70
Views
0
CrossRef citations to date
0
Altmetric
Review

Dendritic cells in viral bronchiolitis

, , , &
Pages 271-282 | Published online: 10 Jan 2014

References

  • Ehlken B, Ihorst G, Lippert B et al. Economic impact of community-acquired and nosocomial lower respiratory tract infections in young children in Germany. Eur. J. Pediatr.164(10), 607–615 (2005).
  • Panickar JR, Dodd SR, Smyth RL, Couriel JM. Trends in deaths from respiratory illness in children in England and Wales from 1968 to 2000. Thorax60(12), 1035–1038 (2005).
  • Sigurs N, Bjarnason R, Sigurbergsson F, Kjellman B. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med.161(5), 1501–1507 (2000).
  • Sigurs N, Gustafsson PM, Bjarnason R et al. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am. J. Respir. Crit. Care Med.171(2), 137–141 (2005).
  • Henderson J, Hilliard TN, Sherriff A, Stalker D, Al Shammari N, Thomas HM. Hospitalization for RSV bronchiolitis before 12 months of age and subsequent asthma, atopy and wheeze: a longitudinal birth cohort study. Pediatr. Allergy Immunol.16(5), 386–392 (2005).
  • Noble V, Murray M, Webb MS, Alexander J, Swarbrick AS, Milner AD. Respiratory status and allergy nine to 10 years after acute bronchiolitis. Arch. Dis. Child.76(4), 315–319 (1997).
  • Murray M, Webb MS, O’Callaghan C, Swarbrick AS, Milner AD. Respiratory status and allergy after bronchiolitis. Arch. Dis. Child.67(4), 482–487 (1992).
  • Kotaniemi-Syrjanen A, Vainionpaa R, Reijonen TM, Waris M, Korhonen K, Korppi M. Rhinovirus-induced wheezing in infancy: the first sign of childhood asthma? J. Allergy Clin. Immunol.111(1), 66–71 (2003).
  • Murray CS, Simpson A, Custovic A. Allergens, viruses, and asthma exacerbations. Proc. Am. Thorac. Soc.1(2), 99–104 (2004).
  • Papadopoulos NG, Papi A, Psarras S, Johnston SL. Mechanisms of rhinovirus-induced asthma. Paediatr. Respir. Rev.5(3), 255–260 (2004).
  • Papadopoulos NG, Psarras S, Manoussakis E, Saxoni-Papageorgiou P. The role of respiratory viruses in the origin and exacerbations of asthma. Curr. Opin. Allergy Clin. Immunol.3(1), 39–44 (2003).
  • Johnston SL. Innate immunity in the pathogenesis of virus-induced asthma exacerbations. Proc. Am. Thorac. Soc.4(3), 267–270 (2007).
  • Contoli M, Message SD, Laza-Stanca V et al. Role of deficient type III interferon-l production in asthma exacerbations. Nat. Med.12(9), 1023–1026 (2006).
  • Mullins JA, Lamonte AC, Bresee JS, Anderson LJ. Substantial variability in community respiratory syncytial virus season timing. Pediatr. Infect. Dis. J.22(10), 857–862 (2003).
  • Williams JV, Harris PA, Tollefson SJ et al. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N. Engl. J. Med.350(5), 443–450 (2004).
  • Semple MG, Cowell A, Dove W et al. Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis. J. Infect. Dis.191(3), 382–386 (2005).
  • Korppi M, Kotaniemi-Syrjanen A, Waris M, Vainionpaa R, Reijonen TM. Rhinovirus-associated wheezing in infancy: comparison with respiratory syncytial virus bronchiolitis. Pediatr. Infect. Dis. J.23(11), 995–999 (2004).
  • Jartti T, Lehtinen P, Vuorinen T et al. Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children. Emerg. Infect. Dis.10(6), 1095–1101 (2004).
  • Papadopoulos NG, Moustaki M, Tsolia M et al. Association of rhinovirus infection with increased disease severity in acute bronchiolitis. Am. J. Respir. Crit. Care Med.165(9), 1285–1289 (2002).
  • Lemanske RF Jr, Jackson DJ, Gangnon RE et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J. Allergy Clin. Immunol.116(3), 571–577 (2005).
  • Hammad H, Lambrecht BN. Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. J. Allergy Clin. Immunol.118(2), 331–336 (2006).
  • Stumbles PA, Upham JW, Holt PG. Airway dendritic cells: co-ordinators of immunological homeostasis and immunity in the respiratory tract. Apmis111(7–8), 741–755 (2003).
  • Barchet W, Cella M, Colonna M. Plasmacytoid dendritic cells: virus experts of innate immunity. Semin. Immunol.17(4), 253–261 (2005).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature392(6673), 245–252 (1998).
  • Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science293(5528), 253–256 (2001).
  • Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells. Nature360(6401), 258–261 (1992).
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J. Exp. Med.179(4), 1109–1118 (1994).
  • Schmidlin H, Dontje W, Groot F et al. Stimulated plasmacytoid dendritic cells impair human T-cell development. Blood108(12), 3792–3800 (2006).
  • Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol.23, 275–306 (2005).
  • Abbas AK, Litchman AH, Pillai S. Recognition of antigens, Section II. In: Cellular and molecular immunology (6th Edition). Abbas AK, Litchman AH, Pillai S (Eds). Elsevier, The Netherlands (2007).
  • Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat. Immunol.5(12), 1219–1226 (2004).
  • Diebold SS, Montoya M, Unger H et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature424(6946), 324–328 (2003).
  • Siegal FP, Kadowaki N, Shodell M et al. The nature of the principal type 1 interferon-producing cells in human blood. Science284(5421), 1835–1837 (1999).
  • Soumelis V, Liu YJ. From plasmacytoid to dendritic cell: morphological and functional switches during plasmacytoid pre-dendritic cell differentiation. Eur. J. Immunol.36(9), 2286–2292 (2006).
  • Bonasio R, von Andrian UH. Generation, migration and function of circulating dendritic cells. Curr. Opin. Immunol.18(4), 503–511 (2006).
  • de Heer HJ, Hammad H, Soullie T et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med.200(1), 89–98 (2004).
  • Lambrecht BN, Hammad H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat. Rev.3(12), 994–1003 (2003).
  • Asselin-Paturel C, Brizard G, Pin JJ, Briere F, Trinchieri G. Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J. Immunol.171(12), 6466–6477 (2003).
  • Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev.3(12), 984–993 (2003).
  • Jonuleit H, Schmitt E, Steinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol.22(7), 394–400 (2001).
  • Sporri R, Reis e Sousa C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol.6(2), 163–170 (2005).
  • Hammad H, Kool M, Soullie T et al. Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J. Exp. Med.204(2), 357–367 (2007).
  • Falsey AR. Respiratory syncytial virus infection in adults. Semin. Respir. Crit. Care Med.28(2), 171–181 (2007).
  • Welliver RC. Respiratory syncytial virus and other respiratory viruses. Pediatr. Infect. Dis. J.22(2 Suppl.), S6–S10; discussion S10–S12 (2003).
  • Graham BS. Pathogenesis of respiratory syncytial virus vaccine-augmented pathology. Am. J. Respir. Crit. Care Med.152(4 Pt 2), S63–S66 (1995).
  • Gill MA, Palucka AK, Barton T et al. Mobilization of plasmacytoid and myeloid dendritic cells to mucosal sites in children with respiratory syncytial virus and other viral respiratory infections. J. Infect. Dis.191(7), 1105–1115 (2005).
  • Beyer M, Bartz H, Horner K, Doths S, Koerner-Rettberg C, Schwarze J. Sustained increases in numbers of pulmonary dendritic cells after respiratory syncytial virus infection. J. Allergy Clin. Immunol.113(1), 127–133 (2004).
  • de Graaff PM, de Jong EC, van Capel TM et al. Respiratory syncytial virus infection of monocyte-derived dendritic cells decreases their capacity to activate CD4 T cells. J. Immunol.175(9), 5904–5911 (2005).
  • Schlender J, Walliser G, Fricke J, Conzelmann KK. Respiratory syncytial virus fusion protein mediates inhibition of mitogen-induced T-cell proliferation by contact. J. Virol.76(3), 1163–1170 (2002).
  • Spann KM, Tran KC, Chi B, Rabin RL, Collins PL. Suppression of the induction of a, b, and l interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages [corrected]. J. Virol.78(8), 4363–4369 (2004).
  • Garofalo R, Kimpen JL, Welliver RC, Ogra PL. Eosinophil degranulation in the respiratory tract during naturally acquired respiratory syncytial virus infection. J. Pediatr.120(1), 28–32 (1992).
  • Bartz H, Turkel O, Hoffjan S, Rothoeft T, Gonschorek A, Schauer U. Respiratory syncytial virus decreases the capacity of myeloid dendritic cells to induce interferon-g in naive T cells. Immunology109(1), 49–57 (2003).
  • Brandenburg AH, Kleinjan A, van Het Land B et al. Type 1-like immune response is found in children with respiratory syncytial virus infection regardless of clinical severity. J. Med. Virol.62(2), 267–277 (2000).
  • Roman M, Calhoun WJ, Hinton KL et al. Respiratory syncytial virus infection in infants is associated with predominant Th-2-like response. Am. J. Respir. Crit. Care Med.156(1), 190–195 (1997).
  • Renzi PM, Turgeon JP, Yang JP et al. Cellular immunity is activated and a Th-2 response is associated with early wheezing in infants after bronchiolitis. J. Pediatr.130(4), 584–593 (1997).
  • van Schaik SM, Tristram DA, Nagpal IS, Hintz KM, Welliver RC 2nd, Welliver RC. Increased production of IFN-γ and cysteinyl leukotrienes in virus-induced wheezing. J. Allergy Clin. Immunol.103(4), 630–636 (1999).
  • Wang H, Peters N, Schwarze J. Plasmacytoid dendritic cells limit viral replication, pulmonary inflammation, and airway hyperresponsiveness in respiratory syncytial virus infection. J. Immunol.177(9), 6263–6270 (2006).
  • Moseman EA, Liang X, Dawson AJ et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J. Immunol.173(7), 4433–4442 (2004).
  • Smit JJ, Rudd BD, Lukacs NW. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med.203(5), 1153–1159 (2006).
  • Smit JJ, Lindell DM, Boon L, Kool M, Lambrecht BN, Lukacs NW. The balance between plasmacytoid DC versus conventional DC determines pulmonary immunity to virus infections. PLoS ONE3(3), e1720 (2008).
  • Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol.311, 17–58 (2006).
  • Kaisho T, Akira S. Regulation of dendritic cell function through Toll-like receptors. Curr. Mol. Med.3(8), 759–771 (2003).
  • Colonna M. TLR pathways and IFN-regulatory factors: to each its own. Eur. J. Immunol.37(2), 306–309 (2007).
  • Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med.196(12), 1645–1651 (2002).
  • Stumbles PA, Thomas JA, Pimm CL et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med.188(11), 2019–2031 (1998).
  • Rudd BD, Schaller MA, Smit JJ et al. MyD88-mediated instructive signals in dendritic cells regulate pulmonary immune responses during respiratory virus infection. J. Immunol.178(9), 5820–5827 (2007).
  • Boivin G, Abed Y, Pelletier G et al. Virological features and clinical manifestations associated with human metapneumovirus: a new paramyxovirus responsible for acute respiratory-tract infections in all age groups. J. Infect. Dis.186(9), 1330–1334 (2002).
  • Laham FR, Israele V, Casellas JM et al. Differential production of inflammatory cytokines in primary infection with human metapneumovirus and with other common respiratory viruses of infancy. J. Infect. Dis.189(11), 2047–2056 (2004).
  • Alvarez R, Harrod KS, Shieh WJ, Zaki S, Tripp RA. Human metapneumovirus persists in BALB/c mice despite the presence of neutralizing antibodies. J. Virol.78(24), 14003–14011 (2004).
  • Tripp RA, Moore D, Jones L, Sullender W, Winter J, Anderson LJ. Respiratory syncytial virus G and/or SH protein alters Th1 cytokines, natural killer cells, and neutrophils responding to pulmonary infection in BALB/c mice. J. Virol.73(9), 7099–7107 (1999).
  • Estripeaut D, Torres JP, Somers CS et al. Respiratory syncytial virus persistence in the lungs correlates with airway hyperreactivity in the mouse model. J. Infect. Dis.198(10), 1435–1443 (2008).
  • Schwarze J, O’Donnell DR, Rohwedder A, Openshaw PJ. Latency and persistence of respiratory syncytial virus despite T cell immunity. Am. J. Respir. Crit. Care Med.169(7), 801–805 (2004).
  • Alvarez R, Tripp RA. The immune response to human metapneumovirus is associated with aberrant immunity and impaired virus clearance in BALB/c mice. J. Virol.79(10), 5971–5978 (2005).
  • Tan MC, Battini L, Tuyama AC et al. Characterization of human metapneumovirus infection of myeloid dendritic cells. Virology357(1), 1–9 (2007).
  • Guerrero-Plata A, Casola A, Suarez G et al. Differential response of dendritic cells to human metapneumovirus and respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol.34(3), 320–329 (2006).
  • Whitton JL, Cornell CT, Feuer R. Host and virus determinants of picornavirus pathogenesis and tropism. Nat. Rev. Microbiol.3(10), 765–776 (2005).
  • Pitkaranta A, Hayden FG. Respiratory viruses and acute otitis media. N. Engl. J. Med.340(25), 2001–2002; author reply 2002 (1999).
  • Chantzi FM, Papadopoulos NG, Bairamis T et al. Human rhinoviruses in otitis media with effusion. Pediatr. Allergy Immunol.17(7), 514–518 (2006).
  • Greenberg SB. Respiratory consequences of rhinovirus infection. Arch. Intern. Med.163(3), 278–284 (2003).
  • Papadopoulos NG. Do rhinoviruses cause pneumonia in children? Paediatr. Respir. Rev.5(Suppl. A), S191–S195 (2004).
  • Kriesel JD, Sibley WA. The case for rhinoviruses in the pathogenesis of multiple sclerosis. Mult. Scler.11(1), 1–4 (2005).
  • Mallia P, Johnston SL. Mechanisms and experimental models of chronic obstructive pulmonary disease exacerbations. Proc. Am. Thorac. Soc.2(4), 361–366; discussion 371–362 (2005).
  • Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. BMJ307(6910), 982–986 (1993).
  • Psarras S, Volonaki E, Skevaki CL et al. Vascular endothelial growth factor-mediated induction of angiogenesis by human rhinoviruses. J. Allergy Clin. Immunol.117(2), 291–297 (2006).
  • Schroth MK, Grimm E, Frindt P et al. Rhinovirus replication causes RANTES production in primary bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol.20(6), 1220–1228 (1999).
  • Message SD, Johnston SL. Host defense function of the airway epithelium in health and disease: clinical background. J. Leukoc. Biol.75(1), 5–17 (2004).
  • Couch R. Rhinoviruses (3rd Edition). Raven Press, NY, USA (1996).
  • Wark PA, Johnston SL, Bucchieri F et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med.201(6), 937–947 (2005).
  • Kirchberger S, Majdic O, Steinberger P et al. Human rhinoviruses inhibit the accessory function of dendritic cells by inducing sialoadhesin and B7-H1 expression. J. Immunol.175(2), 1145–1152 (2005).
  • Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu. Rev. Immunol.23, 515–548 (2005).
  • Selenko-Gebauer N, Majdic O, Szekeres A et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J. Immunol.170(7), 3637–3644 (2003).
  • Kirchberger S, Majdic O, Stockl J. Modulation of the immune system by human rhinoviruses. Int. Arch. Allergy Immunol.142(1), 1–10 (2007).
  • Pollara G, Kwan A, Newton PJ, Handley ME, Chain BM, Katz DR. Dendritic cells in viral pathogenesis: protective or defective? Int. J. Exp. Pathol.86(4), 187–204 (2005).
  • Plotnicky-Gilquin H, Cyblat D, Aubry JP et al. Differential effects of parainfluenza virus type 3 on human monocytes and dendritic cells. Virology285(1), 82–90 (2001).
  • Zhao H, De BP, Das T, Banerjee AK. Inhibition of human parainfluenza virus-3 replication by interferon and human MxA. Virology220(2), 330–338 (1996).
  • Grayson MH, Ramos MS, Rohlfing MM et al. Controls for lung dendritic cell maturation and migration during respiratory viral infection. J. Immunol.179(3), 1438–1448 (2007).
  • Nazir SA, Metcalf JP. Innate immune response to adenovirus. J. Investig. Med.53(6), 292–304 (2005).
  • Thiele AT, Sumpter TL, Walker JA et al. Pulmonary immunity to viral infection: adenovirus infection of lung dendritic cells renders T cells nonresponsive to interleukin-2. J. Virol.80(4), 1826–1836 (2006).
  • Zhu J, Huang X, Yang Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J. Virol.81(7), 3170–3180 (2007).
  • Gill MA, Long K, Kwon T et al. Differential recruitment of dendritic cells and monocytes to respiratory mucosal sites in children with influenza virus or respiratory syncytial virus infection. J. Infect. Dis.198(11), 1667–1676 (2008).
  • Bender A, Albert M, Reddy A et al. The distinctive features of influenza virus infection of dendritic cells. Immunobiology198(5), 552–567 (1998).
  • Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med.189(5), 821–829 (1999).
  • Oh S, McCaffery JM, Eichelberger MC. Dose-dependent changes in influenza virus-infected dendritic cells result in increased allogeneic T-cell proliferation at low, but not high, doses of virus. J. Virol.74(12), 5460–5469 (2000).
  • Bhardwaj N, Bender A, Gonzalez N, Bui LK, Garrett MC, Steinman RM. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells. J. Clin. Invest.94(2), 797–807 (1994).
  • Bender A, Bui LK, Feldman MA, Larsson M, Bhardwaj N. Inactivated influenza virus, when presented on dendritic cells, elicits human CD8+ cytolytic T cell responses. J. Exp. Med.182(6), 1663–1671 (1995).
  • Bevan MJ. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med.143(5), 1283–1288 (1976).
  • Barchet W, Krug A, Cella M et al. Dendritic cells respond to influenza virus through TLR7- and PKR-independent pathways. Eur. J. Immunol.35(1), 236–242 (2005).
  • Fernandez-Sesma A, Marukian S, Ebersole BJ et al. Influenza virus evades innate and adaptive immunity via the NS1 protein. J. Virol.80(13), 6295–6304 (2006).
  • Kochs G, Garcia-Sastre A, Martinez-Sobrido L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J. Virol.81(13), 7011–7021 (2007).
  • Brimnes MK, Bonifaz L, Steinman RM, Moran TM. Influenza virus-induced dendritic cell maturation is associated with the induction of strong T cell immunity to a coadministered, normally nonimmunogenic protein. J. Exp. Med.198(1), 133–144 (2003).
  • Montoya M, Edwards MJ, Reid DM, Borrow P. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 IFN. J. Immunol.174(4), 1851–1861 (2005).
  • Phipps-Yonas H, Seto J, Sealfon SC, Moran TM, Fernandez-Sesma A. Interferon-b pretreatment of conventional and plasmacytoid human dendritic cells enhances their activation by influenza virus. PLoS Pathog.4(10), e1000193 (2008).
  • La Bonnardiere C, Laude H. Interferon induction in rotavirus and coronavirus infections: a review of recent results. Ann. Rech. Vet.14(4), 507–511 (1983).
  • Spiegel M, Schneider K, Weber F, Weidmann M, Hufert FT. Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. J. Gen. Virol.87(Pt 7), 1953–1960 (2006).
  • Law HK, Cheung CY, Ng HY et al. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood106(7), 2366–2374 (2005).
  • Tseng CT, Perrone LA, Zhu H, Makino S, Peters CJ. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J. Immunol.174(12), 7977–7985 (2005).
  • Yen YT, Liao F, Hsiao CH, Kao CL, Chen YC, Wu-Hsieh BA. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J. Virol.80(6), 2684–2693 (2006).
  • Cervantes-Barragan L, Zust R, Weber F et al. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood109(3), 1131–1137 (2007).
  • Ziegler T, Matikainen S, Ronkko E et al. Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J. Virol.79(21), 13800–13805 (2005).
  • Frieman M, Heise M, Baric R. SARS coronavirus and innate immunity. Virus Res.133(1), 101–112 (2008).
  • Cinatl J, Jr., Hoever G, Morgenstern B et al. Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus. Cell. Mol. Life Sci.61(16), 2100–2112 (2004).
  • Tang BS, Chan KH, Cheng VC et al. Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. J. Virol.79(10), 6180–6193 (2005).
  • Castilletti C, Bordi L, Lalle E et al. Coordinate induction of IFN-α and -g by SARS-CoV also in the absence of virus replication. Virology341(1), 163–169 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.