380
Views
52
CrossRef citations to date
0
Altmetric
Review

Clinical implication of recent advances in our understanding of IL-17 and reproductive immunology

, , &
Pages 649-657 | Published online: 10 Jan 2014

References

  • Wegmann TG, Lin H, Guilbert L et al. Bidirectional cytokine interactions in the maternal–fetal relationship: is successful pregnancy a Th2 phenomenon? Immunol. Today14(7), 353–356 (1993).
  • Piccinni MP, Beloni L, Livi C et al. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat. Med.4(9), 1020–1024 (1998).
  • Raghupathy R. Th1-type immunity is incompatible with successful pregnancy. Immunol. Today18(10), 478–482 (1997).
  • Chaouat G, Lédée-Bataille N, Zourbas S et al. Cytokines, implantation and early abortion: re-examining the Th1/Th2 paradigm leads to question the single pathway, single therapy concept. Am. J. Reprod. Immunol.50(3), 177–186 (2003).
  • Bates MD, Quenby S, Takakuwa K et al. Aberrant cytokine production by peripheral blood mononuclear cells in recurrent pregnancy loss? Hum. Reprod.17(9), 2439–2444 (2002).
  • Fallon PG, Jolin HE, Smith P et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity17(1), 7–17 (2002).
  • Chaouat G, Assal Meliani A, Martal J et al. IL-10 prevents naturally occurring fetal loss in the CBA x DBA/2 mating combination, and local defect in IL-10 production in this abortion-prone combination is corrected by in vivo injection of IFN-τ. J. Immunol.154(9), 4261–4268 (1995).
  • Wilczynski JR, Radwan M, Kalinka J. The characterization and role of regulatory T cells in immune reactions. Front Biosci.13, 2266–2274 (2008).
  • Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal–fetal interface. Reprod. Sci.17(3), 209–218 (2010).
  • Thaxton JE, Sharma S. Interleukin-10: a multi-faceted agent of pregnancy. Am. J. Reprod. Immunol.63(6), 482–491 (2010).
  • Chu CQ, Wittmer S, Dalton DK. Failure to suppress the expansion of the activated CD4 T cell population in interferon γ-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med.192(1), 123–128 (2000).
  • Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest.110(4), 493–497 (2002).
  • Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421(6924), 744–748 (2003).
  • Murphy CA, Langrish CL, Chen Y et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med.198(12), 1951–1957 (2003).
  • Crome SQ, Wang AY, Levings MK. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin. Exp. Immunol.159(2), 109–119 (2010).
  • Matsushita S, Higashi T. Human Th17 cell clones and natural immune responses. Allergol. Int.57(2), 135–140 (2008).
  • Iwakura Y, Ishigame H, Saijo S et al. Functional specialization of interleukin-17 family members. Immunity34(2), 149–162 (2011).
  • Matsuzaki G, Umemura M. Interleukin-17 as an effector molecule of innate and acquired immunity against infections. Microbiol. Immunol.51(12), 1139–1147 (2007).
  • Kolls JK, Khader SA. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev.21(6), 443–448 (2010).
  • Sakaguchi S. Naturally arising FOXP3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol.6(4), 345–352 (2005).
  • Akbar AN, Vukmanovic-Stejic M, Taams LS et al. The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat. Rev. Immunol.7(3), 231–237 (2007).
  • Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol.5(3), 266–271 (2004).
  • Sasaki Y, Sakai M, Miyazaki S et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod.10(5), 347–353 (2004).
  • Zenclussen AC, Gerlof K, Zenclussen ML et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am. J. Pathol.166(3), 811–822 (2005).
  • Xing J, Wu Y, Ni B. Th9: a new player in asthma pathogenesis? J. Asthma.48(2), 115–125 (2011).
  • Bettelli E, Korn T, Oukka M et al. Induction and effector functions of T(h)17 cells. Nature453(7198), 1051–1057 (2008).
  • Wei B, Pei G. MicroRNAs: critical regulators in Th17 cells and players in diseases. Cell Mol. Immunol.7(3), 175–181 (2010).
  • Moisan J, Grenningloh R, Bettelli E et al. Ets-1 is a negative regulator of Th17 differentiation. J. Exp. Med.204(12), 2825–2835 (2007).
  • Du C, Liu C, Kang J et al. MicroRNA miR-326 regulates Th-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol.10(12), 1252–1259 (2009).
  • Heidt S, Segundo DS, Chadha R et al. The impact of Th17 cells on transplant rejection and the induction of tolerance. Curr. Opin. Organ. Transplant.15(4), 456–461 (2010).
  • Hanidziar D, Koulmanda M. Inflammation and the balance of Treg and Th17 cells in transplant rejection and tolerance. Curr. Opin. Organ. Transplant15(4), 411–415 (2010).
  • Shilling RA, Wilkes DS. Role of Th17 cells and IL-17 in lung transplant rejection. Semin. Immunopathol. DOI: 10.1007/s00281-011-0257-9 (2011) (Epub ahead of print).
  • Chadha R, Heidt S, Jones ND et al. Th17: contributors to allograft rejection and a barrier to the induction of transplantation tolerance? Transplantation91(9), 939–945 (2011).
  • Gutcher I, Donkor MK, Ma Q et al. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity34(3), 396–408 (2011).
  • Peck A, Mellins ED. Plasticity of T-cell phenotype and function: the T helper type 17 example. Immunology129(2), 147–153 (2010).
  • Crome SQ, Wang AY, Levings MK. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin. Exp. Immunol.159(2), 109–119 (2010).
  • Nowak EC, Noelle RJ. Interleukin-9 as a T helper type 17 cytokine. Immunology131(2), 169–173 (2010).
  • Saito S, Nakashima A, Shima T et al. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol.63(6), 601–610 (2010).
  • Pandiyan P, Conti HR, Zheng L et al. CD4(+)CD25(+)FOXP3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity34(3), 422–434 (2011).
  • Chen Y, Haines CJ, Gutcher I et al. FOXP3(+) regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2. Immunity34(3), 409–421 (2011).
  • McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity28(4), 445–453 (2008).
  • Chang SH, Park H, Dong C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem.281(47), 35603–35607 (2006).
  • Qian Y, Liu C, Hartupee J et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol.8(3), 247–256 (2007).
  • Antonysamy MA, Fanslow WC, Fu F et al. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors. J. Immunol.162(1), 577–584 (1999).
  • Yoshida S, Haque A, Mizobuchi T et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am. J. Transplant.6(4), 724–735 (2006).
  • Benghiat FS, Charbonnier LM, Vokaer B et al. Interleukin 17-producing T helper cells in alloimmunity. Transplant. Rev. (Orlando)23(1), 11–18 (2009).
  • Harada T, Iwabe T, Terakawa N. Role of cytokines in endometriosis. Fertil. Steril.76(1), 1–10 (2001).
  • Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endometriosis. Fertil. Steril.75(1), 1–10 (2001).
  • Hirata Y, Nose E, Hamasaki K et al. Interleukin (IL)-17A stimulates IL-8 secretion, cyclooxygensase-2 expression, and cell proliferation of endometriotic stromal cells. Endocrinology149(3), 1260–1267 (2008).
  • Nakashima A, Ito M, Yoneda S et al. Circulating and decidual Th17 cell levels in healthy pregnancy. Am. J. Reprod. Immunol.63(2), 104–109 (2010).
  • Ito M, Nakashima A, Hidaka T et al. A role for IL-17 in induction of an inflammation at the fetomaternal interface in preterm labour. J. Reprod. Immunol.84(1), 75–85 (2010).
  • Nakashima A, Ito M, Shima T et al. Accumulation of IL-17-positive cells in decidua of inevitable abortion cases. Am. J. Reprod. Immunol.64(1), 4–11 (2010).
  • Santner-Nanan B, Peek MJ, Khanam R et al. Systemic increase in the ratio between FOXP3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol.183(11), 7023–7030 (2009).
  • Pongcharoen S, Somran J, Sritippayawan S et al. Interleukin-17 expression in the human placenta. Placenta28(1), 59–63 (2007).
  • Ostojic S, Dubanchet S, Chaouat G et al. Demonstration of the presence of IL-16, IL-17 and IL-18 at the murine fetomaternal interface during murine pregnancy. Am. J. Reprod. Immunol.49(2), 101–112 (2003).
  • Pongcharoen S, Niumsup P, Sanguansermsri D et al. The effect of interleukin-17 on the proliferation and invasion of JEG-3 human choriocarcinoma cells. Am. J. Reprod. Immunol.55(4), 291–300 (2006).
  • Pongcharoen S, Supalap K. Interleukin-17 increased progesterone secretion by JEG-3 human choriocarcinoma cells. Am. J. Reprod. Immunol.61(4), 261–264 (2009).
  • Martínez-García EA, Chávez-Robles B, Sánchez-Hernández PE et al. IL-17 increased in the third trimester in healthy women with term labor. Am. J. Reprod. Immunol.65(2), 99–103 (2011).
  • Wang WJ, Hao CF, Yi-Lin et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol.84(2), 164–170 (2010).
  • Arruvito L, Sanz M, Banham AH et al. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol.178(4), 2572–2578 (2007).
  • Yang H, Qiu L, Chen G et al. Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil. Steril.89(3), 656–661 (2008).
  • Shima T, Sasaki Y, Itoh M et al. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol.85(2), 121–129 (2010).
  • Liu YS, Wu L, Tong XH et al. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am. J. Reprod. Immunol.65(5), 503–511 (2011).
  • Ochanuna Z, Geiger-Maor A, Dembinsky-Vaknin A et al. Inhibition of effector function but not T cell activation and increase in FoxP3 expression in T cells differentiated in the presence of PP14. PLoS ONE5(9), e12868 (2010).
  • Wang C, Dehghani B, Li Y et al. Oestrogen modulates experimental autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology126(3), 329–335 (2009).
  • Wang WJ, Hao CF, Qu QL et al. The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Hum. Reprod.25(10), 2591–2596 (2010).
  • Cao D, van Vollenhoven R, Klareskog L et al. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis. Res. Ther.6(4), R335–R346 (2004).
  • Annunziato F, Cosmi L, Santarlasci V et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med.204(8), 1849–1861 (2007).
  • Evans HG, Suddason T, Jackson I et al. Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc. Natl Acad. Sci. USA104(43), 17034–17039 (2007).
  • Gargano JW, Holzman C, Senagore P et al. Mid-pregnancy circulating cytokine levels, histologic chorioamnionitis and spontaneous preterm birth. J. Reprod. Immunol.79(1), 100–110 (2008).
  • Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science308(5728), 1592–1594 (2005).
  • Saito S, Shiozaki A, Nakashima A et al. The role of the immune system in preeclampsia. Mol. Aspects Med.28(2), 192–209 (2007).
  • Levine RJ, Lam C, Qian C et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med.355(10), 992–1005 (2006).
  • Sasaki Y, Darmochwal-Kolarz D, Suzuki D et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin. Exp. Immunol.149(1), 139–145 (2007).
  • Steinborn A, Haensch GM, Mahnke K et al. Distinct subsets of regulatory T cells during pregnancy: is the imbalance of these subsets involved in the pathogenesis of preeclampsia? Clin. Immunol.129(3), 401–412 (2008).
  • Jianjun Z, Yali H, Zhiqun W et al. Imbalance of T-cell transcription factors contributes to the Th1 type immunity predominant in pre-eclampsia. Am. J. Reprod. Immunol.63(1), 38–45 (2010).
  • Saito S. Th17 cells and regulatory T cells: new light on pathophysiology of preeclampsia. Immunol. Cell Biol.88(6), 615–617 (2010).
  • Saito S, Sakai M, Sasaki Y et al. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin. Exp. Immunol.117(3), 550–555 (1999).
  • Saito S, Sakai M. Th1/Th2 balance in preeclampsia. J. Reprod. Immunol.59(2), 161–173 (2003).
  • Azizieh F, Raghupathy R, Makhseed M. Maternal cytokine production patterns in women with pre-eclampsia. Am. J. Reprod. Immunol.54(1), 30–37 (2005).
  • Sibai B, Romero R, Klebanoff MA et al. Maternal plasma concentrations of the soluble tumor necrosis factor receptor 2 are increased prior to the diagnosis of preeclampsia. Am. J. Obstet. Gynecol.200(6), 630, e1–e8 (2009).
  • Molvarec A, Ito M, Shima T et al. Decreased proportion of peripheral blood vascular endothelial growth factor-expressing T and natural killer cells in preeclampsia. Am. J. Obstet. Gynecol.203(6), 567, e1–e8 (2010).
  • Molvarec A, Blois SM, Stenczer B et al. Peripheral blood galectin-1-expressing T and natural killer cells in normal pregnancy and preeclampsia. Clin. Immunol.139(1), 48–56 (2011).
  • Nakashima A, Shiozaki A, Myojo S et al. Granulysin produced by uterine natural killer cells induces apoptosis of extravillous trophoblasts in spontaneous abortion. Am. J. Pathol.173(3), 653–664 (2008).
  • Molvarec A, Shiozaki A, Ito M et al. Increased prevalence of peripheral blood granulysin-producing cytotoxic T lymphocytes in preeclampsia. J. Reprod. Immunol. DOI:10.1016/j.jri.2011.03.012 (2011) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.