208
Views
17
CrossRef citations to date
0
Altmetric
Review

Immunosuppression-free transplantation reconsidered from a regenerative medicine perspective

Pages 179-187 | Published online: 10 Jan 2014

References

  • Orlando G, Hematti P, Stratta RJ et al. Clinical operational tolerance after renal transplantation: current status and future challenges. Ann. Surg.252(6), 915–928 (2010).
  • Orlando G, Soker S, Wood KJ. Clinical operational tolerance after liver Transplantation J. Hepatol.50(6), 1247–1257 (2009).
  • Orlando G. Finding the right time for weaning off immunosuppression in solid organ transplant recipients. Expert Rev. Clin. Immunol.6(6), 879–892 (2010).
  • Kirk AD. Clinical tolerance 2008. Transplantation87(7), 953–955 (2009).
  • Orlando G, Wood KJ, Soker S et al. How regenerative medicine may contribute to the achievement of an immunosuppression-free state. Transplantation92(8), e36–e38 (2011).
  • Orlando G. Transplantation as a subfield of regenerative medicine. Expert Rev. Clin. Immunol.7(2), 137–141 (2011).
  • Brasile L, Glowacki P, Stubenitsky BM. Bioengineered skin allografts: a new method to prevent humoral response. ASAIO J.57(3), 239–243 (2011).
  • Brasile L, Glowacki P, Castracane J et al. Pretransplant kidney-specific treatment to eliminate the need for systemic immunosuppression. Transplantation90(12), 1294–1298 (2010).
  • Poznansky MC, Evans RH, Foxall RB et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat. Biotechnol.18(7), 729–734 (2000).
  • Suematsu S, Watanabe T. Generation of a synthetic lymphoid tissue-like organoid in mice. Nat. Biotechnol.22(12), 1539–1545 (2004).
  • Clark RA, Yamanaka K, Bai M et al. Human skin cells support thymus-independent T cell development. J. Clin. Invest.115(11), 3239–3249 (2005).
  • Marshall D, Bagley J, Le P et al. T cell generation including positive and negative selection ex vivo in a three-dimensional matrix. J. Hematother. Stem Cell Res.12(5), 565–574 (2003).
  • Vianello F, Poznansky MC. Generation of a tissue-engineered thymic organoid. Methods Mol. Biol.380, 163–170 (2007).
  • Orlando G, Wood KJ, Stratta RJ et al. Regenerative medicine and organ transplantation: past, present, and future. Transplantation91(12), 1310–1317 (2011).
  • Orlando G, Baptista P, Birchall M et al. Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl. Int.24(3), 223–232 (2010).
  • Orlando G, Wood KJ, De Coppi P et al. Regenerative medicine as applied to general surgery. Ann. Surg. (2012) (In Press).
  • Shinoka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med.344(7), 532–533 (2001).
  • Shinoka T, Matsumura G, Hibino N et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J. Thorac. Cardiovasc. Surg.129(6), 1330–1338 (2005).
  • Hibino N, McGillicuddy E, Matsumura G et al. Late-term results of tissue-engineered vascular grafts in humans. J. Thorac. Cardiovasc. Surg.139(2), 431–436 (2010).
  • Naito Y, Shinoka T, Duncan D et al. Vascular tissue engineering: towards the next generation vascular grafts. Adv. Drug Deliv. Rev.63(4–5), 312–323 (2011).
  • McAllister TN, Maruszewski M, Garrido SA et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet373(9673), 1440–1446 (2009).
  • L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med.357(14), 1451–1453 (2007).
  • L’Heureux N, Dusserre N, Konig G et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med.12(3), 361–365 (2006).
  • Dahl SL, Kypson AP, Lawson JH et al. Readily available tissue-engineered vascular grafts. Sci. Transl. Med.3(68), 68ra9 (2011).
  • Atala A, Bauer SB, Soker S et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet367(9518), 1241–1246 (2006).
  • Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J. Exp. Med.138(4), 745–753 (1973).
  • Macchiarini P, Jungebluth P, Go T et al. Clinical transplantation of a tissue-engineered airway. Lancet372(9655), 2023–2030 (2008).
  • Baiguera S, Birchall MA, Macchiarini P. Tissue-engineered tracheal transplantation. Transplantation89(5), 485–491 (2010).
  • Baiguera S, Gonfiotti A, Jaus M et al. Development of bioengineered human larynx. Biomaterials32(19), 4433–4442 (2011).
  • Raya-Rivera A, Esquiliano DR, Yoo JJ et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet377(9772), 1175–1182 (2011).
  • Song JJ, Kim SS, Liu Z et al. Enhanced in vivo function of bioartificial lungs in rats. Ann. Thorac. Surg.92(3), 998–1006 (2011).
  • Wang Y, Cui CB, Yamauchi M et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology53(1), 293–305 (2011).
  • Mertsching H, Schanz J, Steger V et al. Generation and transplantation of an autologous vascularized bioartificial human tissue. Transplantation88(2), 203–210 (2009).
  • Orlando G, Stratta RJ, Light J. Pancreas transplantation for type 2 diabetes mellitus. Curr. Opin. Organ. Transplant. doi: 10.1097/MOT.0b013e3283424d1f (2010) (Epub ahead of print).
  • Cravedi P, van der Meer IM, Cattaneo S et al. Successes and disappointments with clinical islet transplantation. Adv. Exp. Med. Biol.654, 749–769 (2010).
  • Vaithilingam V, Tuch BE. Islet transplantation and encapsulation: an update on recent developments. Rev. Diabet. Stud.8(1), 63–79 (2011).
  • Bach JF, Chatenoud L. Organ transplantation and autoimmunity: common mechanisms common therapies. Semin. Immunol.23(3), 155–156 (2011).
  • Teramura Y, Iwata H. Bioartificial pancreas. Microencapsulation and conformal coating of islet of Langerhans. Adv. Drug Del. Rev.62(2010), 827–840 (2010).
  • Lechler RI, Sykes M, Thomson AW et al. Organ transplantation – how much of the promise has been realized? Nat. Med.11(6), 605–613 (2005).
  • Giraldo JA, Weaver JD, Stabler CL. Tissue engineering approaches to enhancing clinical islet transplantation through tissue engineering strategies. J. Diabetes. Sci. Technol.4(5), 1238–1247 (2010).
  • De Carlo E, Baiguera S, Conconi MT et al. Pancreatic acellular matrix supports islet survival and function in a synthetic tubular device: in vitro and in vivo studies. Int. J. Mol. Med.25(2), 195–202 (2010).
  • Brasile L, Glowacki P, Castracane J, Stubenitsky BM. Pretransplant kidney-specific treatment to eliminate the need for systemic immunosuppression. Transplantation90(12), 1294–1298 (2010).
  • Stubenitsky BM, Brasile L, Rebellato LM et al. Delayed skin allograft rejection following matrix membrane pretreatment. J. Plast. Reconstr. Aesthet. Surg.62(4), 520–525 (2009).
  • Scott MD, Murad KL, Koumpouras F et al. Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc. Natl Acad. Sci. USA94(14), 7566–7571 (1997).
  • Scott MD, Murad KL. Cellular camouflage: fooling the immune system with polymers. Curr. Pharm. Des.4(6), 423–438 (1998).
  • Murad KL, Mahany KL, Brugnara C et al. Structural and functional consequences of antigenic modulation of red blood cells with methoxypoly(ethylene glycol). Blood93(6), 2121–2127 (1999).
  • Chen AM, Scott MD. Current and future applications of immunological attenuation via pegylation of cells and tissue. BioDrugs5(12), 833–847 (2001).
  • Chen AM, Scott MD. Immunocamouflage: prevention of transfusion-induced graft-versus-host disease via polymer grafting of donor cells. J. Biomed. Mater. Res. A.67(2), 626–636 (2003).
  • Rossi NA, Constantinescu I, Kainthan RK et al. Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols. Biomaterials31(14), 4167–4178 (2010).
  • Le Y, Scott MD. Immunocamouflage: the biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol) (mPEG). Acta Biomater.6(7), 2631–2641 (2010).
  • Wang D, Kyluik DL, Murad KL et al. Polymer-mediated immunocamouflage of red blood cells: effects of polymer size on antigenic and immunogenic recognition of allogeneic donor blood cells. Sci. China Life Sci.54(7), 589–598 (2011).
  • Wang D, Toyofuku WM, Chen AM et al. Induction of immunotolerance via mPEG grafting to allogeneic leukocytes. Biomaterials32(35), 9494–9503 (2011).
  • Sutton TC, Scott MD. The effect of grafted methoxypoly(ethylene glycol) chain length on the inhibition of respiratory syncytial virus (RSV) infection and proliferation. Biomaterials31(14), 4223–4230 (2010).
  • Seach N, Layton D, Lim J et al. Thymic generation and regeneration: a new paradigm for establishing clinical tolerance of stem cell-based therapies. Curr. Opin. Biotechnol.18(5), 441–447 (2007).
  • Yamada K, Gianello PR, Ierino FL et al. Role of the thymus in transplantation tolerance in miniature swine. I. Requirement of the thymus for rapid and stable induction of tolerance to class I-mismatched renal allografts. J. Exp. Med.186(3), 497–506 (1997).
  • Nobori S, Samelson-Jones E, Shimizu A et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. Transplantation81(1), 26–35 (2006).
  • Nobori S, Shimizu A, Okumi M et al. Thymic rejuvenation and the induction of tolerance by adult thymic grafts. Proc. Natl Acad. Sci. USA103(50), 19081–19086 (2006).
  • Yamada K, Shimizu A, Ierino FL et al. Thymic transplantation in miniature swine. I. Development and function of the ‘thymokidney’. Transplantation68(11), 1684–1692 (1999).
  • Yamada K, Shimizu A, Utsugi R et al. Thymic transplantation in miniature swine. II. Induction of tolerance by transplantation of composite thymokidneys to thymectomized recipients. J. Immunol.164(6), 3079–3086 (2000).
  • Yamada K, Vagefi PA, Utsugi R et al. Thymic transplantation in miniature swine: III. Induction of tolerance by transplantation of composite thymokidneys across fully major histocompatibility complex-mismatched barriers. Transplantation76(3), 530–536 (2003).
  • Vagefi PA, Ierino FL, Gianello PR et al. Role of the thymus in transplantation tolerance in miniature swine: IV. The thymus is required during the induction phase, but not the maintenance phase, of renal allograft tolerance. Transplantation77(7), 979–985 (2004).
  • Suematsu S, Watanabe T. Generation of a synthetic lymphoid tissue-like organoid in mice. Nat. Biotechnol.22(12), 1539–1545 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.