4,620
Views
32
CrossRef citations to date
0
Altmetric
Drug Profile

Efficacy of rintatolimod in the treatment of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME)

Pages 755-770 | Received 23 Dec 2015, Accepted 22 Mar 2016, Published online: 25 May 2016

References

  • Johnston S, Brenu EW, Staines DR, et al. The adoption of chronic fatigue syndrome/myalgic encephalomyelitis case definitions to assess prevalence: a systematic review. Ann Epidemiol. 2013;23:371–376.
  • Jason LA, Benton MC, Valentine L, et al. The economic impact of ME/CFS: individual and societal costs. Dyn Med. 2008;7:6. doi:10.1186/1476-5918-7-6.
  • Jason LA, Corradi K, Gress S, et al. Causes of death among patients with chronic fatigue syndrome. Health Care Women Int. 2006;27:615–626.
  • Komaroff AL, Buchwald DS. Chronic fatigue syndrome: an update. Annu Rev Med. 1998;49:1–13.
  • Komaroff AL. Is human herpesvirus-6 a trigger for chronic fatigue syndrome? J Clin Virol. 2006;37(Suppl 1):S39–S46.
  • Afari N, Buchwald D. Chronic fatigue syndrome: a review. Am J Psychiatry. 2003;60:221–236.
  • Poeschla B, Strachan E, Dansie E, et al. Chronic fatigue and personality: a twin study of causal pathways and shared liabilities. Ann Behav Med. 2013;45:289–298.
  • Devanur LD, Kerr JR. Chronic fatigue syndrome. J Clin Virol. 2006;37:139–150.
  • Kerr JR, Petty R, Burke B, et al. Gene expression subtypes in patients with chronic fatigue syndrome/myalgic encephalomyelitis. J Infect Dis. 2008;197:1171–1184.
  • Kerr JR, Burke B, Petty R, et al. Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes. J Clin Pathol. 2008;61:730–739.
  • Hornig M, Montoya JG, Klimas NG, et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci Adv. 2015 Feb;1(1):e1400121.
  • [ cited 2015 Dec 21]. Available from: http://www.nytimes.com/health/guides/disease/chronic-fatigue-syndrome/medications.html
  • Ts’o PO, Alderfer JL, Levy J, et al. An integrated and comparative study of the antiviral effects and other biological properties of the polyinosinic acid-polycytidylic acid and its mismatched analogues. Mol Pharmacol. 1976;12:299–312.
  • Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature. 2001;413:732–738.
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5:987–995.
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252.
  • Bagchi A, Herrup EA, Warren HS, et al. MyD88-dependent and myD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J Immunol. 2007;178:1164–1171.
  • Gowen BB, Wong MH, Jung KH, et al. TLR3 is essential for the induction of protective immunity against punta toro virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not poly(I:C): differential recognition of synthetic dsRNA molecules. J Immunol. 2007;178:5200–5208.
  • Trumpfheller C, Caskey M, Nchinda G, et al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA. 2008;105:2574–2579.
  • Mitchell WM, Nicodemus CF, Carter WA, et al. Discordant biological and toxicological species responses to TLR3 activation. Am J Path. 2014;184:1062–1072.
  • [ cited 2015 Oct 4]. Available from: http://www.nytimes.com/ref/health/healthguide/esn-chronicfatigue-ess.html
  • [ cited 2015 Oct 4]. Available from: http://blogs.fda.gov/fdavoice/index.php/2013/06/fdas-latest-efforts-in-patient-focused-drug-development-now-in-full-swing/
  • Salit IE. Precipitating factors for the chronic fatigue syndrome. J Psychiatr Res. 1997;31:59–65.
  • Strayer DR, Carter WA, Brodsky I, et al. A controlled clinical trial with a specifically configured RNA drug, poly(I).poly(C12U), in chronic fatigue syndrome. Clin Infect Dis. 1994;18(Suppl 1):S88–S95.
  • Strauss KI. Elimination and degradation of AMPLIGEN (poly I: polyC12U) in humans after intravenous infusion [Ph.D. thesis]. Philadelphia (PA): Hahnemann University; 1991.
  • Strauss KI, Strayer DR, Gillespie DH. Detection of poly(I): poly(C12U),mismatched double-stranded RNA, by rapid solution hybridization: blood values after intravenous infusion. J Pharm Pharmacol. 1990;42:261–266.
  • Leonard JN, Ghirlando R, Askins J, et al. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc Natl Acad Sci U S A. 2008;105:258–263.
  • Wang Y, Liu L, Davies DR, et al. Dimerization of toll-like receptor 3 (TLR3) is required for ligand binding. J Biol Chem. 2010;285:36836–36841.
  • Thompson MR, Kaminski JJ, Kurt-Jones EA, et al. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3:920–940.
  • Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000;164:5998–6004.
  • Kleinman ME. iRNA via TLR3. Nature. 2008;452:591–597.
  • Yu M. Levine SJ.Toll-like receptor, RIG-I-like receptors and the NLRP3 inflammasome: key modulators of innate immune responses to double-stranded RNA viruses. Cytokine Growth Factor Rev. 2011;22:63–72.
  • Pohar J, Pirher N, Benčina M, et al. The role of UNC93B1 protein in surface localization of TLR3 receptor and in cell priming to nucleic acid agonists. J Biol Chem. 2013;288:442–454.
  • Geiss G, Jin G, Guo J, et al. A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J Biol Chem. 2001;276:30178–30182.
  • Luo J, Obmolova G, Malia TJ, et al. Lateral clustering of TLR3: dsRNAsignaling units revealed by TLR3ecd:3Fabs quaternary structure. J Mol Biol. 2012;421:112–124.
  • Jelinek I, Leonard JN, Price GE, et al. TLR3-specific double-stranded RNA oligonucleotide adjuvants induce dendritic cell cross-presentation, CTL responses, and antiviral protection. J Immunol. 2011;186:2422–2429.
  • Holmes GP, Kaplan JE, Gantz NM, et al. Chronic fatigue syndrome: a working case definition. Ann Intern Med. 1988;108:387–389.
  • Fukuda K, Straus SE, Hickie I, et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med. 1994;121:953–959.
  • Carruthers BM, van de Sande MI, de Meirleir KL, et al. Myalgic encephalomyelitis: international consensus criteria. J Intern Med. 2011;270:327–338.
  • Clayton EW. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: an IOM report on redefining an illness. JAMA. 2015;313:1101–1102.
  • Strayer DR, Carter W, Strauss KI, et al. Long term improvements in patients with chronic fatigue syndrome treated with ampligen. J Chronic Fatigue Syn. 1995;1:35–53.
  • Current Hemispherx Biopharma NDA submission documents.
  • Strayer DR, Carter WA, Stouch BC, et al. A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS One. 2012;7(3):e31334. doi:10.1371/journal.pone.0031334
  • Strayer DR, Stouch BC, Stevens SR, et.al. Chronic fatigue syndrome/ myalgic encephalomyelitis (CFS/ME): characteristics of responders to rintatolimod. J Drug Res Dev. 2015;1. doi:http://dx.doiorg/10.16966/jdrd.103.
  • Vanness JM, Snell CR, Fredrickson DM, et al. Assessment of functional impairment by cardiopulmonary exercise testing in patients with chronic fatigue syndrome. J Chronic Fatigue Syndrome. 2001;8:103–109.
  • Schutzer SE, Angel TE, Liu T, et al. Distinct cerebrospinal fluid proteomes differentiate post-treatment lyme disease from chronic fatigue syndrome. PLoS One. 2011 Feb 23;6(2):e17287. doi:10.1371/journal.pone.0017287.
  • Hickie I, Davenport T, Wakefield D, et al. Infection outcomes study group. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ. 2006; 333–575. .
  • Chia JK, Chia LY. Chronic chlamydia pneumoniae infection: a treatable cause of chronic fatigue syndrome. Clin Infect Dis. 1999;29:452–453.
  • Kerr JR, Cunniffe VS, Kelleher P, et al. Successful intravenous immunoglobulin therapy in 3 cases of parvovirus B19-associated chronic fatigue syndrome. Clin Infect Dis. 2003;36:100–106.
  • Kerr JR, Gough J, Richards SC, et al. Antibody to parvovirus B19 nonstructural protein is associated with chronic arthralgia in patients with chronic fatigue syndrome/myalgic encephalomyelitis. J Gen Virol. 2010;91:893–897.
  • Chia JK, Chia AY. Chronic fatigue syndrome is associated with chronic enterovirus infection of the stomach. J Clin Pathol. 2008;61:43–48.
  • Vojdani A, Choppa PC, Tagle C, et al. Detection of mycoplasma genus and mycoplasma fermentans by PCR in patients with chronic fatigue syndrome. FEMS Immunol Med Microbiol. 1998;22:355–365.
  • Nijs J, Nicolson GL, De Becker P, et al. High prevalence of mycoplasma infections among European chronic fatigue syndrome patients. Examination of four mycoplasma species in blood of chronic fatigue syndrome patients. FEMS Immunol Med Microbiol. 2002;34:209–214.
  • DeFreitas E, Hilliard B, Cheney PR, et al. Retroviral sequences related to human T-?lymphotropic virus type II in patients with chronic fatigue immune dysfunction syndrome. Proc Natl Acad Sci USA. 1991;88:2922–2926.
  • Lombardi VC, Ruscetti FW, Das Gupta J, et al. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science. 2009;326:585–589.
  • Lo SC, Pripuzova N, Li B, et al. Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors. Proc Natl Acad Sci USA. 2010;107:15874–15879.
  • Alter HJ, Mikovits JA, Switzer WM, et al. A multicenter blinded analysis indicates no association between chronic fatigue syndrome/myalgic encephalomyelitis and either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus. MBio. 2012;3(5).
  • Buchwald D, Cheney PR, Peterson DL, et al. A chronic illness characterized by fatigue, neurologic and immunologic disorders, and active human herpesvirus type 6 infection. Ann Intern Med. 1992;116:103–113.
  • Josephs SF, Henry B, Balachandran N, et al. HHV-6 reactivation in chronic fatigue syndrome. Lancet. 1991;337:1346–1347.
  • Nicolson GL, Gan R, Haier J. Multiple co-infections (Mycoplasma, Chlamydia, human herpes virus-6) in blood of chronic fatigue syndrome patients: association with signs and symptoms. Apmis. 2003;111:557–566.
  • Barker E, Fujimura SF, Fadem MB, et al. Immunologic abnormalities associated with chronic fatigue syndrome. Clin Infect Dis. 1994;18(Suppl 1):S136–S141.
  • Strayer D, Scott V, Carter W. Low NK cell activity in Chronic Fatigue Syndrome (CFS) and relationship to symptom severity. J Clin Cell Immunol. 2015;6:4.
  • Suhadolnik RJ, Reichenbach NL, Hitzges P, et al. Upregulation of the 2-?5A synthetase/RNase L antiviral pathway associated with chronic fatigue syndrome. Clin Infect Dis. 1994;18(Suppl 1):S96–S104.
  • Suhadolnik RJ, Reichenbach NL, Hitzges P, et al. Changes in the 2-?5A synthetase/RNase L antiviral pathway in a controlled clinical trial with poly(I)-poly(C12U) in chronic fatigue syndrome. In Vivo. 1994;8:599–604.
  • Snell CR, Vanness JM, Strayer DR, et al. Physical performance and prediction of 2-?5A synthetase/RNase L antiviral pathway activity in patients with chronic fatigue syndrome. In Vivo. 2002;16:107–109.
  • Shetzline SE, Martinand-Mari C, Reichenbach NL, et al. Structural and functional features of the 37-kDa 2-?5A-dependent RNase L in chronic fatigue syndrome. J Interferon Cytokine Res. 2002;22:443–456.
  • Demettre E, Bastide L, D’Haese A, et al. Ribonuclease L proteolysis in peripheral blood mononuclear cells of chronic fatigue syndrome patients. J Biol Chem. 2002;277:35746–35751.
  • Frémont M, El Bakkouri K, Vaeyens F, et al. 2ʹ,5ʹ-oligoadenylate size is critical to protect RNase L against proteolytic cleavage in chronic fatigue syndrome. Exp Mol Pathol. 2005;78:239–246.
  • De Meirleir K, Bisbal C, Campine I, et al. A 37 kDa 2-?5A binding protein as a potential biochemical marker for chronic fatigue syndrome. Am J Med. 2000;108:99–105.
  • Frémont M, Vaeyens F, Herst CV, et al. 37-kilodalton/83-kilodalton RNase L isoform ratio in peripheral blood mononuclear cells: analytical performance and relevance for chronic fatigue syndrome. Clin Diagn Lab Immunol. 2005;12:1259–1260.
  • Vernon SD, Unger ER, Dimulescu IM, et al. Utility of the blood for gene expression profiling and biomarker discovery in chronic fatigue syndrome. Dis Markers. 2002;18:193–199.
  • Whistler T, Unger ER, Nisenbaum R, et al. Integration of gene expression, clinical, and epidemiologic data to characterize chronic fatigue syndrome. J Transl Med. 2003;1:10.
  • Whistler T, Jones JF, Unger ER, et al. Exercise responsive genes measured in peripheral blood of women with chronic fatigue syndrome and matched control subjects. BMC Physiol. 2005;5:5.
  • Whistler T, Taylor R, Craddock RC, et al. Gene expression correlates of unexplained fatigue. Pharmacogenomics. 2006;7(3):395–405.
  • Carmel L, Efroni S, White PD, et al. Gene expression profile of empirically delineated classes of unexplained chronic fatigue. Pharmacogenomics. 2006;7:375–86.
  • Broderick G, Craddock RC, Whistler T, et al. Identifying illness parameters in fatiguing syndromes using classical projection methods. Pharmacogenomics. 2006;7:407–419.
  • Fang H, Xie Q, Boneva R, et al. Gene expression profile exploration of a large dataset on chronic fatigue syndrome. Pharmacogenomics. 2006;7(3):429–440.
  • Fostel J, Boneva R, Lloyd A. Exploration of the gene expression correlates of chronic unexplained fatigue using factor analysis. Pharmacogenomics. 2006;7:441–454.
  • Powell R, Ren J, Lewith G, et al. Identification of novel expressed sequences, up-regulated in the leucocytes of chronic fatigue syndrome patients. Clin Exp Allergy. 2003;33:1450–1456.
  • Gra¨ns H, Nilsson P. Evengard B gene expression profiling in the chronic fatigue syndrome. J Intern Med. 2005;258:388–390.
  • Gra¨ns H, Nilsson M, Dahlman-Wright K. Evenga° rd B reduced levels of oestrogen receptor beta mRNA in Swedish patients with chronic fatigue syndrome. J Clin Pathol. 2007;60:195–198.
  • Kerr JR, Burke B, Petty R, et al. Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes. J Clin Pathol. 2008;61:730–739.
  • Byrd MP, Zamora M, Lloyd RE. Translation of eukaryotic translation initiation factor 4GI (eIF4GI) proceeds from multiple mRNAs containing a novel cap-dependent internal ribosome entry site (IRES) that is active during poliovirus infection. J Biol Chem. 2005;280:18610–18622.
  • Zhang L, Gough J, Christmas D, et al. Microbial infections in eight genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis. J Clin Pathol. 2010;63:156–164.
  • Light AR, Bateman L, Jo D, et al. Gene expression alterations at baseline and following moderate exercise in patients with chronic fatigue syndrome and fibromyalgia syndrome. J Intern Med. 2012;271:64–81.
  • White AT, Light AR, Hughen RW, et al. Differences in metabolite-detecting, adrenergic, and immune gene expression after moderate exercise in patients with chronic fatigue syndrome, patients with multiple sclerosis, and healthy controls. Psychosom Med. 2012;74:46–54.
  • Myhill S, Booth NE, McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med. 2009;2:1–16.
  • Behan WM, More IA, Behan PO. Mitochondrial abnormalities in the postviral fatigue syndrome. Acta Neuropathol. 1991;83:61–65.
  • Fulle S, Mecocci P, Fanó G, et al. Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radic Biol Med. 2000;29:1252–1259.
  • Kuratsune H, Yamaguti K, Takahashi M, et al. Acylcarnitine deficiency in chronic fatigue syndrome. Clin Infect Dis. 1994;18(Suppl 1):S62–S67.
  • Plioplys AV, Plioplys S. Serum levels of carnitine in chronic fatigue syndrome: clinical correlates. Neuropsychobiology. 1995;32:132–138.
  • Zhang C, Baumer A, Mackay IR, et al. Unusual pattern of mitochondrial DNA deletions in skeletal muscle of an adult human with chronic fatigue syndrome. Hum Mol Genet. 1995;4:751–754.
  • Vecchiet L, Montanari G, Pizzigallo E, et al. Sensory characterization of somatic parietal tissues in humans with chronic fatigue syndrome. Neurosci Lett. 1996 19;208:117–120.
  • Arnold DL, Bore PJ, Radda GK, et al. Excessive intracellular acidosis of skeletal muscle on exercise in a patient with a post-viral exhaustion/fatigue syndrome. A 31P nuclear magnetic resonance study. Lancet. 1984;1:1367–1369.
  • McCully KK, Natelson BH, Iotti S, et al. Reduced oxidative muscle metabolism in chronic fatigue syndrome. Muscle Nerve. 1996;19:621–625.
  • Wong R, Lopaschuk G, Zhu G, et al. Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy. Chest. 1992;102:1716–1722.
  • Carter WA, Strayer DR. Double-stranded ribonucleic acids with rugged physico-chemical structure and highly specific biologic activity. US 8722874 B2: Filing date 3/31/2011/ Award May 13, 2014.