141
Views
26
CrossRef citations to date
0
Altmetric
Review

Update on the genetic risk factors for rheumatoid arthritis

&
Pages 61-75 | Published online: 10 Jan 2014

References

  • Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet373(9664), 659–672 (2009).
  • Seldin MF, Amos CI, Ward R, Gregersen PK. The genetics revolution and the assault on rheumatoid arthritis. Arthritis Rheum.42(6), 1071–1079 (1999).
  • Bowes J, Barton A. Recent advances in the genetics of RA susceptibility. Rheumatology (Oxford)47(4), 399–402 (2008).
  • Dieude P, Cornelis F. Genetic basis of rheumatoid arthritis. Joint Bone Spine72(6), 520–526 (2005).
  • Orozco G, Rueda B, Martin J. Genetic basis of rheumatoid arthritis. Biomed. Pharmacother.60(10), 656–662 (2006).
  • MacGregor AJ, Snieder H, Rigby AS et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum.43(1), 30–37 (2000).
  • Fernando MMA, Stevens CR, Walsh EC et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet.4(4), e1000024 (2008).
  • Stastny P. Mixed lymphocyte cultures in rheumatoid arthritis. J. Clin. Invest.57(5), 1148–1157 (1976).
  • Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med.298(16), 869–871 (1978).
  • Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum.30(11), 1205–1213 (1987).
  • De Vries-Bouwstra JK, Goekoop-Ruiterman YP, Verpoort KN et al. Progression of joint damage in early rheumatoid arthritis: association with HLA-DRB1, rheumatoid factor, and anti-citrullinated protein antibodies in relation to different treatment strategies. Arthritis Rheum.58(5), 1293–1298 (2008).
  • Goeb V, Dieude P, Daveau R et al. Contribution of PTPN22 1858T, TNFRII 196R and HLA-shared epitope alleles with rheumatoid factor and anti-citrullinated protein antibodies to very early rheumatoid arthritis diagnosis. Rheumatology (Oxford)47(8), 1208–1212 (2008).
  • Reneses S, Gonzalez-Escribano MF, Fernandez-Suarez A et al. The value of HLA-DRB1 shared epitope, -308 tumor necrosis factor-α gene promoter polymorphism, rheumatoid factor, anti-citrullinated peptide antibodies, and early erosions for predicting radiological outcome in recent-onset rheumatoid arthritis. J. Rheumatol.36(6), 1143–1149 (2009).
  • Rojas-Villarraga A, Diaz FJ, Calvo-Paramo E et al. Familial disease, the HLA-DRB1 shared epitope and anti-CCP antibodies influence time at appearance of substantial joint damage in rheumatoid arthritis. J. Autoimmun.32(1), 64–69 (2009).
  • Lundstrom E, Kallberg H, Alfredsson L, Klareskog L, Padyukov L. Gene–environment interaction between the DRB1 shared epitope and smoking in the risk of anti-citrullinated protein antibody-positive rheumatoid arthritis: all alleles are important. Arthritis Rheum.60(6), 1597–1603 (2009).
  • du Montcel ST, Michou L, Petit-Teixeira E et al. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum.52(4), 1063–1068 (2005).
  • de Vries N, Tijssen H, van Riel PL, van de Putte LB. Reshaping the shared epitope hypothesis: HLA-associated risk for rheumatoid arthritis is encoded by amino acid substitutions at positions 67–74 of the HLA-DRB1 molecule. Arthritis Rheum.46(4), 921–928 (2002).
  • Barnetche T, Constantin A, Cantagrel A, Cambon-Thomsen A, Gourraud PA. New classification of HLA-DRB1 alleles in rheumatoid arthritis susceptibility: a combined analysis of worldwide samples. Arthritis Res. Ther.10(1), R26 (2008).
  • Mattey DL, Dawes PT, Gonzalez-Gay MA et al. HLA-DRB1 alleles encoding an aspartic acid at position 70 protect against development of rheumatoid arthritis. J. Rheumatol.28(2), 232–239 (2001).
  • Newton JL, Harney SMJ, Wordsworth BP, Brown MA. A review of the MHC genetics of rheumatoid arthritis. Genes Immun.5(3), 151–157 (2004).
  • Ding B, Padyukov L, Lundstrom E et al. Different patterns of associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in the extended major histocompatibility complex region. Arthritis Rheum.60(1), 30–38 (2009).
  • Lee HS, Lee AT, Criswell LA et al. Several regions in the major histocompatibility complex confer risk for anti-CCP-antibody positive rheumatoid arthritis, independent of the DRB1 locus. Mol. Med.14(5–6), 293–300 (2008).
  • Vignal C, Bansal AT, Balding DJ et al. Genetic association of the major histocompatibility complex with rheumatoid arthritis implicates two non-DRB1 loci. Arthritis Rheum.60(1), 53–62 (2009).
  • Harney SM, Vilarino-Guell C, Adamopoulos IE et al. Fine mapping of the MHC class III region demonstrates association of AIF1 and rheumatoid arthritis. Rheumatology (Oxford)47(12), 1761–1767 (2008).
  • Begovich AB, Carlton VE, Honigberg LA et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet.75(2), 330–337 (2004).
  • Bottini N, Musumeci L, Alonso A et al. A functional variant of lymphoid tyrosine phosphatase is associated with Type I diabetes. Nat. Genet.36(4), 337–338 (2004).
  • Begovich AB, Carlton VE, Honigberg LA et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22 ) is associated with rheumatoid arthritis. Am. J. Hum. Genet.75(2), 330–337 (2004).
  • Criswell LA, Pfeiffer KA, Lum RF et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: The PTPN22 620W allele associates with multiple autoimmune phenotypes. Am. J. Hum. Genet.76(4), 561–571 (2005).
  • Hinks A, Barton A, John S et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum.52(6), 1694–1699 (2005).
  • Lee AT, Li W, Liew A et al. The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun.6(2), 129–133 (2005).
  • Orozco G, Sanchez E, Gonzalez-Gay MA et al. Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum.52(1), 219–224 (2005).
  • Viken MK, Amundsen SS, Kvien TK et al. Association analysis of the 1858C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun.6(3), 271–273 (2005).
  • Zhernakova A, Eerligh P, Wijmenga C, Barrera P, Roep BO, Koeleman BP. Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun.6(6), 459–461 (2005).
  • Steer S, Lad B, Grumley JA, Kingsley GH, Fisher SA. Association of R602W in a protein tyrosine phosphatase gene with a high risk of rheumatoid arthritis in a British population: evidence for an early onset/disease severity effect. Arthritis Rheum.52(1), 358–360 (2005).
  • Simkins HM, Merriman ME, Highton J et al. Association of the PTPN22 locus with rheumatoid arthritis in a New Zealand Caucasian cohort. Arthritis Rheum.52(7), 2222–2225 (2005).
  • Dieude P, Garnier S, Michou L et al. Rheumatoid arthritis seropositive for the rheumatoid factor is linked to the protein tyrosine phosphatase nonreceptor 22–620W allele. Arthritis Res. Ther.7(6), R1200–R1207 (2005).
  • Kokkonen H, Johansson M, Innala L, Jidell E, Rantapaa-Dahlqvist S. The PTPN22 1858C/T polymorphism is associated with anti-cyclic citrullinated peptide antibody-positive early rheumatoid arthritis in northern Sweden. Arthritis Res. Ther.9(3), R56 (2007).
  • Michou L, Lasbleiz S, Rat AC et al. Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc. Natl Acad. Sci. USA104(5), 1649–1654 (2007).
  • Pierer M, Kaltenhauser S, Arnold S et al. Association of PTPN22 1858 single-nucleotide polymorphism with rheumatoid arthritis in a German cohort: higher frequency of the risk allele in male compared to female patients. Arthritis Res. Ther.8(3), R75 (2006).
  • Plenge RM, Padyukov L, Remmers EF et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am. J. Hum. Genet.77(6), 1044–1060 (2005).
  • Seldin MF, Shigeta R, Laiho K et al. Finnish case–control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun.6(8), 720–722 (2005).
  • van OM, Wintle RF, Liu X et al. Association of the lymphoid tyrosine phosphatase R620W variant with rheumatoid arthritis, but not Crohn’s disease, in Canadian populations. Arthritis Rheum.52(7), 1993–1998 (2005).
  • Viken MK, Olsson M, Flam ST et al. The PTPN22 promoter polymorphism–1123G>C association cannot be distinguished from the 1858C>T association in a Norwegian rheumatoid arthritis material. Tissue Antigens70(3), 190–197 (2007).
  • Wesoly J, van der Helm-van Mil AH, Toes RE et al. Association of the PTPN22 C1858T single-nucleotide polymorphism with rheumatoid arthritis phenotypes in an inception cohort. Arthritis Rheum.52(9), 2948–2950 (2005).
  • Carlton VE, Hu X, Chokkalingam AP et al. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am. J. Hum. Genet.77(4), 567–581 (2005).
  • Harrison P, Pointon JJ, Farrar C, Brown MA, Wordsworth BP. Effects of PTPN22 C1858T polymorphism on susceptibility and clinical characteristics of British Caucasian rheumatoid arthritis patients. Rheumatology (Oxford)45(8), 1009–1011 (2006).
  • Wesoly J, Hu X, Thabet MM et al. The 620W allele is the PTPN22 genetic variant conferring susceptibility to RA in a Dutch population. Rheumatology (Oxford)46(4), 617–621 (2007).
  • Hinks A, Eyre S, Barton A, Thomson W, Worthington J. Investigation of genetic variation across the protein tyrosine phosphatase gene in patients with rheumatoid arthritis in the UK. Ann. Rheum. Dis.66(5), 683–686 (2007).
  • Farago B, Talian GC, Komlosi K et al. Protein tyrosine phosphatase gene C1858T allele confers risk for rheumatoid arthritis in Hungarian subjects. Rheumatol. Int.29(7), 793–796 (2009).
  • Kochi Y, Suzuki A, Yamada R, Yamamoto K. Genetics of rheumatoid arthritis: underlying evidence of ethnic differences. J. Autoimmun.32(3–4), 158–162 (2009).
  • Kyogoku C, Langefeld CD, Ortmann WA et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet.75(3), 504–507 (2004).
  • Wu H, Cantor RM, Graham DS et al. Association analysis of the R620W polymorphism of protein tyrosine phosphatase PTPN22 in systemic lupus erythematosus families: increased T allele frequency in systemic lupus erythematosus patients with autoimmune thyroid disease. Arthritis Rheum.52(8), 2396–2402 (2005).
  • Reddy MV, Johansson M, Sturfelt G et al. The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun.6(8), 658–662 (2005).
  • Skorka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R. Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves’ disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin. Endocrinol. (Oxford)62(6), 679–682 (2005).
  • Smyth D, Cooper JD, Collins JE et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with Type-1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes53(11), 3020–3023 (2004).
  • Velaga MR, Wilson V, Jennings CE et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP ) gene is a major determinant of Graves’ disease. J. Clin. Endocrinol. Metab.89(11), 5862–5865 (2004).
  • Canton I, Akhtar S, Gavalas NG et al. A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22 ) confers susceptibility to generalised vitiligo. Genes Immun.6(7), 584–587 (2005).
  • Vandiedonck C, Capdevielle C, Giraud M et al. Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis. Ann. Neurol.59(2), 404–407 (2006).
  • Dieude P, Guedj M, Wipff J et al. The PTPN22 620W allele confers susceptibility to systemic sclerosis: findings of a large case–control study of European Caucasians and a meta-analysis. Arthritis Rheum.58(7), 2183–2188 (2008).
  • Skinningsrud B, Husebye ES, Gervin K et al. Mutation screening of PTPN22 : association of the 1858T-allele with Addison’s disease. Eur. J. Hum. Genet.16(8), 977–982 (2008).
  • Martin MC, Oliver J, Urcelay E et al. The functional genetic variation in the PTPN22 gene has a negligible effect on the susceptibility to develop inflammatory bowel disease. Tissue Antigens66(4), 314–317 (2005).
  • Rueda B, Nunez C, Orozco G et al. C1858T functional variant of PTPN22 gene is not associated with celiac disease genetic predisposition. Hum. Immunol.66(7), 848–852 (2005).
  • Begovich AB, Caillier SJ, Alexander HC et al. The R620W polymorphism of the protein tyrosine phosphatase PTPN22 is not associated with multiple sclerosis. Am. J. Hum. Genet.76(1), 184–187 (2005).
  • Matesanz F, Rueda B, Orozco G et al. Protein tyrosine phosphatase gene (PTPN22 ) polymorphism in multiple sclerosis. J. Neurol.252(8), 994–995 (2005).
  • Remmers EF, Plenge RM, Lee AT et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med.357(10), 977–986 (2007).
  • Barton A, Thomson W, Ke X et al. Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility. Hum. Mol. Genet.17(15), 2274–2279 (2008).
  • Daha NA, Kurreeman FA, Marques RB et al. Confirmation of STAT4, IL2/IL21, and CTLA4 polymorphisms in rheumatoid arthritis. Arthritis Rheum.60(5), 1255–1260 (2009).
  • Martinez A, Varade J, Marquez A et al. Association of the STAT4 gene with increased susceptibility for some immune-mediated diseases. Arthritis Rheum.58(9), 2598–2602 (2008).
  • Orozco G, Alizadeh BZ, Delgado-Vega AM et al. Association of STAT4 with rheumatoid arthritis: a replication study in three European populations. Arthritis Rheum.58(7), 1974–1980 (2008).
  • Zervou MI, Sidiropoulos P, Petraki E et al. Association of a TRAF1 and a STAT4 gene polymorphism with increased risk for rheumatoid arthritis in a genetically homogeneous population. Hum. Immunol.69(9), 567–571 (2008).
  • Kobayashi S, Ikari K, Kaneko H et al. Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum.58(7), 1940–1946 (2008).
  • Lee HS, Remmers EF, Le JM, Kastner DL, Bae SC, Gregersen PK. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol. Med.13(9–10), 455–460 (2007).
  • Zervou MI, Mamoulakis D, Panierakis C, Boumpas DT, Goulielmos GN. STAT4: a risk factor for Type-1 diabetes? Hum. Immunol.69(10), 647–650 (2008).
  • Rueda B, Broen J, Simeon C et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum. Mol. Genet.18(11), 2071–2077 (2009).
  • Korman BD, Alba MI, Le JM et al. Variant form of STAT4 is associated with primary Sjogren’s syndrome. Genes Immun.9(3), 267–270 (2008).
  • Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O’Shea JJ. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol. Rev.202, 139–156 (2004).
  • Cope AP. T-cells in rheumatoid arthritis. Arthritis Res. Ther.10(Suppl. 1), S1 (2008).
  • Kaplan MH, Sun YL, Hoey T, Grusby MJ. Impaired IL-12 responses and enhanced development of Th2 cells in STAT4-deficient mice. Nature382(6587), 174–177 (1996).
  • Hildner KM, Schirmacher P, Atreya I et al. Targeting of the transcription factor STAT4 by antisense phosphorothioate oligonucleotides suppresses collagen-induced arthritis. J. Immunol.178(6), 3427–3436 (2007).
  • Chang HC, Han L, Goswami R et al. Impaired development of human Th1 cells in patients with deficient expression of STAT4. Blood113(23), 5887–5890 (2009).
  • Sigurdsson S, Nordmark G, Garnier S et al. A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum. Mol. Genet.17(18), 2868–2876 (2008).
  • Frazer KA, Ballinger DG, Cox DR et al. A second generation human haplotype map of over 3.1 million SNPs. Nature449(7164), 851–861 (2007).
  • The International HapMap consortium. A haplotype map of the human genome. Nature437(7063), 1299–1320 (2005).
  • Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet.6(2), 95–108 (2005).
  • Purcell S, Neale B, Todd-Brown K et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet.81(3), 559–575 (2007).
  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet.38(8), 904–909 (2006).
  • Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet.39(7), 906–913 (2007).
  • Gregersen PK, Amos CI, Lee AT et al. REL, encoding a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat. Genet.41(7), 820–823 (2009).
  • Julia A, Ballina J, Canete JD et al. Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. Arthritis Rheum.58(8), 2275–2286 (2008).
  • Plenge RM, Seielstad M, Padyukov L et al. TRAF1-C5 as a risk locus for rheumatoid arthritis – a genomewide study. N. Engl. J. Med.357(12), 1199–1209 (2007).
  • Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447(7145), 661–678 (2007).
  • Thomson W, Barton A, Ke X et al. Rheumatoid arthritis association at 6q23. Nat. Genet.39(12), 1431–1433 (2007).
  • Plenge RM, Cotsapas C, Davies L et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet.39(12), 1477–1482 (2007).
  • Orozco G, Hinks A, Eyre S et al. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Hum. Mol. Genet.18(14), 2693–2699 (2009).
  • Dieguez-Gonzalez R, Calaza M, Perez-Pampin E et al. Analysis of TNFAIP3, a feedback inhibitor of nuclear factor-κB and the neighbor intergenic 6q23 region in rheumatoid arthritis susceptibility. Arthritis Res. Ther.11(2), R42 (2009).
  • Perdigones N, Lamas JR, Vigo AG et al. 6q23 polymorphisms in rheumatoid arthritis Spanish patients. Rheumatology (Oxford)48(6), 618–621 (2009).
  • Scherer HU, van der Linden MP, Kurreeman FA et al. Association of the 6q23 region with the rate of joint destruction in rheumatoid arthritis. Ann. Rheum. Dis (2009) (Epub ahead of print).
  • Musone SL, Taylor KE, Lu TT et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat. Genet.40(9), 1062–1064 (2008).
  • Graham RR, Cotsapas C, Davies L et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet.40(9), 1059–1061 (2008).
  • Fung EY, Smyth DJ, Howson JM et al. Analysis of 17 autoimmune disease-associated variants in Type-1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun.10(2), 188–191 (2009).
  • Trynka G, Zhernakova A, Romanos J et al. Coeliac disease associated risk variants in TNFAIP3 and REL implicate altered NF-κB signalling. Gut58(8), 1078–1083 (2009).
  • Prahalad S, Hansen S, Whiting A et al. Variants in TNFAIP3, STAT4, and C12orf30 loci associated with multiple autoimmune diseases are also associated with juvenile idiopathic arthritis. Arthritis Rheum.60(7), 2124–2130 (2009).
  • Nair RP, Duffin KC, Helms C et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet.41(2), 199–204 (2009).
  • Filippi A, Tiso N, Deflorian G, Zecchin E, Bortolussi M, Argenton F. The basic helix-loop-helix olig3 establishes the neural plate boundary of the trunk and is necessary for development of the dorsal spinal cord. Proc. Natl Acad. Sci. USA102(12), 4377–4382 (2005).
  • Beyaert R, Heyninck K, Van HS. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κ B-dependent gene expression and apoptosis. Biochem. Pharmacol.60(8), 1143–1151 (2000).
  • Coornaert B, Carpentier I, Beyaert R. A20: central gatekeeper in inflammation and immunity. J. Biol. Chem.284(13), 8217–8221 (2009).
  • Lee EG, Boone DL, Chai S et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science289(5488), 2350–2354 (2000).
  • Compagno M, Lim WK, Grunn A et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature459(7247), 717–721 (2009).
  • Kato M, Sanada M, Kato I et al. Frequent inactivation of A20 in B-cell lymphomas. Nature459(7247), 712–716 (2009).
  • Schmitz R, Hansmann ML, Bohle V et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J. Exp. Med.206(5), 981–989 (2009).
  • Novak U, Rinaldi A, Kwee I et al. The NF-κB negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood113(20), 4918–4921 (2009).
  • Kaiser R. Incidence of lymphoma in patients with rheumatoid arthritis: a systematic review of the literature. Clin. Lymphoma Myeloma8(2), 87–93 (2008).
  • Plenge RM, Seielstad M, Padyukov L et al. TRAF1-C5 as a risk locus for rheumatoid arthritis – a genomewide study. N. Engl. J. Med.357(12), 1199–1209 (2007).
  • Kurreeman FA, Padyukov L, Marques RB et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med.4(9), e278 (2007).
  • Chang M, Rowland CM, Garcia VE et al. A large-scale rheumatoid arthritis genetic study identifies association at chromosome 9q33.2. PLoS Genet.4(6), e1000107 (2008).
  • Kurreeman FA, Rocha D, Houwing-Duistermaat J et al. Replication of the tumor necrosis factor receptor-associated factor 1/complement component 5 region as a susceptibility locus for rheumatoid arthritis in a European family-based study. Arthritis Rheum.58(9), 2670–2674 (2008).
  • Nishimoto K, Kochi Y, Ikari K et al. Association study of TRAF1-C5 polymorphisms with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in Japanese. Ann. Rheum. Dis. (2009) (Epub ahead of print).
  • Panoulas VF, Smith JP, Nightingale P, Kitas GD. Association of the TRAF1/C5 locus with increased mortality, particularly from malignancy or sepsis, in patients with rheumatoid arthritis. Arthritis Rheum.60(1), 39–46 (2009).
  • Tsitsikov EN, Laouini D, Dunn IF et al. TRAF1 is a negative regulator of TNF signaling. Enhanced TNF signaling in TRAF1-deficient mice. Immunity15(4), 647–657 (2001).
  • Okroj M, Heinegård D, Holmdahl R, Blom AM. Rheumatoid arthritis and the complement system. Ann. Med.39(7), 517–530 (2007).
  • Wang Y, Kristan J, Hao L, Lenkoski CS, Shen Y, Matis LA. A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J. Immunol.164(8), 4340–4347 (2000).
  • Behrens EM, Finkel TH, Bradfield JP et al. Association of the TRAF1-C5 locus on chromosome 9 with juvenile idiopathic arthritis. Arthritis Rheum.58(7), 2206–2207 (2008).
  • Albers HM, Kurreeman FA, Houwing-Duistermaat JJ et al. The TRAF1/C5 region is a risk factor for polyarthritis in juvenile idiopathic arthritis. Ann. Rheum. Dis.67(11), 1578–1580 (2008).
  • Kurreeman FA, Goulielmos GN, Alizadeh BZ et al. The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases. Ann. Rheum. Dis. (2009) (Epub ahead of print).
  • Thomson W, Barton A, Ke X et al. Rheumatoid arthritis association at 6q23. Nat. Genet.39(12), 1431–1433 (2007).
  • Barton A, Thomson W, Ke X et al. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13. Nat. Genet.40(10), 1156–1159 (2008).
  • Malek TR. The biology of interleukin-2. Annu. Rev. Immunol.26, 453–479 (2008).
  • McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol.7(6), 429–442 (2007).
  • Cooper JD, Smyth DJ, Smiles AM et al. Meta-analysis of genome-wide association study data identifies additional Type-1 diabetes risk loci. Nat. Genet.40(12), 1399–1401 (2008).
  • Todd JA, Walker NM, Cooper JD et al. Robust associations of four new chromosome regions from genome-wide analyses of Type-1 diabetes. Nat. Genet.39(7), 857–864 (2007).
  • Fichera M, Lo GM, Falco M et al. Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology63(6), 1108–1110 (2004).
  • Niiro H, Clark EA. Branches of the B cell antigen receptor pathway are directed by protein conduits Bam32 and Carma1. Immunity19(5), 637–640 (2003).
  • Plenge RM, Seielstad M, Padyukov L et al. TRAF1-C5 as a risk locus for rheumatoid arthritis – a genomewide study. N. Engl. J. Med.357(12), 1199–1209 (2007).
  • Raychaudhuri S, Remmers EF, Lee AT et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat. Genet.40(10), 1216–1223 (2008).
  • The Australia and New Zealand Multiple Sclerosis Genetics Consortium. Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet.41(7), 824–828 (2009).
  • Adorini L, Penna G. Control of autoimmune diseases by the vitamin D endocrine system. Nat. Clin Pract. Rheumatol.4(8), 404–412 (2008).
  • Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol.179(3), 1634–1647 (2007).
  • Hayashi K, Altman A. Protein kinase C q (PKC q), a key player in T cell life and death. Pharmacol. Res.55(6), 537–544 (2007).
  • Healy AM, Izmailova E, Fitzgerald M et al. PKC-q-deficient mice are protected from Th1-dependent antigen-induced arthritis. J. Immunol.177(3), 1886–1893 (2006).
  • Cooper JD, Smyth DJ, Smiles AM et al. Meta-analysis of genome-wide association study data identifies additional Type-1 diabetes risk loci. Nat. Genet.40(12), 1399–1401 (2008).
  • Smyth DJ, Plagnol V, Walker NM et al. Shared and distinct genetic variants in Type-1 diabetes and celiac disease. N. Engl. J. Med.359(26), 2767–2777 (2008).
  • Orozco G, Eyre S, Hinks A et al. Association of CD40 with rheumatoid arthritis confirmed in a large UK case–control study. Ann. Rheum. Dis. (2009) (Epub ahead of print).
  • van der Linden MP, Feitsma AL, le Cessie S et al. Association of a single-nucleotide polymorphism in CD40 with the rate of joint destruction in rheumatoid arthritis. Arthritis Rheum.60(8), 2242–2247 (2009).
  • Toubi E, Shoenfeld Y. The role of CD40–CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity37(6–7), 457–464 (2004).
  • Liu MF, Chao SC, Wang CR, Lei HY. Expression of CD40 and CD40 ligand among cell populations within rheumatoid synovial compartment. Autoimmunity34(2), 107–113 (2001).
  • Toubi E, Shoenfeld Y. The role of CD40–CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity37(6–7), 457–464 (2004).
  • Jacobson EM, Huber AK, Akeno N et al. A CD40 Kozak sequence polymorphism and susceptibility to antibody-mediated autoimmune conditions: the role of CD40 tissue-specific expression. Genes Immun.8(3), 205–214 (2007).
  • Bishop GA. The multifaceted roles of TRAFs in the regulation of B-cell function. Nat. Rev. Immunol.4(10), 775–786 (2004).
  • Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene20(44), 6482–6491 (2001).
  • Marsters SA, Ayres TM, Skubatch M, Gray CL, Rothe M, Ashkenazi A. Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-κB and AP-1. J. Biol. Chem.272(22), 14029–14032 (1997).
  • Barton A, Eyre S, Ke X et al. Identification of AF4/FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibility genes. Hum. Mol. Genet.18(13), 2518–2522 (2009).
  • Ma C, Staudt LM. LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood87(2), 734–745 (1996).
  • van Heel DA, Franke L, Hunt KA et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat. Genet.39(7), 827–829 (2007).
  • Zhernakova A, Alizadeh BZ, Bevova M et al. Novel association in chromosome 4q27 region with rheumatoid arthritis and confirmation of Type 1 diabetes point to a general risk locus for autoimmune diseases. Am. J. Hum. Genet.81(6), 1284–1288 (2007).
  • Barton A, Eyre S, Ke X et al. Identification of AF4/FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibility genes. Hum. Mol. Genet.18(13), 2518–2522 (2009).
  • Coenen MJ, Trynka G, Heskamp S et al. Common and different genetic background for rheumatoid arthritis and coeliac disease. Hum. Mol. Genet.18(21), 4195–4203 (2009).
  • Teixeira VH, Pierlot C, Migliorini P et al. Testing for the association of the KIAA1109/Tenr/IL2/IL21 gene region with rheumatoid arthritis in a European family-based study. Arthritis Res. Ther.11(2), R45 (2009).
  • Liu Y, Helms C, Liao W et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet.4(3), e1000041 (2008).
  • Festen EA, Goyette P, Scott R et al. Genetic variants in the region harbouring IL2/IL21 associated with ulcerative colitis. Gut58(6), 799–804 (2009).
  • Albers HM, Kurreeman FA, Stoeken-Rijsbergen G et al. Association of the autoimmunity locus 4q27 with juvenile idiopathic arthritis. Arthritis Rheum.60(3), 901–904 (2009).
  • Marquez A, Orozco G, Martinez A et al. Novel association of the interleukin 2-interleukin 21 region with inflammatory bowel disease. Am. J. Gastroenterol.104(8), 1968–1975 (2009).
  • Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature423(6939), 506–511 (2003).
  • Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol. Rev.204, 102–115 (2005).
  • Barton A, Eyre S, Ke X et al. Identification of AF4/FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibility genes. Hum. Mol. Genet.18(13), 2518–2522 (2009).
  • Walker EJ, Hirschfield GM, Xu C et al.CTLA4/ICOS gene variants and haplotypes are associated with rheumatoid arthritis and primary biliary cirrhosis in the Canadian population. Arthritis Rheum.60(4), 931–937 (2009).
  • Kelley JM, Hughes LB, Faggard JD et al. An African ancestry-specific allele of CTLA4 confers protection against rheumatoid arthritis in African Americans. PLoS Genet.5(3), e1000424 (2009).
  • Kremer JM, Genant HK, Moreland LW et al. Results of a two-year followup study of patients with rheumatoid arthritis who received a combination of abatacept and methotrexate. Arthritis Rheum.58(4), 953–963 (2008).
  • Kochi Y, Suzuki A, Yamada R, Yamamoto K. Genetics of rheumatoid arthritis: underlying evidence of ethnic differences. J. Autoimmun.32(3–4), 158–162 (2009).
  • Yamada R, Yamamoto K. Mechanisms of disease: Genetics of rheumatoid arthritis – ethnic differences in disease-associated genes. Nat. Clin. Pract. Rheumatol.3(11), 644–650 (2007).
  • Gregersen PK, Lee HS, Batliwalla F, Begovich AB. PTPN22: setting thresholds for autoimmunity. Semin. Immunol.18(4), 214–223 (2006).
  • Lee HS, Korman BD, Le JM et al. Genetic risk factors for rheumatoid arthritis differ in Caucasian and Korean populations. Arthritis Rheum.60(2), 364–371 (2009).
  • Burr ML, Naseem H, Hinks A et al. PADI4 genotype is not associated with rheumatoid arthritis in a large UK Caucasian Population. Ann. Rheum. Dis. (2009) (Epub ahead of print).
  • Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet.40(8), 955–962 (2008).
  • Zhernakova A, van Diemen CC, Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet.10(1), 43–55 (2009).
  • Xavier RJ, Rioux JD. Genome-wide association studies: a new window into immune-mediated diseases. Nat. Rev. Immunol.8(8), 631–643 (2008).
  • Jawaheer D, Seldin MF, Amos CI et al. A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am. J. Hum. Genet.68(4), 927–936 (2001).
  • Cornelis F, Faure S, Martinez M et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc. Natl Acad. Sci. USA95(18), 10746–10750 (1998).
  • de Vries RR, Huizinga TW, Toes RE. Redefining the HLA and RA association: to be or not to be anti-CCP positive. J. Autoimmun.25(Suppl.), 21–25 (2005).
  • Szodoray P, Szabo Z, Kapitany A et al. Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun. Rev. (2009) (Epub ahead of print).
  • Silman AJ, Newman J, MacGregor AJ. Cigarette smoking increases the risk of rheumatoid arthritis. Results from a nationwide study of disease-discordant twins. Arthritis Rheum.39(5), 732–735 (1996).
  • Klareskog L, Padyukov L, Lorentzen J, Alfredsson L. Mechanisms of disease: genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat. Clin. Pract. Rheumatol.2(8), 425–433 (2006).
  • McCarthy MI, Abecasis GR, Cardon LR et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet.9(5), 356–369 (2008).
  • Begovich AB, Carlton VE, Honigberg LA et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet.75(2), 330–337 (2004).
  • Plenge RM, Seielstad M, Padyukov L et al. TRAF1-C5 as a risk locus for rheumatoid arthritis – a genomewide study. N. Engl. J. Med.357(12), 1199–1209 (2007).
  • Thomson W, Barton A, Ke X et al. Rheumatoid arthritis association at 6q23. Nat. Genet.39(12), 1431–1433 (2007).
  • Barton A, Eyre S, Ke X et al. Identification of AF4/FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibility genes. Hum. Mol. Genet.18(13), 2518–2522 (2009).
  • Kelley JM, Hughes LB, Faggard JD et al. An african ancestry-specific allele of CTLA4 confers protection against rheumatoid arthritis in African Americans. PLoS Genet.5(3), e1000424 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.