47
Views
13
CrossRef citations to date
0
Altmetric
Review

Emerging roles for B lymphocytes in Type 1 diabetes

&
Pages 311-324 | Published online: 10 Jan 2014

References

  • Bergholdt R, Heding P, Nielsen K et al. Type I diabetes mellitus: an inflammatory disease of the islet. In: Type 1 Diabetes: Molecular, Cellular and Clinical Immunology (Advances in Experimental Medicine and Biology). Eisenbarth GS (Ed.). Springer, NY, USA 129–153 (2004).
  • Biros E, Jordan MA, Baxter AG. Genes mediating environment interactions in Type 1 diabetes. Rev. Diabet. Stud.2(4), 192–207 (2005).
  • Gallego PH, Wiltshire E, Donaghue KC. Identifying children at particular risk of long-term diabetes complications. Pediatr. Diabetes8(Suppl. 6), 40–48 (2007).
  • Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol.23, 447–4485 (2005).
  • Atkinson MA, Leiter EH. The NOD mouse model of Type 1 diabetes: as good as it gets? Nat. Med.5(6), 601–604 (1999).
  • Yu L, Eisenbarth GS. Humoral autoimmunity. In: Type 1 Diabetes: Molecular, Cellular and Clinical Immunology (Advances in Experimental Medicine and Biology). Eisenbarth, GS (Ed.). Springer, NY, USA 247–267 (2005).
  • Kendall PL, Yu G, Woodward EJ, Thomas JW. Tertiary lymphoid structures in the pancreas promote selection of B lymphocytes in autoimmune diabetes. J. Immunol.178(9), 5643–5651 (2007).
  • Itoh N, Hanafusa T, Miyazaki A et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J. Clin. Invest.92(5), 2313–2322 (1993).
  • Bendelac A, Carnaud C, Boitard C, Bach JF. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J. Exp. Med.166(4), 823–832 (1987).
  • Miller BJ, Appel MC, O’Neil JJ, Wicker LS. Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. J. Immunol.140(1), 52–58 (1988).
  • Christianson SW, Shultz LD, Leiter EH. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes42(1), 44–55 (1993).
  • Serreze DV, Fleming SA, Chapman HD, Richard SD, Leiter EH, Tisch RM. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Immunol.161(8), 3912–3918 (1998).
  • Serreze DV, Chapman HD, Varnum DS et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Igµnull mice. J. Exp. Med.184(5), 2049–2053 (1996).
  • Akashi T, Nagafuchi S, Anzai K et al. Direct evidence for the contribution of B cells to the progression of insulitis and the development of diabetes in non-obese diabetic mice. Int. Immunol.9(8), 1159–1164 (1997).
  • Noorchashm H, Noorchashm N, Kern J, Rostami SY, Barker CF, Naji A. β-cells are required for the initiation of insulitis and sialitis in nonobese diabetic mice. Diabetes46(6), 941–946 (1997).
  • Yang M, Charlton B, Gautam AM. Development of insulitis and diabetes in B cell-deficient NOD mice. J. Autoimmun.10(3), 257–260 (1997).
  • Silveira PA, Johnson E, Chapman HD, Bui T, Tisch RM, Serreze DV. The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. Eur. J. Immunol.32(12), 3657–3666 (2002).
  • Wong FS, Wen L, Tang M et al. Investigation of the role of β-cells in Type 1 diabetes in the NOD mouse. Diabetes53(10), 2581–2587 (2004).
  • Achenbach P, Bonifacio E, Ziegler A-G. Predicting Type 1 diabetes. Curr. Diab. Rep.5(2), 98–103 (2005).
  • Finucane KA, Archer CB. Recent advances in diabetology: diabetic dermopathy, autoantibodies in the prediction of the development of Type 1 diabetes, and islet cell transplantation and inhaled insulin as treatment for diabetes. Clin. Exp. Dermatol.31(6), 837–840 (2006).
  • Betterle C, Presotto F, Pedini B et al. Islet cell and insulin autoantibodies in organ-specific autoimmune patients. Their behaviour and predictive value for the development of Type 1 (insulin-dependent) diabetes mellitus. A 10-year follow-up study. Diabetologia30(5), 292–297 (1987).
  • Wenzlau JM, Juhl K, Yu L et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human Type 1 diabetes. Proc. Natl Acad. Sci. USA104(43), 17040–17045 (2007).
  • Verge CF, Gianani R, Kawasaki E et al. Prediction of Type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes45(7), 926–933 (1996).
  • Reddy S, Bibby N, Elliott RB. Ontogeny of islet cell antibodies, insulin autoantibodies and insulitis in the non-obese diabetic mouse. Diabetologia31(5), 322–328 (1988).
  • Reddy S, Bibby N, Elliott RB. Longitudinal study of islet cell antibodies and insulin autoantibodies and development of diabetes in non-obese diabetic (NOD) mice. Clin. Exp. Immunol.81(3), 400–405 (1990).
  • Pontesilli O, Carotenuto P, Gazda LS, Pratt PF, Prowse SJ. Circulating lymphocyte populations and autoantibodies in non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol.70(1), 84–93 (1987).
  • Yu L, Robles DT, Abiru N et al. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc. Natl Acad. Sci. USA97(4), 1701–1706 (2000).
  • Inoue Y, Kaifu T, Sugahara-Tobinai A, Nakamura A, Miyazaki J-I, Takai T. Activating Fcγ receptors participate in the development of autoimmune diabetes in NOD mice. J. Immunol.179(2), 764–774 (2007).
  • Heinze E. Immunoglobulins in children with autoimmune diabetes mellitus. Clin. Exp. Rheumatol.14(Suppl. 15), S99–S102 (1996).
  • Greeley SAS, Katsumata M, Yu L et al. Elimination of maternally transmitted autoantibodies prevents diabetes in nonobese diabetic mice. Nat. Med.8(4), 399–402 (2002).
  • Washburn LR, Dang H, Tian J, Kaufman DL. The postnatal maternal environment influences diabetes development in nonobese diabetic mice. J. Autoimmun.28(1), 19–23 (2007).
  • Warram JH, Krolewski AS, Gottlieb MS, Kahn CR. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N. Engl. J. Med.311(3), 149–152 (1984).
  • Naserke HE, Bonifacio E, Ziegler AG. Prevalence, characteristics and diabetes risk associated with transient maternally acquired islet antibodies and persistent islet antibodies in offspring of parents with Type 1 diabetes. J. Clin. Endocrinol. Metab.86(10), 4826–4833 (2001).
  • Koczwara K, Bonifacio E, Ziegler A-G. Transmission of maternal islet antibodies and risk of autoimmune diabetes in offspring of mothers with Type 1 diabetes. Diabetes53(1), 1–4 (2004).
  • Falcone M, Lee J, Patstone G, Yeung B, Sarvetnick N. B lymphocytes are critical antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice. J. Immunol.161(3), 1163–1168 (1998).
  • Wheat W, Kupfer R, Gutches DG et al. Increased NF-kB activity in B cells and bone marrow-derived dendritic cells from NOD mice. Eur. J. Immunol.34(5), 1395–1404 (2004).
  • Noorchashm H, Lieu YK, Noorchashm N et al. I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet B cells of nonobese diabetic mice. J. Immunol.163(2), 743–750 (1999).
  • Chesnut R, Colon S, Grey H. Antigen presentation by normal B cells, B cell tumors, and macrophages: functional and biochemical comparison. J. Immunol.128(4), 1764–1768 (1982).
  • Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu. Rev. Immunol.8, 773–793 (1990).
  • Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature314(6011), 537–539 (1985).
  • Hulbert C, Riseili B, Rojas M, Thomas JW. β-cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J. Immunol.167(10), 5535–5538 (2001).
  • Greeley SAW, Moore DJ, Noorchashm H et al. Impaired activation of islet-reactive CD4 T cells in pancreatic lymph nodes of B cell-deficient nonobese diabetic mice. J. Immunol.167(8), 4351–4357 (2001).
  • Chiu PPL, Serreze DV, Danska JS. Development and function of diabetogenic T-cells in β-cell-deficient nonobese diabetic mice. Diabetes50(4), 763–770 (2001).
  • Holz A, Dyrberg T, Hagopian W, Homann D, von Herrath M, Oldstone MB. Neither B lymphocytes nor antibodies directed against self antigens of the islets of Langerhans are required for development or virus-induced autoimmune diabetes. J. Immunol.165, 5945–5953 (2000).
  • Verdaguer J, Schmidt D, Amrani A, Anderson B, Averill N, Santamaria P. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med.186(10), 1663–1676 (1997).
  • Kurrer MO, Pakala SV, Hanson HL, Katz JD. b cell apoptosis in T cell-mediated autoimmune diabetes. Proc. Natl Acad. Sci. USA94(1), 213–218 (1997).
  • Dahlen E, Hedlund G, Dawe K. Low CD86 expression in the nonobese diabetic mouse results in the impairment of both T cell activation and CTLA-4 up-regulation. J. Immunol.164(5), 2444–2456 (2000).
  • Pearson T, Markees TG, Serreze DV et al. Genetic disassociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice. J. Immunol.171(1), 185–195 (2003).
  • Serreze D, Gaskins H, Leiter E. Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J. Immunol.150(6), 2534–2543 (1993).
  • Vasquez AC, Feili-Hariri M, Tan RJ, Morel PA. Qualitative and quantitative abnormalities in splenic dendritic cell populations in NOD mice. Clin. Exp. Immunol.135, 209–218 (2004).
  • Noorchashm H, Moore DJ, Noto LE et al. Impaired CD4 T cell activation due to reliance upon B cell-mediated costimulation in nonobese diabetic (NOD) mice. J. Immunol.165(8), 4685–4696 (2000).
  • Jansen A, van Hagen M, Drexhage HA. Defective maturation and function of antigen-presenting cells in Type 1 diabetes. Lancet345(8948), 491–492 (1995).
  • Litherland SA, Xie XT, Hutson AD et al. Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J. Clin. Invest.104(4), 515–523 (1999).
  • Takahashi K, Honeyman MC, Harrison LC. Impaired yield, phenotype, and function of monocyte-derived dendritic cells in humans at risk for insulin-dependent diabetes. J. Immunol.161(5), 2629–2635 (1998).
  • Angelini F, Del Duca E, Piccinini S, Pacciani V, Rossi P, Manca Bitti ML. Altered phenotype and function of dendritic cells in children with Type 1 diabetes. Clin. Exp. Immunol.142(2), 341–346 (2005).
  • Tian J, Zekzer D, Lu Y, Dang H, Kaufman DL. B cells are crucial for determinant spreading of T cell autoimmunity among b cell antigens in diabetes-prone nonobese diabetic mice. J. Immunol.176(4), 2654–2661 (2006).
  • Green EA, Eynon EE, Flavell RA. Local expression of TNFa in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity9(5), 733–743 (1998).
  • Brodie GM, Wallberg M, Santamaria P, Wong FS, Green EA. B cells promote intra-islet CD8+ cytotoxic T lymphocyte survival to enhance Type 1 diabetes. Diabetes57(4), 909–917 (2008).
  • Gonzalez M, Mackay F, Browning JL, Kosco-Vilbois MH, Noelle RJ. The sequential role of lymphotoxin and B cells in the development of splenic follicles. J. Exp. Med.187(7), 997–1007 (1998).
  • Tumanov A, Kuprash D, Lagarkova M et al. Distinct role of surface lymphotoxin expressed by B cells in the organization of secondary lymphoid tissues. Immunity17(3), 239–250 (2002).
  • Gagnerault MC, Luan JJ, Lotton C, Lepault F. Pancreatic lymph nodes are required for priming of b cell reactive T cells in NOD mice. J. Exp. Med.196(3), 369–377 (2002).
  • Lepault F, Gagnerault MC. L-selectin (-/lo) and diabetogenic T cells are similarly distributed in prediabetic and diabetic nonobese diabetic mice. Lab. Invest.78(5), 551–558 (1998).
  • Jarpe AJ, Hickman MR, Anderson JT, Winter WE, Peck AB. Flow cytometric enumeration of mononuclear cell populations infiltrating the islets of Langerhans in prediabetic NOD mice: development of a model of autoimmune insulitis for type I diabetes. Reg. Immunol.3(6), 305–317 (1991).
  • Fox CJ, Danaska JS. Independent genetic regulation of T-cell and antigen-presenting cell participation in autoimmune islet inflammation. Diabetes47(3), 331–338 (1998).
  • Lo D, Reilly CR, Scott B, Liblau R, McDevitt HO, Burkly LC. Antigen-presenting cells in adoptively transferred and spontaneous diabetes. Eur. J. Immunol.23, 1693–1698 (1993).
  • Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity12, 471–481 (2000).
  • Wu Q, Salomon B, Chen M et al. Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J. Exp. Med.193(11), 1327–1332 (2001).
  • Lee Y, Chin RK, Christiansen P et al. Recruitment and activation of naive T cells in the islets by lymphotoxin b receptor-dependent tertiary lymphoid structure. Immunity25(3), 499–509 (2006).
  • Picarella DE, Kratz A, Li CB, Ruddle NH, Flavell RA. Insulitis in transgenic mice expressing tumor necrosis factor b (lymphotoxin) in the pancreas. Proc. Natl Acad. Sci. USA89(21), 10036–10040 (1992).
  • Kumar K, Mohan C. Understanding β-cell tolerance through the use of immunoglobulin transgenic models. Immunol. Res.40(3), 208–223 (2008).
  • Silveira PA, Dombrowsky J, Johnson E, Chapman HD, Nemazee D, Serreze DV. B cell selection defects underlie the development of diabetogenic APCs in nonobese diabetic mice. J. Immunol.172(8), 5086–5094 (2004).
  • Lesage S, Hartley SB, Akkaraju S, Wilson J, Townsend M, Goodnow CC. Failure to censor forbidden clones of CD4 T cells in autoimmune diabetes. J. Exp. Med.196(9), 1175–1188 (2002).
  • Acevedo-Suarez CA, Hulbert C, Woodward EJ, Thomas JW. Uncoupling of anergy from developmental arrest in anti-insulin B cells supports the development of autoimmune diabetes. J. Immunol.174(2), 827–833 (2005).
  • Bonifacio E, Atkinson M, Eisenbarth G et al. International workshop on lessons from animal models for human Type 1 diabetes: identification of insulin but not glutamic acid decarboxylase or IA-2 as specific autoantigens of humoral autoimmunity in nonobese diabetic mice. Diabetes50(11), 2451–2458 (2001).
  • Woodward EJ, Thomas JW. Multiple germline k light chains generate anti-insulin B cells in nonobese diabetic mice. J. Immunol.175(2), 1073–1079 (2005).
  • Monroe JG, Dorshkind K. Fate decisions regulating bone marrow and peripheral B lymphocyte development. Adv. Immunol.95, 1–50 (2007).
  • Mackay F, Silveira PA, Brink R. B cells and the BAFF/APRIL axis: fast-forward on autoimmunity and signalling. Curr. Opin. Immunol.19(3), 327–336 (2007).
  • Quinn III WJ, Noorchashm N, Crowley JE et al. Cutting edge: impaired transitional B cell production and selection in the nonobese diabetic mouse. J. Immunol.176(12), 7159–7164 (2006).
  • Panigrahi AK, Goodman NG, Eisenberg RA, Rickels MR, Naji A, Luning Prak ET. RS rearrangement frequency as a marker of receptor editing in lupus and Type 1 diabetes. J. Exp. Med.205(13), 2985–2994 (2008).
  • Duty JA, Szodoray P, Zheng NY et al. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J. Exp. Med.206(1), 139–151 (2009).
  • MacLennan ICM. Germinal centers. Annu. Rev. Immunol.12(1), 117–139 (1994).
  • Cinamon G, Zachariah MA, Lam OM, Foss FW, Jr. Cyster JG. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat. Immunol. 9(1), 54–62 (2008).
  • Martin F, Kearney JF. Marginal-zone B cells. Nat. Rev. Immunol.2(5), 323–335 (2002).
  • Attanavanich K, Kearney JF. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J. Immunol.172(2), 803–811 (2004).
  • Marino E, Batten M, Groom J et al. Marginal-zone β-cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T-cells. Diabetes57(2), 395–404 (2008).
  • Rolf J, Motta V, Duarte N et al. The enlarged population of marginal zone/CD1dhigh B lymphocytes in nonobese diabetic mice maps to diabetes susceptibility region Idd11. J. Immunol.174(8), 4821–4827 (2005).
  • Noorchashm H, Moore DJ, Lieu YK et al. Contribution of the innate immune system to autoimmune diabetes: a role for the CR1/CR2 complement receptors. Cell. Immunol.195(1), 75–79 (1999).
  • Thomas JW, Kendall PL, Mitchell HG. The natural autoantibody repertoire of nonobese diabetic mice is highly active. J. Immunol.169(11), 6617–6624 (2002).
  • Kendall PL, Woodward EJ, Hulbert C, Thomas JW. Peritoneal B cells govern the outcome of diabetes in non-obese diabetic mice. Eur. J. Immunol.34(9), 2387–2395 (2004).
  • Chen YG, Silveira PA, Osborne MA, Chapman HD, Serreze DV. Cellular expression requirements for inhibition of Type 1 diabetes by a dominantly protective major histocompatibility complex haplotype. Diabetes56(2), 424–430 (2007).
  • Johnson EA, Silveira P, Chapman HD, Leiter EH, Serreze DV. Inhibition of autoimmune diabetes in nonobese diabetic mice by transgenic restoration of H2-E MHC class II expression: additive, but unequal, involvement of multiple APC subtypes. J. Immunol.167(4), 2404–2410 (2001).
  • Silveira PA, Chapman HD, Stolp J et al. Genes within the Idd5 and Idd9/11 diabetes susceptibility loci affect the pathogenic activity of B cells in nonobese diabetic mice. J. Immunol.177(10), 7033–7041 (2006).
  • Serreze DV, Prochazka M, Reifsnyder PC, Bridgett MM, Leiter EH. Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J. Exp. Med.180(4), 1553–1558 (1994).
  • Morahan G, McClive P, Huang D, Little P, Baxter A. Genetic and physiological association of diabetes susceptibility with raised Na+/H+ exchange activity. Proc. Natl Acad. Sci. USA91(13), 5898–5902 (1994).
  • Rodrigues NR, Cornall RJ, Chandler P et al. Mapping of an insulin-dependent diabetes locus, Idd9, in NOD mice to chromosome 4. Mamm. Genome5(3), 167–170 (1994).
  • Brodnicki TC, O’Donnell K, Quirk F, Tarlinton DM. Congenic NOD mouse strains fail to confirm linkage of a marginal zone B lymphocyte phenotype to the Idd11 locus on chromosome 4. J. Immunol.176, 701–702 (2006).
  • Silveira PA, Chapman HD, Stolp J et al. Genes within the Idd5 and Idd9/11 diabetes susceptibility loci affect the pathogenic activity of B cells in nonobese diabetic mice. J. Immunol.177(10), 7033–7041 (2006).
  • Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity28(5), 639–650 (2008).
  • Bouaziz JD, Yanaba K, Tedder TF. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev.224, 201–214 (2008).
  • Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest.118(10), 3420–3430 (2008).
  • Mauri C, Gray D, Mushtaq N, Londei M. Prevention of arthritis by interleukin 10-producing B cells. J. Exp. Med.197(4), 489–501 (2003).
  • Hussain S, Delovitch TL. Intravenous transfusion of BCR-activated B cells protects NOD mice from Type 1 diabetes in an IL-10-dependent manner. J. Immunol.179(11), 7225–7232 (2007).
  • Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL. Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent automiine diabetes in nonobese diabetic mice. J. Immunol.167(2), 1081–1089 (2001).
  • Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest, 114(10), 1379–1388 (2004).
  • Dufour FD, Baxter AG, Silveira PA. Interactions between B-lymphocytes and type 1 NKT cells in autoimmune diabetes. J. Immunotoxicol.5(2), 249–257 (2008).
  • Roark JH, Park SH, Jayawardena J, Kavita U, Shannon M, Bendelac A. CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J. Immunol.160(7), 3121–3127 (1998).
  • Lang GA, Illarionov PA, Glatman-Freedman A, Besra GS, Lang ML. BCR targeting of biotin-α-galactosylceramide leads to enhanced presentation on CD1d and requires transport of BCR to CD1d-containing endocytic compartments. Int. Immunol.17(7), 899–908 (2005).
  • Bezbradica JS, Stanic AK, Matsuki N et al. Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J. Immunol.174(8), 4696–4705 (2005).
  • Wang B, Geng YB, Wang CR. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med.194(3), 313–320 (2001).
  • Hong S, Wilson MT, Serizawa I et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med.7(9), 1052–1056 (2001).
  • Hu CY, Rodriguez-Pinto D, Du W et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin. Invest.117(12), 3857–3867 (2007).
  • Johnson P, Glennie M. The mechanisms of action of rituximab in the elimination of tumor cells. Semin. Oncol.30(1 Suppl. 2), 3–8 (2003).
  • Yanaba K, Bouaziz JD, Matsushita T, Magro CM, St Clair EW, Tedder TF. B-lymphocyte contributions to human autoimmune disease. Immunol. Rev.223, 284–299 (2008).
  • Eisenberg R, Albert D. β-cell targeted therapies in rheumatoid arthritis and systemic lupus erythematosus. Nat. Clin. Pract. Rheumatol.2(1), 20–27 (2006).
  • Evans JG, Chavez-Rueda KA, Eddaoudi A et al. Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol.178(12), 7868–7878 (2007).
  • Xiu Y, Wong CP, Bouaziz J-D et al. B lymphocyte depletion by CD20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in Fcγ R effector functions. J. Immunol.180(5), 2863–2875 (2008).
  • Fiorina P, Vergani A, Dada S et al. Targeting CD22 reprograms B cells and reverses autoimmune diabetes. Diabetes57(11), 3013–3024 (2008).
  • Zekavat G, Rostami SY, Badkerhanian A et al.In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. J. Immunol.181(11), 8133–8144 (2008).
  • Shapiro AM, Ricordi C, Hering BJ et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med.355(13), 1318–1330 (2006).
  • Liu C, Noorchashm H, Sutter JA et al. B lymphocyte-directed immunotherapy promotes long-term islet allograft survival in nonhuman primates. Nat. Med.13(11), 1295–1298 (2007).
  • Martin S, Wolf-Eichbaum D, Duinkerken G et al. Development of Type 1 diabetes despite severe hereditary β-cell deficiency. N. Engl. J. Med.345(14), 1036–1040 (2001).
  • Shoda LK, Young DL, Ramanujan S et al. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity23(2), 115–126 (2005).
  • Steinfeld SD, Youinou P. Epratuzumab (humanised anti-CD22 antibody) in autoimmune diseases. Expert Opin. Biol. Ther.6(9), 943–949 (2006).
  • Ding C. Belimumab, an anti-BLyS human monoclonal antibody for potential treatment of inflammatory autoimmune diseases. Expert Opin. Biol. Ther.8(11), 1805–1814 (2008).
  • Vassilopoulos D, Calabrese LH. Risks of immunosuppressive therapies including biologic agents in patients with rheumatic diseases and co-existing chronic viral infections. Curr. Opin Rheumatol.19(6), 619–625 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.