104
Views
26
CrossRef citations to date
0
Altmetric
Review

Capturing the heterogeneity in systemic sclerosis with genome-wide expression profiling

&
Pages 463-473 | Published online: 10 Jan 2014

References

  • Barnett AJ, Miller MH, Littlejohn GO. A survival study of patients with scleroderma diagnosed over 30 years (1953–1983): the value of a simple cutaneous classification in the early stages of the disease. J. Rheumatol.15(2), 276–283 (1988).
  • LeRoy EC, Black C, Fleischmajer R et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J. Rheumatol.15(2), 202–205 (1988).
  • Bolster MB, Silver RM. Lung disease in systemic sclerosis (scleroderma). Baillieres Clin. Rheumatol.7(1), 79–97 (1993).
  • Black CM, Welsh KI, Maddison PJ, Jayson MI, Bernstein RM. HLA antigens, autoantibodies and clinical subsets in scleroderma. Br. J. Rheumatol.23(4), 267–271 (1984).
  • Akesson A, Wollheim FA. Organ manifestations in 100 patients with progressive systemic sclerosis: a comparison between the CREST syndrome and diffuse scleroderma. Br. J. Rheumatol.28(4), 281–286 (1989).
  • Merkel PA, Silliman NP, Denton CP et al. Validity, reliability, and feasibility of durometer measurements of scleroderma skin disease in a multicenter treatment trial. Arthritis Rheum.59(5), 699–705 (2008).
  • Rodnan GP, Lipinski E, Luksick J. Skin thickness and collagen content in progressive systemic sclerosis and localized scleroderma. Arthritis Rheum.22(2), 130–140 (1979).
  • Clements P, Lachenbruch P, Siebold J et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J. Rheumatol.22(7), 1281–1285 (1995).
  • Furst DE, Clements PJ, Steen VD et al. The modified Rodnan skin score is an accurate reflection of skin biopsy thickness in systemic sclerosis. J. Rheumatol.25(1), 84–88 (1998).
  • Clements PJ, Hurwitz EL, Wong WK et al. Skin thickness score as a predictor and correlate of outcome in systemic sclerosis: high-dose versus low-dose penicillamine trial. Arthritis Rheum.43(11), 2445–2454 (2000).
  • Steen VD, Medsger TA Jr. Improvement in skin thickening in systemic sclerosis associated with improved survival. Arthritis Rheum.44(12), 2828–2835 (2001).
  • Verrecchia F, Laboureau J, Verola O et al. Skin involvement in scleroderma–where histological and clinical scores meet. Rheumatology (Oxford)46(5), 833–841 (2007).
  • Steen VD. Autoantibodies in systemic sclerosis. Semin. Arthritis Rheum.35(1), 35–42 (2005).
  • Herrick A, Rooney B, Finn J, Silman A. Lack of relationship between functional ability and skin score in patients with systemic sclerosis. J. Rheumatol.28(2), 292–295 (2001).
  • Hanitsch LG, Burmester GR, Witt C et al. Skin sclerosis is only of limited value to identify SSc patients with severe manifestations–an analysis of a distinct patient subgroup of the German Systemic Sclerosis Network (DNSS) Register. Rheumatology (Oxford)48(1), 70–73 (2009).
  • Medsger TA, Steen VD. Classification, prognosis. In: Systemic Sclerosis. Clements, PJ, Furst, DE (Eds). Williams & Wilkins, Baltimore, MD, USA, 51–64 (1996).
  • Siebold JR. Chapter 79: Scleroderma. In: Kelley’s Textbook of Rheumatology. Harris ED Jr, Budd RC, Firestein GS, Genovese MC, Sergent JS, Ruddy S, Sledge CB. (Eds). Elsevier & Saunders, Amsterdam, The Netherlands, 1279–1308 (2005).
  • Hildebrandt S, Jackh G, Weber S, Peter HH. A long-term longitudinal isotypic study of anti-topoisomerase I autoantibodies. Rheumatol. Int.12(6), 231–234 (1993).
  • Dick T, Mierau R, Bartz-Bazzanella P et al. Coexistence of antitopoisomerase I and anticentromere antibodies in patients with systemic sclerosis. Ann. Rheum. Dis.61(2), 121–127 (2002).
  • Grassegger A, Pohla-Gubo G, Frauscher M, Hintner H. Autoantibodies in systemic sclerosis (scleroderma): clues for clinical evaluation, prognosis and pathogenesis. Wien Med. Wochenschr158(1–2), 19–28 (2008).
  • Koenig M, Dieude M, Senecal JL. Predictive value of antinuclear autoantibodies: the lessons of the systemic sclerosis autoantibodies. Autoimmun Rev.7(8), 588–593 (2008).
  • Scussel-Lonzetti L, Joyal F, Raynauld JP et al. Predicting mortality in systemic sclerosis: analysis of a cohort of 309 French Canadian patients with emphasis on features at diagnosis as predictive factors for survival. Medicine (Baltimore)81(2), 154–167 (2002).
  • Maricq HR, Valter I. A working classification of scleroderma spectrum disorders: a proposal and the results of testing on a sample of patients. Clin. Exp. Rheumatol.22(3 Suppl. 33), S5–S13 (2004).
  • Ferri C, Valentini G, Cozzi F et al. Systemic sclerosis: demographic, clinical, and serologic features and survival in 1,012 Italian patients. Medicine (Baltimore)81(2), 139–153 (2002).
  • Barnett AJ, Miller M, Littlejohn GO. The diagnosis and classification of scleroderma (systemic sclerosis). Postgrad. Med. J.64(748), 121–125 (1988).
  • Medsger TA Jr, Silman AJ, Steen VD et al. A disease severity scale for systemic sclerosis: development and testing. J. Rheumatol.26(10), 2159–2167 (1999).
  • Steen VD, Medsger TA Jr. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum.43(11), 2437–2444 (2000).
  • Shand L, Lunt M, Nihtyanova S et al. Relationship between change in skin score and disease outcome in diffuse cutaneous systemic sclerosis: application of a latent linear trajectory model. Arthritis Rheum.56(7), 2422–2431 (2007).
  • Perera A, Fertig N, Lucas M et al. Clinical subsets, skin thickness progression rate, and serum antibody levels in systemic sclerosis patients with anti-topoisomerase I antibody. Arthritis Rheum.56(8), 2740–2746 (2007).
  • Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature406(6797), 747–752 (2000).
  • Ross DT, Scherf U, Eisen MB et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet.24(3), 227–235 (2000).
  • Whitfield ML, Finlay DR, Murray JI et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc. Natl Acad. Sci. USA100(21), 12319–12324 (2003).
  • Gardner H, Shearstone JR, Bandaru R et al. Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum.54(6), 1961–1973 (2006).
  • Milano A, Pendergrass SA, Sargent JL et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE3(7), e2696 (2008).
  • Tan FK, Zhou X, Mayes MD et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford)45(6), 694–702 (2006).
  • Duan H, Fleming J, Pritchard DK et al. Combined analysis of monocyte and lymphocyte messenger RNA expression with serum protein profiles in patients with scleroderma. Arthritis Rheum.58(5), 1465–1474 (2008).
  • Grigoryev DN, Mathai SC, Fisher MR et al. Identification of candidate genes in scleroderma-related pulmonary arterial hypertension. Transl. Res.151(4), 197–207 (2008).
  • Luzina IG, Atamas SP, Wise R, Wigley FM, Xiao HQ, White B. Gene expression in bronchoalveolar lavage cells from scleroderma patients. Am. J. Respir. Cell Mol. Biol.26(5), 549–557 (2002).
  • Luzina IG, Atamas SP, Wise R et al. Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum.48(8), 2262–2274 (2003).
  • Hsu E, Shi H, Jordan RM, Lyons-Weiler J, Pilewski JM, Feghali-Bostwick CA. Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis Rheum.63(3), 783–794 (2011).
  • Zhou X, Tan FK, Xiong M et al. Systemic sclerosis (scleroderma): specific autoantigen genes are selectively overexpressed in scleroderma fibroblasts. J. Immunol.,167(12), 7126–7133 (2001).
  • Tan FK, Hildebrand BA, Lester MS et al. Classification analysis of the transcriptosome of nonlesional cultured dermal fibroblasts from systemic sclerosis patients with early disease. Arthritis Rheum.52(3), 865–876 (2005).
  • Zhou X, Tan FK, Xiong M, Arnett FC, Feghali-Bostwick CA. Monozygotic twins clinically discordant for scleroderma show concordance for fibroblast gene expression profiles. Arthritis Rheum.52(10), 3305–3314 (2005).
  • Fuzii HT, Yoshikawa GT, Junta CM et al. Affected and non-affected skin fibroblasts from systemic sclerosis patients share a gene expression profile deviated from the one observed in healthy individuals. Clin. Exp. Rheumatol.26(5), 866–874 (2008).
  • Vuorio T, Makela JK, Vuorio E. Activation of type I collagen genes in cultured scleroderma fibroblasts. J. Cell Biochem.28(2), 105–113 (1985).
  • Kim D, Peck A, Santer D et al. Induction of interferon-α by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-α activity with lung fibrosis. Arthritis Rheum.58(7), 2163–2173 (2008).
  • Bos CL, van Baarsen LG, Timmer TC et al. Molecular subtypes of systemic sclerosis in association with anti-centromere antibodies and digital ulcers. Genes Immun.10(3), 210–218 (2009).
  • Assassi S, Mayes MD, Arnett FC et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum.62(2), 589–598 (2010).
  • Pendergrass SA, Hayes E, Farina G et al. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS ONE5(8), e12106 (2010).
  • Liu ET. Mechanism-derived gene expression signatures and predictive biomarkers in clinical oncology. Proc. Natl Acad. Sci. USA102(10), 3531–3532 (2005).
  • Wong DJ, Chang HY. Learning more from microarrays: insights from modules and networks. J. Invest. Dermatol.125(2), 175–182 (2005).
  • Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98(19), 10869–10874 (2001).
  • Julka PK, Chacko RT, Nag S et al. A Phase II study of sequential neoadjuvant gemcitabine plus doxorubicin followed by gemcitabine plus cisplatin in patients with operable breast cancer: prediction of response using molecular profiling. Br. J. Cancer98(8), 1327–1335 (2008).
  • Sargent JL, Milano A, Connolly MK, Whitfield ML. Scleroderma gene expression and pathway signatures. Curr. Rheumatol. Rep.10(3), 205–211 (2008).
  • Subramanian A, Tamayo P, Mootha VK et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA102(43), 15545–15550 (2005).
  • Sargent JL, Milano A, Bhattacharyya S et al. A TGFβ-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J. Invest. Dermatol.130(3), 694–705 (2010).
  • Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA. Global expression profiling of fibroblast responses to transforming growth factor-β1 reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. Am. J. Pathol.162(2), 533–546 (2003).
  • Chung L, Fiorentino DF, Benbarak MJ et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheum.60(2), 584–591 (2009).
  • Zhang Y, McCormick LL, Desai SR, Wu C, Gilliam AC. Murine sclerodermatous graft-versus-host disease, a model for human scleroderma: cutaneous cytokines, chemokines, and immune cell activation. J. Immunol.168(6), 3088–3098 (2002).
  • Ruzek MC, Jha S, Ledbetter S, Richards SM, Garman RD. A modified model of graft-versus-host-induced systemic sclerosis (scleroderma) exhibits all major aspects of the human disease. Arthritis Rheum.50(4), 1319–1331 (2004).
  • Green MC, Sweet HO, Bunker LE. Tight-skin, a new mutation of the mouse causing excessive growth of connective tissue and skeleton. Am. J. Pathol.82(3), 493–512 (1976).
  • Asano N, Fujimoto M, Yazawa N et al. B Lymphocyte signaling established by the CD19/CD22 loop regulates autoimmunity in the tight-skin mouse. Am. J. Pathol.165(2), 641–650 (2004).
  • Hasegawa M, Hamaguchi Y, Yanaba K et al. B-lymphocyte depletion reduces skin fibrosis and autoimmunity in the tight-skin mouse model for systemic sclerosis. Am. J. Pathol.169(3), 954–966 (2006).
  • Christner PJ, Peters J, Hawkins D, Siracusa LD, Jimenez SA. The tight skin 2 mouse. An animal model of scleroderma displaying cutaneous fibrosis and mononuclear cell infiltration. Arthritis Rheum.38(12), 1791–1798 (1995).
  • Gentiletti J, McCloskey LJ, Artlett CM, Peters J, Jimenez SA, Christner PJ. Demonstration of autoimmunity in the tight skin-2 mouse: a model for scleroderma. J. Immunol.175(4), 2418–2426 (2005).
  • Barisic-Dujmovic T, Boban I, Clark SH. Regulation of collagen gene expression in the Tsk2 mouse. J. Cell Physiol.215(2), 464–471 (2008).
  • Yamamoto T, Takagawa S, Katayama I et al. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J. Invest. Dermatol.112(4), 456–462 (1999).
  • Sonnylal S, Denton CP, Zheng B et al. Postnatal induction of transforming growth factor β signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum.56(1), 334–344 (2007).
  • Denton CP, Zheng B, Evans LA et al. Fibroblast-specific expression of a kinase-deficient type II transforming growth factor β (TGFβ) receptor leads to paradoxical activation of TGFβ signaling pathways with fibrosis in transgenic mice. J. Biol. Chem.278(27), 25109–25119 (2003).
  • Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol.260(2), 404–413 (2003).
  • Ellwood-Yen K, Graeber TG, Wongvipat J et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell4(3), 223–238 (2003).
  • Herschkowitz JI, Simin K, Weigman VJ et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol.8(5), R76 (2007).
  • Sweet-Cordero A, Mukherjee S, Subramanian A et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat. Genet.37(1), 48–55 (2005).
  • Lee JS, Chu IS, Mikaelyan A et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat. Genet.36(12), 1306–1311 (2004).
  • Bennett CN, Green JE. Unlocking the power of cross-species genomic analyses: identification of evolutionarily conserved breast cancer networks and validation of preclinical models. Breast Cancer Res.10(5), 213 (2008).
  • Radstake TR, Gorlova O, Rueda B et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet.42(5), 426–429 (2010).
  • Zhou X, Lee JE, Arnett FC et al. HLA-DPB1 and DPB2 are genetic loci for systemic sclerosis: a genome-wide association study in Koreans with replication in North Americans. Arthritis Rheum.60(12), 3807–3814 (2009).
  • Gilchrist FC, Bunn C, Foley PJ et al. Class II HLA associations with autoantibodies in scleroderma: a highly significant role for HLA-DP. Genes Immun.2(2), 76–81 (2001).
  • Ito I, Kawaguchi Y, Kawasaki A et al. Association of a functional polymorphism in the IRF5 region with systemic sclerosis in a Japanese population. Arthritis Rheum.60(6), 1845–1850 (2009).
  • Rueda B, Broen J, Simeon C et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum. Mol. Genet.18(11), 2071–2077 (2009).
  • Tsuchiya N, Kawasaki A, Hasegawa M et al. Association of STAT4 polymorphism with systemic sclerosis in a Japanese population. Ann. Rheum. Dis.68(8), 1375–1376 (2009).
  • Diaz-Gallo LM, Gourh P, Broen J et al. Analysis of the influence of PTPN22 gene polymorphisms in systemic sclerosis. Ann. Rheum. Dis.70(3), 454–462 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.