133
Views
13
CrossRef citations to date
0
Altmetric
Review

Deciphering the genetic background of systemic sclerosis

, &
Pages 449-462 | Published online: 10 Jan 2014

References

  • Ranque B, Mouthon L. Geoepidemiology of systemic sclerosis. Autoimmun. Rev.9(5), 311–318 (2010).
  • Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum.23(5), 581–590 (1980).
  • Roberts-Thomson PJ, Jones M, Hakendorf P et al. Scleroderma in South Australia: epidemiological observations of possible pathogenic significance. Intern. Med. J.31(4), 220–229 (2001).
  • Mayes MD, Lacey JV Jr, Beebe-Dimmer J et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum.48(8), 2246–2255 (2003).
  • Chifflot H, Fautrel B, Sordet C, Chatelus E, Sibilia J. Incidence and prevalence of systemic sclerosis: a systematic literature review. Semin. Arthritis Rheum.37(4), 223–235 (2008).
  • Arias-Nuñez MC, Llorca J, Vazquez-Rodriguez TR et al. Systemic sclerosis in northwestern Spain: a 19-year epidemiologic study. Medicine (Baltimore)87(5), 272–280 (2008).
  • Tamaki T, Mori S, Takehara K. Epidemiological study of patients with systemic sclerosis in Tokyo. Arch. Dermatol. Res.283(6), 366–371 (1991).
  • Arnett FC, Howard RF, Tan F et al. Increased prevalence of systemic sclerosis in a Native American tribe in Oklahoma. Association with an Amerindian HLA haplotype. Arthritis Rheum.39(8), 1362–1370 (1996).
  • Oliver JE, Silman AJ. Why are women predisposed to autoimmune rheumatic diseases? Arthritis Res. Ther.11(5), 252 (2009).
  • Selmi C, Invernizzi P, Gershwin ME. The X chromosome and systemic sclerosis. Curr. Opin. Rheumatol.18(6), 601–605 (2006).
  • Laing TJ, Gillespie BW, Toth MB et al. Racial differences in scleroderma among women in Michigan. Arthritis Rheum.40(4), 734–742 (1997).
  • Le Guern V, Mahr A, Mouthon L, Jeanneret D, Carzon M, Guillevin L. Prevalence of systemic sclerosis in a French multi-ethnic county. Rheumatology (Oxford)43(9), 1129–1137 (2004).
  • Nietert PJ, Silver RM. Systemic sclerosis: environmental and occupational risk factors. Curr. Opin. Rheumatol.12(6), 520–526 (2000).
  • McCormic ZD, Khuder SS, Aryal BK, Ames AL, Khuder SA. Occupational silica exposure as a risk factor for scleroderma: a meta-analysis. Int. Arch. Occup. Environ. Health83(7), 763–769 (2010).
  • Englert H, Small-McMahon J, Chambers P et al. Familial risk estimation in systemic sclerosis. Aust. NZ J. Med.29(1), 36–41 (1999).
  • Arnett FC, Cho M, Chatterjee S, Aguilar MB, Reveille JD, Mayes MD. Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum.44(6), 1359–1362 (2001).
  • Hudson M, Rojas-Villarraga A, Coral-Alvarado P et al. Polyautoimmunity and familial autoimmunity in systemic sclerosis. J. Autoimmun.31(2), 156–159 (2008).
  • Zorina VIa, Zorin SP. Scleroderma in 5-year-old twin girls. Pediatriia (7), 69–70 (1982).
  • De Keyser F, Peene I, Joos R, Naeyaert JM, Messiaen L, Veys EM. Occurrence of scleroderma in monozygotic twins. J. Rheumatol.27(9), 2267–2269 (2000).
  • Feghali-Bostwick C, Medsger TA Jr, Wright TM. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum.48(7), 1956–1963 (2003).
  • Kallenberg CG, Wouda AA, Hoet MH, van Venrooij WJ. Development of connective tissue disease in patients presenting with Raynaud’s phenomenon: a six year follow up with emphasis on the predictive value of antinuclear antibodies as detected by immunoblotting. Ann. Rheum. Dis.47(8), 634–641 (1988).
  • Zhou X, Tan FK, Xiong M, Arnett FC, Feghali-Bostwick CA. Monozygotic twins clinically discordant for scleroderma show concordance for fibroblast gene expression profiles. Arthritis Rheum.52(10), 3305–3314 (2005).
  • Remmers EF, Plenge RM, Lee AT et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med.357(10), 977–986 (2007).
  • Rueda B, Broen J, Simeon C et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum. Mol. Genet.18(11), 2071–2077 (2009).
  • Tsuchiya N, Kawasaki A, Hasegawa M et al. Association of STAT4 polymorphism with systemic sclerosis in a Japanese population. Ann. Rheum. Dis.68(8), 1375–1376 (2009).
  • Dieudé P, Guedj M, Wipff J et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum.60(8), 2472–2479 (2009).
  • Gourh P, Agarwal SK, Divecha D et al. Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: evidence of possible gene–gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum.60(12), 3794–3806 (2009).
  • Korman BD, Kastner DL, Gregersen PK, Remmers EF. STAT4: genetics, mechanisms, and implications for autoimmunity. Curr. Allergy Asthma Rep.8(5), 398–403 (2008).
  • Avouac J, Fürnrohr BG, Tomcik M et al. Inactivation of the transcription factor STAT4 prevents inflammation-driven fibrosis in systemic sclerosis animal models. Arthritis Rheum.63(3), 800–809 (2010).
  • Sigurdsson S, Nordmark G, Göring HH et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet.76(3), 528–537 (2005).
  • Dieudé P, Guedj M, Wipff J et al. Association between the IRF5 rs2004640 functional polymorphism and systemic sclerosis: a new perspective for pulmonary fibrosis. Arthritis Rheum.60(1), 225–233 (2009).
  • Ito I, Kawaguchi Y, Kawasaki A et al. Association of a functional polymorphism in the IRF5 region with systemic sclerosis in a Japanese population. Arthritis Rheum.60(6), 1845–1850 (2009).
  • Dieude P, Dawidowicz K, Guedj M et al. Phenotype-haplotype correlation of IRF5 in systemic sclerosis: role of 2 haplotypes in disease severity. J. Rheumatol.37(5), 987–992 (2010).
  • Barnes BJ, Moore PA, Pitha PM. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon α genes. J. Biol. Chem.276(26), 23382–23390 (2001).
  • Eloranta ML, Franck-Larsson K, Lövgren T et al. Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann. Rheum. Dis.69(7), 1396–1402 (2010).
  • Lakos G, Melichian D, Wu M, Varga J. Increased bleomycin-induced skin fibrosis in mice lacking the Th1-specific transcription factor T-bet. Pathobiology73(5), 224–237 (2006).
  • Aliprantis AO, Wang J, Fathman JW et al. Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13. Proc. Natl Acad. Sci. USA104(8), 2827–2830 (2007).
  • Yokoyama K, Su IH, Tezuka T et al. BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP(3) receptor. EMBO J.21(1–2), 83–92 (2002).
  • Orozco G, Abelson AK, González-Gay MA et al. Study of functional variants of the BANK1 gene in rheumatoid arthritis. Arthritis Rheum.60(2), 372–379 (2009).
  • Kozyrev SV, Abelson AK, Wojcik J et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet.40(2), 211–216 (2008).
  • Rueda B, Gourh P, Broen J et al. BANK1 functional variants are associated with susceptibility to diffuse systemic sclerosis in Caucasians. Ann. Rheum. Dis.69(4), 700–705 (2010).
  • Dieudé P, Wipff J, Guedj M et al. BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRF5 and STAT4.Arthritis Rheum.60(11), 3447–3454 (2009).
  • Dymecki SM, Niederhuber JE, Desiderio SV. Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Science247(4940), 332–336 (1990).
  • Gourh P, Agarwal SK, Martin E et al. Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J. Autoimmun.34(2), 155–162 (2010).
  • Ito I, Kawaguchi Y, Kawasaki A et al. Association of the FAM167A-BLK region with systemic sclerosis. Arthritis Rheum.62(3), 890–895 (2010).
  • Redmond WL, Ruby CE, Weinberg AD. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol.29(3), 187–201 (2009).
  • Gourh P, Arnett FC, Tan FK et al. Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann. Rheum. Dis.69(3), 550–555 (2010).
  • Bossini-Castillo L, Broen JC, Simeon CP et al. A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort. Ann. Rheum. Dis.70(4), 638–641 (2010).
  • Radstake TR, van Bon L, Broen J et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFβ and IFNγ distinguishes SSc phenotypes. PLoS ONE4(6), e5903 (2009).
  • Faragó B, Magyari L, Sáfrány E et al. Functional variants of interleukin-23 receptor gene confer risk for rheumatoid arthritis but not for systemic sclerosis. Ann. Rheum. Dis.67(2), 248–250 (2008).
  • Rueda B, Broen J, Torres O et al. The interleukin 23 receptor gene does not confer risk to systemic sclerosis and is not associated with systemic sclerosis disease phenotype. Ann. Rheum. Dis.68(2), 253–256 (2009).
  • Agarwal SK, Gourh P, Shete S et al. Association of interleukin 23 receptor polymorphisms with anti-topoisomerase-I positivity and pulmonary hypertension in systemic sclerosis. J. Rheumatol.36(12), 2715–2723 (2009).
  • Talal N. Oncogenes, autogenes, and rheumatic diseases. Arthritis Rheum.37(10), 1421–1422 (1994).
  • Wetzig T, Petri JB, Mittag M, Haustein UF. Serum levels of soluble Fas/APO-1 receptor are increased in systemic sclerosis. Arch. Dermatol. Res.290(4), 187–190 (1998).
  • Broen J, Gourh P, Rueda B et al. The FAS -670A>G polymorphism influences susceptibility to systemic sclerosis phenotypes. Arthritis Rheum.60(12), 3815–3820 (2009).
  • Liakouli V, Manetti M, Pacini A et al. The -670G>A polymorphism in the FAS gene promoter region influences the susceptibility to systemic sclerosis. Ann. Rheum. Dis.68(4), 584–590 (2009).
  • Abraham D. Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford).47(Suppl. 5), 8–9 (2008).
  • Leask A, Denton CP, Abraham DJ. Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma. J. Invest. Dermatol.122(1), 1–6 (2004).
  • Fonseca C, Lindahl GE, Ponticos M et al. A polymorphism in the CTGF promoter region associated with systemic sclerosis. N. Engl. J. Med.357(12), 1210–1220 (2007).
  • Gourh P, Mayes MD, Arnett FC. CTGF polymorphism associated with systemic sclerosis. N. Engl. J. Med.358(3), 308–309 (2008).
  • Rueda B, Simeon C, Hesselstrand R et al. A large multicentre analysis of CTGF -945 promoter polymorphism does not confirm association with systemic sclerosis susceptibility or phenotype. Ann. Rheum. Dis.68(10), 1618–1620 (2009).
  • Kawaguchi Y, Ota Y, Kawamoto M et al. Association study of a polymorphism of the CTGF gene and susceptibility to systemic sclerosis in the Japanese population. Ann. Rheum. Dis.68(12), 1921–1924 (2009).
  • Granel B, Argiro L, Hachulla E et al. Association between a CTGF gene polymorphism and systemic sclerosis in a French population. J. Rheumatol.37(2), 351–358 (2010).
  • Diaz-Gallo L, Gourh P, Broen J et al. Analysis of the influence of PTPN22 gene polymorphisms in systemic sclerosis. Ann. Rheum. Dis.70(3), 454–462 (2011).
  • Dieudé P, Guedj M, Truchetet ME et al. Association of the CD226 307Ser variant with systemic sclerosis: Evidence for a contribution of co-stimulation pathways in SSc pathogenesis. Arthritis Rheum. DOI: 10.1002/art.30204 (2010) (Epub ahead of print).
  • Dieudé P, Guedj M, Wipff J et al. NLRP1 influences the systemic sclerosis phenotype: a new clue for the contribution of innate immunity in systemic sclerosis-related fibrosing alveolitis pathogenesis. Ann. Rheum. Dis.70(4), 668–674 (2010).
  • Manetti M, Allanore Y, Revillod L et al. A genetic variation located in the promoter region of the UPAR (CD87) gene is associated with the vascular complications of systemic sclerosis. Arthritis Rheum.63(1), 247–256 (2011).
  • Kanehisa M, Goto S, Furumichi M et al. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res.38(Database issue), 355–360 (2010).
  • Arnett FC, Bias WB, McLean RH et al. Connective tissue disease in southeast Georgia. A community based study of immunogenetic markers and autoantibodies. J. Rheumatol.17(8), 1029–1035 (1990).
  • Gladman DD, Keystone EC, Baron M, Lee P, Cane D, Mervert H. Increased frequency of HLA-DR5 in scleroderma. Arthritis Rheum.24(6), 854–856 (1981).
  • Kuwana M, Kaburaki J, Okano Y, Inoko H, Tsuji K. The HLA-DR and DQ genes control the autoimmune response to DNA topoisomerase I in systemic sclerosis (scleroderma). J. Clin. Invest.92(3), 1296–1301 (1993).
  • Tan FK, Stivers DN, Arnett FC, Chakraborty R, Howard R, Reveille JD. HLA haplotypes and microsatellite polymorphisms in and around the major histocompatibility complex region in a Native American population with a high prevalence of scleroderma (systemic sclerosis). Tissue Antigens53(1), 74–80 (1999).
  • Vlachoyiannopoulos PG, Dafni UG, Pakas I, Spyropoulou-Vlachou M, Stavropoulos-Giokas C, Moutsopoulos HM. Systemic scleroderma in Greece: low mortality and strong linkage with HLA-DRB1*1104 allele. Ann. Rheum. Dis.59(5), 359–367 (2000).
  • Reveille JD, Durban E, MacLeod-St Clair MJ et al. Association of amino acid sequences in the HLA-DQB1 first domain with antitopoisomerase I autoantibody response in scleroderma (progressive systemic sclerosis). J. Clin. Invest.90(3), 973–980 (1992).
  • Arnett FC, Gourh P, Shete S et al. Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African–American and Hispanic cases and 1000 controls. Ann. Rheum. Dis.69(5), 822–827 (2010).
  • Simeón CP, Fonollosa V, Tolosa C et al. Association of HLA class II genes with systemic sclerosis in Spanish patients. J. Rheumatol.36(12), 2733–2736 (2009).
  • Karp DR, Marthandan N, Marsh SG et al. Novel sequence feature variant type analysis of the HLA genetic association in systemic sclerosis. Hum. Mol. Genet.19(4), 707–719 (2010).
  • Beretta L, Santaniello A, Mayo M et al. A 3-factor epistatic model predicts digital ulcers in Italian scleroderma patients. Eur. J. Intern. Med.21(4), 347–353 (2010).
  • Nguyen B, Mayes MD, Arnett FC et al. HLA-DRB1*0407 and *1304 are risk factors for scleroderma renal crisis. Arthritis Rheum.63(2), 530–534 (2010).
  • Zhou X, Tan FK, Wang N et al. Genome-wide association study for regions of systemic sclerosis susceptibility in a Choctaw Indian population with high disease prevalence. Arthritis Rheum.48(9), 2585–2592 (2003).
  • Zhou X, Lee JE, Arnett FC et al. HLA-DPB1 and DPB2 are genetic loci for systemic sclerosis: a genome-wide association study in Koreans with replication in North Americans. Arthritis Rheum.60(12), 3807–3814 (2009).
  • Radstake TR, Gorlova O, Rueda B et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet.42(5), 426–429 (2010).
  • Gorman CL, Russell AI, Zhang Z et al. Polymorphisms in the CD3Z gene influence TCRζ expression in systemic lupus erythematosus patients and healthy controls. J. Immunol.180(2), 1060–1070 (2008).
  • Emerit I, Housset E, Feingold J. Chromosomal breakage and scleroderma: studies in family members. J. Lab. Clin. Med.88(1), 81–86 (1976).
  • Emerit I, Levy A, Housset E. Breakage factor in systemic sclerosis and protector effect of L-cysteine. Humangenetik.25(3), 221–226 (1974).
  • Haaf T, Sumner AT, Köhler J, Willard HF, Schmid M. A microchromosome derived from chromosome 11 in a patient with the CREST syndrome of scleroderma. Cytogenet. Cell Genet.60(1), 12–17 (1992).
  • Sherer GK, Jackson BB, Leroy EC. Chromosome breakage and sister chromatid exchange frequencies in scleroderma. Arthritis Rheum.24(11), 1409–1413 (1981).
  • Artlett CM, Black CM, Briggs DC, Stevens CO, Welsh KI. Telomere reduction in scleroderma patients: a possible cause for chromosomal instability. Br. J. Rheumatol.35(8), 732–737 (1996).
  • MacIntyre A, Brouilette SW, Lamb K et al. Association of increased telomere lengths in limited scleroderma, with a lack of age-related telomere erosion. Ann. Rheum. Dis.67(12), 1780–1782 (2008).
  • Tarhan F, Vural F, Kosova B et al. Telomerase activity in connective tissue diseases: elevated in rheumatoid arthritis, but markedly decreased in systemic sclerosis. Rheumatol. Int.28(6), 579–583 (2008).
  • Graves JA, Disteche CM, Toder R. Gene dosage in the evolution and function of mammalian sex chromosomes. Cytogenet. Cell Genet.80(1–4), 94–103 (1998).
  • Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature.190, 372–373 (1961).
  • Kristiansen M, Knudsen GP, Bathum L et al. Twin study of genetic and aging effects on X chromosome inactivation. Eur. J. Hum. Genet.13(5), 599–606 (2005).
  • Ozbalkan Z, Bagişlar S, Kiraz S et al. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum.52(5), 1564–1570 (2005).
  • Uz E, Loubiere LS, Gadi VK. Skewed X-chromosome inactivation in scleroderma. Clin. Rev. Allergy Immunol.34(3), 352–355 (2008).
  • Broen JC, Wolvers-Tettero IL, Geurts-van Bon L et al. Skewed X chromosomal inactivation impacts T regulatory cell function in systemic sclerosis. Ann. Rheum. Dis.69(12), 2213–2216 (2010).
  • Invernizzi P, Miozzo M, Selmi C et al. X chromosome monosomy: a common mechanism for autoimmune diseases. J. Immunol.175(1), 575–578 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.