, Shivdasani RA, Wilson K, et al. Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res. 2004;19(4):652–660.
  • Chang MK, Raggatt LJ, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232–1244.
  • McSheehy PM, Chambers TJ. Osteoblast-like cells in the presence of parathyroid hormone release a soluble factor that stimulates osteoclastic bone resorption. Endocrinology. 1986;119(4):1654–1659.
  • Cornish J, Callon KE, Bava U, et al. Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone. 2001;29(2):162–168.
  • Kassem M, Blum W, Ristelli J, et al. Growth hormone stimulates proliferation and differentiation of normal human osteoblast-like cells in vitro. Calcif Tissue Int. 1993;52(3):222–226.
  • Mochizuki H, Hakeda Y, Wakatsuki N, et al. Insulin-like growth factor-I supports formation and activation of osteoclasts. Endocrinology. 1992;131(3):1075–1080.
  • Bland R, Walker EA, Hughes SV, et al. Constitutive expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium. Endocrinology. 1999;140(5):2027–2034.
  • Broadus AE. Mineral balance and homeostasis. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 74–80.
  • Hahn TJ, Scharp CR, Halstead LR, et al. Parathyroid hormone status and renal responsiveness in familial hypophosphatemic rickets. J Clin Endocrinol Metab. 1975;41(5):926–937.
  • Ferrari SL, Bonjour JP, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab. 2004;90(3):1519–1524.
  • Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998;139(3):1329–1337.
  • Horowitz MC, Xi Y, Wilson K, et al. Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine Growth Factor Rev. 2001;12(1):9–18.
  • Stanley ER, Berg KL, Einstein DB, et al. Biology and action of colony–stimulating factor-1. Mol Reprod Dev. 1997;46(1):4–10.
  • Weinstein RS, Bryce GF, Sappington LJ, et al. Decreased serum ionized calcium and normal vitamin D metabolite levels with anticonvulsant drug treatment. J Clin Endocrinol Metab. 1984;58(6):1003–1009.
  • Gough H, Bissesar A, Goggin T, et al. Factors associated with the biochemical changes in vitamin D and calcium metabolism in institutionalized patients with epilepsy. Ir J Med Sci. 1986;155(6):181–189.
  • Phabphal K, Geater A, Limapichat K, et al. Effect of switching hepatic enzyme-inducer antiepileptic drug to levetiracetam on bone mineral density, 25 hydroxyvitamin D, and parathyroid hormone in young adult patients with epilepsy. Epilepsia. 2013;54(6):e94–98.
  • Hahn TJ, Halstead LR. Anticonvulsant drug-induced osteomalacia: alterations in mineral metabolism and response to vitamin D3 administration. Calcif Tissue Int. 1979;27(1):13–18.
  • Hahn TJ, Shires R, Halstead LR. Serum dihydroxyvitamin D metabolite concentrations in patients on chronic anticonvulsant drug therapy: response to pharmacologic doses of vitamin D2. Metab Bone Dis Relat Res. 1983–1984;5(1):1–6.
  • Dent CE, Richens A, Rowe DJ, et al. Osteomalacia with long-term anticonvulsant therapy in epilepsy. Br Med J. 1970;4(5727):69–72.
  • Rico H, Varela de Seijas E, Arias JA, et al. Long-term influence of anticonvulsant agents on calcitonin, parathyroid hormone and osteocalcin. Eur Neurol. 1992;32(6):324–327.
  • Lazzari AA, Dussault PM, Thakore-James M, et al. Prevention of bone loss and vertebral fractures in patients with chronic epilepsy–antiepileptic drug and osteoporosis prevention trial. Epilepsia. 2013;54(11):1997–2004.
  • Tsukahara H, Kimura K, Todoroki Y, et al. Bone mineral status in ambulatory pediatric patients on long-term anti-epileptic drug therapy. Pediatr Int. 2002;44(3):247–253.
  • Chou IJ, Lin KL, Wang HS, et al. Evaluation of bone mineral density in children receiving carbamazepine or valproate monotherapy. Acta Paediatr Taiwan. 2007;48(6):317–322.
  • Zhang J, Wang KX, Wei Y, et al. Effect of topiramate and carbamazepine on bone metabolism in children with epilepsy. Zhongguo Dang Dai Er Ke Za Zhi. 2010;12(2):96–98.
  • Ecevit C, Aydoğan A, Kavakli T, et al. Effect of carbamazepine and valproate on bone mineral density. Pediatr Neurol. 2004;31(4):279–282.
  • Rieger-Wettengl G, Tutlewski B, Stabrey A, et al. Analysis of the musculoskeletal system in children and adolescents receiving anticonvulsant monotherapy with valproic acid or carbamazepine. Pediatrics. 2001;108(6):E107.
  • Hoikka V, Alhava EM, Karjalainen P, et al. Carbamazepine and bone mineral metabolism. Acta Neurol Scand. 1984;70(2):77–80.
  • Babayigit A, Dirik E, Bober E, et al. Adverse effects of antiepileptic drugs on bone mineral density. Pediatr Neurol. 2006;35(3):177–181.
  • Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest. 1972;51(4):741–748.
  • Waheed A, Kettl PA. Low bone density with the use of valproate. Gen Hosp Psychiatry. 2005;27(5):376–378.
  • Triantafyllou N, Lambrinoudaki I, Armeni E, et al. Effect of long-term valproate monotherapy on bone mineral density in adults with epilepsy. J Neurol Sci. 2010;290(1–2):131–134.
  • Lee HS, Wang SY, Salter DM, et al. The impact of the use of antiepileptic drugs on the growth of children. BMC Pediatr. 2013;13:211.
  • Bauer S, Hofbauer LC, Rauner M, et al. Early detection of bone metabolism changes under different antiepileptic drugs (ED-BoM-AED)–a prospective multicenter study. Epilepsy Res. 2013;106(3):417–422.
  • Verrotti A, Agostinelli S, Coppola G, et al. A 12-month longitudinal study of calcium metabolism and bone turnover during valproate monotherapy. Eur J Neurol. 2010;17(2):232–237.
  • Lau KK, Papneja K. Anticonvulsant-induced rickets and nephrocalcinosis. BMJ Case Rep. 2012;2012: pii: bcr1220115359.
  • Elwakkad AS, El Elshamy KA, Sibaii H. Fish liver oil and propolis as protective natural products against the effect of the anti-epileptic drug valproate on immunological markers of bone formation in rats. Epilepsy Res. 2008;80(1):47–56.
  • Senn SM, Kantor S, Poulton IJ, et al. Adverse effects of valproate on bone: defining a model to investigate the pathophysiology. Epilepsia. 2010;51(6):984–993.
  • Koo DL, Hwang KJ, Han SW, et al. Effect of oxcarbazepine on bone mineral density and biochemical markers of bone metabolism in patients with epilepsy. Epilepsy Res. 2014;108(3):442–447.
  • Heo K, Rhee Y, Lee HW, et al. The effect of topiramate monotherapy on bone mineral density and markers of bone and mineral metabolism in premenopausal women with epilepsy. Epilepsia. 2011;52(10):1884–1889.
  • Fekete S, Simko J, Gradosova I, et al. The effect of levetiracetam on rat bone mass, structure and metabolism. Epilepsy Res. 2013;107(1–2):56–60.
  • Dresner Pollack R, Rachmilewitz E, Blumenfeld A, et al. Bone mineral metabolism in adults with β-thalassemia major and intermedia. Br J Haematol. 2000;111(3):902–907.
  • WHO. Scientific Group on the Prevention and Management of Osteoporosis (2000). Geneva: Switzerland; 2003.
  • Serin HM, Koç ZP, Temelli B, et al. The bone mineral content alterations in pediatric patients medicated with levetiracetam, valproic acid, and carbamazepine. Epilepsy Behav. 2015;51:221–224.
  • Ross PD, Kress BC, Parson RE, et al. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int. 2000;11(1):76–82.
  • Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–469.
  • Bharadwaj S, Naidu AG, Betageri GV, et al. Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women. Osteoporosis Int. 2009;20(9):1603–1611.
  • Munroe PB, Olgunturk RO, Fryns JP, et al. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet. 1999;21(1):142–144.
  • Perlish JS, Timpl R, Fleischmajer R. Collagen synthesis regulation by the aminopropeptide of procollagen I in normal and scleroderma fibroblasts. Arthritis Rheum. 1985;28(6):647–651.
  • Melkko J, Kauppila S, Niemi S, et al. Immunoassay for intact amino-terminal propeptide of human type 1 procollagen. Clin Chem. 1996;42(6 Pt 1):947–954.
  • Trivedi P, Risteli J, Risteli L, et al. Serum concentrations of the type I and III procollagen propeptides as biochemical markers of growth velocity in healthy infants and children with growth disorders. Pediatr Res. 1991;30(3):276–280.
  • Rubinacci A, Melzi R, Zampino M, et al. Total and free deoxypyridinoline after acute osteoclast activity inhibition. Clin Chem. 1999;45(9):1510–1516.
  • Hayman AR, Jones SJ, Boyde A, et al. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development. 1996;122(10):3151–3162.
  • Angel NZ, Walsh N, Forwood MR, et al. Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J Bone Miner Res. 2000;15(1):103–110.
  • Inaoka T, Bilbe G, Ishibashi O, et al. Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun. 1995;206(1):89–96.
  • Schneider DL. and Barrett-Connor EL: Urinary N-telopeptide levels discriminate normal, osteopenic, and osteoporotic bone mineral density. Arch Intern Med. 1997;157(11):1241–1245.
  • Rosen HN, Moses AC, Garber J, et al. A new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif Tissue Int. 2000;66(2):100–103.
  • Garnero P, Gineyts E, Arbault P, et al. Different effects of bisphosphonate and estrogen therapy on free and peptide-bound bone cross-links excretion. J Bone Miner Res. 1995;10(4):641–649.
  • Pack AM, Morrell MJ, Randall A, et al. Bone health in young women with epilepsy after one year of antiepileptic drug monotherapy. Neurology. 2008;70(18):1586–1593.
  • Pack AM, Morrell MJ, Marcus R, et al. Bone mass and turnover in women with epilepsy on antiepileptic drug monotherapy. Ann Neurol. 2005;57(2):252–257.
  • Zare M, Ghazvini MR, Dashti M, et al. Bone turnover markers in epileptic patients under chronic valproate therapy. J Res Med Sci. 2013;18(4):338–340.
  • Annegers JF, Melton LJ 3rd, Ca S, et al. Risk of age related fractures in patients with unprovoked seizures. Epilepsia. 1989;30(3):348–355.
  • Henderson RC, Lark RK, Gurka MJ, et al. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics. 2002;110(1 Pt 1):e5.
  • Coppola G, Fortunato D, Mainolfi C, et al. Bone mineral density in a population of children and adolescents with cerebral palsy and mental retardation with or without epilepsy. Epilepsia. 2012;53(12):2172–2177.
  • Lindsay R, Pack S, Li Z. Longitudinal progression of fracture prevalence through a population of postmenopausal women with osteoporosis. Osteoporos Int. 2005;16(3):306–312.
  • Praticò AD, Pavone P, Scuderi MG, et al. Symptomatic hypocalcemia in an epileptic child treated with valproic acid plus lamotrigine: A case report. Cases J. 2009;2:7394.
  • Rauchenzauner M, Griesmacher A, Tatarczyk T, et al. Chronic antiepileptic monotherapy, bone metabolism, and body composition in non-institutionalized children. Dev Med Child Neurol. 2010;52(3):283–288.
  • Pascussi JM, Robert A, Nguyen M, et al. Possible involvement or pregnane X receptor-enhanced CYP 24 expression in drug-induced osteomalacia. J Clin Invest. 2005;115(1):177–186.
  • Zhou C, Assem M, Tay JC, et al. Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and druginduced osteomalacia. J Clin Invest. 2006;116(6):1703–1712.
  • Luo G, Cunningham M, Kim S, et al. CYP3A4 induction by drugs: Correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos. 2002;30(7):795–804.
  • Cerveny L, Svecova L, Anzenbacherova E, et al. Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos. 2007;35(7):1032–1041.
  • Vrzal R, Doricakova A, Novotna A, et al. Valproic acid augments vitamin D receptor-mediated induction of CYP24 by vitamin D3: a possible cause of valproic acid-induced osteomalacia? Toxicol Lett. 2011;200(3):146–153.
  • Wen X, Wang JS, Kivisto KT, et al. In vitro evaluation of valproic acid as an inhibitor of human cytochrome P450 isoforms: preferential inhibition of cytochrome P450 2C9 (CYP2C9). Br J Clin Pharmacol. 2001;13(5):547–553.
  • Telci A, Cakatay U, Kurt BB, et al. Changes in bone turnover and deoxypyridinoline levels in epileptic patients. Clin Chem Lab Med. 2000;38(1):47–50.
  • Lande MB, Kim MS, Bartlett C, et al. Reversible Fanconi syndrome associated with valproate therapy. J Pediatr. 1993;123(2):320–322.
  • Enrud KE, Walczak TS, Blackwell TL, et al. Osteoporotic Fractures in Men (MrOS) Study Research Group. Antiepileptic drug use and rates of hip bone loss in older men: a prospective study. Neurology. 2008;71(10):723–730.
  • Nakatani Y, Tsunoi M, Hakeda Y, et al. Effects of parathyroid hormone on cAMP production and alkaline phosphatase activity in osteoblastic clone MC3T3-E1 cells. Biochem Biophys Res Commun. 1984;123(3):894–898.
  • Tsingotjidou A, Nervina JM, Pham L, et al. Parathyroid hormone induces RGS-2 expression by a cyclic adenosine 3ʹ,5ʹ-monophosphate-mediated pathway in primary neonatal murine osteoblasts. Bone. 2002;30(5):677–684.
  • Nakade O, Baylink DJ, Lau KH. Phenytoin at micromolar concentrations is an osteogenic agent for human-mandible derived bone cells in vitro. J Dent Res. 1995;74(1):331–337.
  • Koide M, Kinugawa S, Ninomiya T, et al. Diphenylhydantoin inhibits osteoclast differentiation and function through suppression of NFATc1 signaling. J Bone Miner Res. 2009;24(8):1469–1480.
  • Humphrey EL, Morris GE, Fuller HR. Valproate reduces collagen and osteonectin in cultured bone cells. Epilepsy Res. 2013;106(3):446–450.
  • Fuller HR, Man NT, Lam le T, et al. Valproate and bone loss: iTRAQ proteomics show that valproate reduces collagens and osteonectin in SMA cells. J Proteome Res. 2010;9(8):4228–4233.
  • Lentz SR, Haynes WG. Homocysteine: is it a clinically important cardiovascular risk factor? Cleve Clin J Med. 2004;71(9):729–734.
  • McLean RR, Jacques PF, Selhub J, et al. Homocysteine as a predictive factor for hip fractures in older persons. N Engl J Med. 2004;350(20):2042–2049.
  • Goldbahar J, Hamidi A, Aminzadeh AA, et al. Association of plasma folate, plasma homocysteine, but not methylenetetrahydrofolate reductase C667T polymorphism, with bone mineral density in postmenopausal Iranian women: a cross-sectional study. Bone. 2004;35(3):60–65.
  • Yazdanpanah N, Zillikens MC, Rivadeneira F, et al. Effect of dietary B vitamins on BMD and risk of fracture in elderly men and women: the Rotterdam study. Bone. 2007;41(6):987–994.
  • Onodera K, Takahashi A, Sakurada S, et al. Effects of phenytoin and/or vitamin K2 (menatetrenone) on bone mineral density in the tibiae of growing rats. Life Sci. 2002;70(13):1533–1542.
  • Scott AK, Haynes BP, Schinkel KD, et al. Hepatic enzyme induction and vitamin K1 elimination in man. Eur J Clin Pharmacol. 1987;33(1):93–95.
  • Fukuda M, Kawabe M, Takehara M, et al. Carnitine deficiency: risk factors and incidence in children with epilepsy. Brain Dev. 2015;37(8):790–796.
  • Hamed SA, Mahmoud MA. The risk of asymptomatic hyperammonemia in children with idiopathic epilepsy treated with valproate: relationship to blood carnitine status. Epilepsy Res. 2009;86(1):32–41.
  • Farkas V, Bock I, Cseko J, et al. Inhibition of carnitine biosynthesis by valproic acid in rats–the biochemical mechanism of inhibition. Biochem Pharmacol. 1996;52(9):1429–1433.
  • Hooshmand S, Balakrishnan A, Clark RM, et al. Dietary L-carnitine supplementation improves bone mineral density by suppressing bone turnover in aged ovariectomized rats. Phytomedicine. 2008;15(8):595–601.
  • Sundström K, Cedervall T, Ohlsson C, et al. Combined treatment with GH and IGF-I: additive effect on cortical bone mass but not on linear bone growth in female rats. Endocrinology. 2014;155(12):4798–4807.
  • Niemann I, Hannemann A, Nauck M, et al. The association between insulin-like growth factor I and bone turnover markers in the general adult population. Bone. 2013;56(1):184–190.
  • Valmadrid C, Voorhees C, Litt B, et al. Practice patterns of neurologists regarding bone and mineral effects of antiepileptic drug therapy. Arch Neurol. 2001;58(9):1369–1374.
  • Gordon CM, Baim S, Bianchi ML, et al. International Society for Clinical Densitometry. Special report on the 2007 Pediatric Position Development Conference of the International Society for Clinical Densitometry. South Med J. 2008;101(7):740–743.
  • Small RE. Uses and Limitations of Bone Mineral Density Measurements in the Management of Osteoporosis. MedGenMed. 2005;7(2):3.
  • Leonard MB, Propert KJ, Zemel BS, et al. Discrepancies in pediatric bone mineral density reference data: Potential for misdiagnosis of osteopenia. J Pediatr. 1999;135(2 Pt 1):182–188.
  • Eastell R, Hannon RA. Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc. 2008;67(2):157–162.
  • Bianchini G, Mazzaferro S, Mancini U, et al. Calcium phosphorus changes in chronic anticonvulsant therapy: effects of administration of 25 hydroxy vitamin D3 on secondary hyperparathyroidism. Acta Vitaminol Enzymol. 1983;5(4):229–234.
  • National Osteoporosis Foundation. Physician’s Guide to Prevention and Treatment of Osteoporosis. Washington, DC: National Osteoporosis Foundation; 2003.
  • Greer FR, Krebs NF. American Academy of Pediatrics Committee on Nutrition. Optimizing bone health and calcium intakes of infants, children, and adolescents. Pediatrics. 2006;117(2):578–585.
  • National Institutes of Health Office of Dietary Supplements. Dietary supplement fact sheet: vitamin D [Internet]. [cited 2014 Nov 10]. Available from: http://ods.od.nih.gov/factsheets/vitamind.asp.
  • Erbayat Altay E, Serdaroğlu A, Tümer L, et al. Evaluation of bone mineral metabolism in children receiving carbamazepine and valproic acid. J Pediatr Endocrinol Metab. 2000;13(7):933–939.
  • Valverde P. Pharmacotherapies to manage bone loss-associated diseases: a quest for the perfect benefit-to-risk ratio. Curr Med Chem. 2008;15(3):284–304.
  • Ebeling PR. Idiopathic or hypogonadal osteoporosis in men: current and future treatment options. Treat Endocrinol. 2004;3(6):381–391.
  • Whyte MP, Wenkert D, Clements KL, et al. Bisphosphonate-induced osteopetrosis. N Engl J Med. 2003;349(5):457–463.
  • Fernandes JL, Viana SL, Rocha AL, et al. Biphosphonate-induced radiographic changes in two pediatric patients with rheumatic diseases. Skeletal Radiol. 2004;33(12):732–736.
  • Cagnacci A, Bagni B, Zini A, et al. Relation of folates, vitamin B12 and homocysteine to vertebral bone mineral density change in postmenopausal women. A five-year longitudinal evaluation. Bone. 2008;42(2):314–320.
  • Seligmann H, Potasman I, Weller B, et al. Phenytoin-folic acid interaction: a lesson to be learned. Clin Neuropharmacol. 1999;22(5):268–272.
  • De Vivo DC, Bohan TP, Coulter DL, et al. L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia. 1998;39(11):1216–1225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.