156
Views
24
CrossRef citations to date
0
Altmetric
Perspective

Prenatal programming of the innate immune response following in utero exposure to inflammation: a sexually dimorphic process?

, , &
Pages 579-592 | Published online: 10 Jan 2014

References

  • Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr. Res.56(3), 311–317 (2004).
  • Flanagan KL, Halliday A, Burl S et al. The effect of placental malaria infection on cord blood and maternal immunoregulatory responses at birth. Eur. J. Immunol.40(4), 1062–1072 (2010).
  • Hodyl NA, Krivanek KM, Clifton VL, Hodgson DM. Innate immune dysfunction in the neonatal rat following prenatal endotoxin exposure. J. Neuroimmunol.204(1–2), 126–130 (2008).
  • Kramer BW, Ikegami M, Moss TJ, Nitsos I, Newnham JP, Jobe AH. Endotoxin-induced chorioamnionitis modulates innate immunity of monocytes in preterm sheep. Am. J. Respir. Crit. Care Med.171(1), 73–77 (2005).
  • Prescott SL, Clifton V. Asthma and pregnancy: emerging evidence of epigenetic interactions in utero. Curr. Opin. Allergy Clin. Immunol.9(5), 417–426 (2009).
  • Warner JA, Jones CA, Williams TJ, Warner JO. Maternal programming in asthma and allergy. Clin. Exp. Allergy28(Suppl. 5), 35–38; discussion 50–31 (1998).
  • Hodyl NA, Krivanek KM, Lawrence E, Clifton VL, Hodgson DM. Prenatal exposure to a proinflammatory stimulus causes delays in the development of the innate immune response to LPS in the offspring. J. Neuroimmunol.190(1–2), 61–71 (2007).
  • Beloosesky R, Maravi N, Weiner Z et al. Maternal lipopolysaccharide-induced inflammation during pregnancy programs impaired offspring innate immune responses. Am. J. Obstet. Gynecol.203(2), 185, e181–e184 (2010).
  • Manzoni P, Rizzollo S, Decembrino L et al. Recent advances in prevention of sepsis in the premature neonates in NICU. Early Hum. Dev.87(Suppl. 1), S31–S33 (2011).
  • Sohn AH, Garrett DO, Sinkowitz-Cochran RL et al. Prevalence of nosocomial infections in neonatal intensive care unit patients: results from the first national point-prevalence survey. J. Pediatr.139(6), 821–827 (2001).
  • Stoll BJ, Hansen N, Fanaroff AA et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics110(2 Pt 1), 285–291 (2002).
  • Fanaroff AA, Korones SB, Wright LL et al. Incidence, presenting features, risk factors and significance of late onset septicemia in very low birth weight infants. The National Institute of Child Health and Human Development Neonatal Research Network. Pediatr. Infect. Dis. J.17(7), 593–598 (1998).
  • Stoll BJ, Hansen N, Fanaroff AA et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med.347(4), 240–247 (2002).
  • Hack M, Wilson-Costello D, Friedman H, Taylor GH, Schluchter M, Fanaroff AA. Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992–1995. Arch. Pediatr. Adolesc. Med.154(7), 725–731 (2000).
  • Goncalves LF, Chaiworapongsa T, Romero R. Intrauterine infection and prematurity. Ment. Retard. Dev. Disabil. Res. Rev.8(1), 3–13 (2002).
  • Kotiranta-Ainamo A, Apajasalo M, Pohjavuori M, Rautonen N, Rautonen J. Mononuclear cell subpopulations in preterm and full-term neonates: independent effects of gestational age, neonatal infection, maternal pre-eclampsia, maternal betamethason therapy, and mode of delivery. Clin. Exp. Immunol.115(2), 309–314 (1999).
  • Forster-Waldl E, Sadeghi K, Tamandl D et al. Monocyte Toll-like receptor 4 expression and LPS-induced cytokine production increase during gestational aging. Pediatr. Res.58(1), 121–124 (2005).
  • Hartel C, Osthues I, Rupp J et al. Characterisation of the host inflammatory response to Staphylococcus epidermidis in neonatal whole blood. Arch. Dis. Child Fetal Neonatal Ed.93(2), F140–F145 (2008).
  • Mainali ES, Kikuchi T, Tew JG. Dexamethasone inhibits maturation and alters function of monocyte-derived dendritic cells from cord blood. Pediatr. Res.58(1), 125–131 (2005).
  • Marodi L. Innate cellular immune responses in newborns. Clin. Immunol.118, 137–144 (2006).
  • Wynn JL, Scumpia PO, Delano MJ et al. Increased mortality and altered immunity in neonatal sepsis produced by generalized peritonitis. Shock28(6), 675–683 (2007).
  • Wynn JL, Scumpia PO, Winfield RD et al. Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood112(5), 1750–1758 (2008).
  • Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev. Immunol.7(5), 379–390 (2007).
  • Currie AJ, Curtis S, Strunk T et al. Preterm infants have deficient monocyte and lymphocyte cytokine responses to group B streptococcus. Infect. Immun.79(4), 1588–1596 (2011).
  • Belderbos ME, van Bleek GM, Levy O et al. Skewed pattern of Toll-like receptor 4-mediated cytokine production in human neonatal blood: low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life. Clin. Immunol.133(2), 228–237 (2009).
  • Levy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR. Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-α induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J. Immunol.173(7), 4627–4634 (2004).
  • Yan SR, Qing G, Byers DM, Stadnyk AW, Al-Hertani W, Bortolussi R. Role of MyD88 in diminished tumor necrosis factor α production by newborn mononuclear cells in response to lipopolysaccharide. Infect. Immun.72(3), 1223–1229 (2004).
  • Nitsche A, Zhang M, Clauss T, Siegert W, Brune K, Pahl A. Cytokine profiles of cord and adult blood leukocytes: differences in expression are due to differences in expression and activation of transcription factors. BMC Immunol.8, 18 (2007).
  • Firth MA, Shewen PE, Hodgins DC. Passive and active components of neonatal innate immune defenses. Anim. Health Res. Rev.6(2), 143–158 (2005).
  • Jones CA, Holloway JA, Warner JO. Phenotype of fetal monocytes and B lymphocytes during the third trimester of pregnancy. J. Reprod. Immunol.56(1–2), 45–60 (2002).
  • Carr R. Neutrophil production and function in newborn infants. Br. J. Haematol.110(1), 18–28 (2000).
  • Yost CC, Cody MJ, Harris ES et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood113(25), 6419–6427 (2009).
  • Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a Th2 phenomenon? Immunol. Today14(7), 353–356 (1993).
  • Adkins B. Development of neonatal Th1/Th2 function. Int. Rev. Immunol.19(2–3), 157–171 (2000).
  • Prescott SL, Macaubas C, Smallacombe T, Holt BJ, Sly PD, Holt PG. Development of allergen-specific T-cell memory in atopic and normal children. Lancet353(9148), 196–200 (1999).
  • Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J. Immunol.168(2), 554–561 (2002).
  • Viemann D, Dubbel G, Schleifenbaum S, Harms E, Sorg C, Roth J. Expression of Toll-like receptors in neonatal sepsis. Pediatr. Res.58(4), 654–659 (2005).
  • Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature383(6599), 443–446 (1996).
  • Li Q, Verma IM. NF-κB regulation in the immune system. Nat. Rev. Immunol.2(10), 725–734 (2002).
  • Sadowski HB, Shuai K, Darnell JE Jr, Gilman MZ. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science261(5129), 1739–1744 (1993).
  • Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol.81(1), 1–5 (2007).
  • Abrahams VM. The role of the Nod-like receptor family in trophoblast innate immune responses. J. Reprod. Immunol.88(2), 112–117 (2011).
  • Yin Y, Yan Y, Jiang X et al. Inflammasomes are differentially expressed in cardiovascular and other tissues. Int. J. Immunopathol. Pharmacol.22(2), 311–322 (2009).
  • Lennartz MR, Cole FS, Shepherd VL, Wileman TE, Stahl PD. Isolation and characterization of a mannose-specific endocytosis receptor from human placenta. J. Biol. Chem.262(21), 9942–9944 (1987).
  • Chelvarajan RL, Collins SM, Doubinskaia IE et al. Defective macrophage function in neonates and its impact on unresponsiveness of neonates to polysaccharide antigens. J. Leukoc. Biol.75(6), 982–994 (2004).
  • Angelone DF, Wessles MR, Coughlin M et al. Innate immunity of the human newborn is polarised toward a high ratio of IL-6/TNF-α production in vitro and in-vivo. Pediatric Res.60(2), 205–209 (2006).
  • Burl S, Townend J, Njie-Jobe J et al. Age-dependent maturation of Toll-like receptor-mediated cytokine responses in Gambian infants. PLoS ONE6(4), e18185 (2011).
  • Levy O. Innate immunity of the human newborn: distinct cytokine responses to LPS and other Toll-like receptor agonists. J. Endotox. Res.11(2), 113–116 (2005).
  • Noakes PS, Hale J, Thomas R, Lane C, Devadason SG, Prescott SL. Maternal smoking is associated with impaired neonatal Toll-like-receptor-mediated immune responses. Eur. Res. J.28, 721–729 (2006).
  • Tulic MK, Hodder M, Forsberg A et al. Differences in innate immune function between allergic and nonallergic children: New insights into immune ontogeny. J. Allergy Clin. Immunol.127(2), 470–478 e1 (2011).
  • Yerkovich ST, Wikstrom ME, Suriyaarachchi D, Prescott SL, Upham JW, Holt PG. Postnatal development of monocyte cytokine responses to bacterial lipopolysaccharide. Pediatr. Res.62(5), 547–552 (2007).
  • Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J. Leukoc. Biol.81(3), 584–592 (2007).
  • Hasegawa K, Ichiyama T, Isumi H, Nakata M, Sase M, Furukawa S. NF-κB activation in peripheral blood mononuclear cells in neonatal asphyxia. Clin. Exp. Immunol.132, 261–264 (2003).
  • Sadeghi K, Berger A, Langgartner M et al. Immaturity of infection control in preterm and term newborns is associated with impaired Toll-like receptor signaling. J. Infect. Dis.195, 296–302 (2007).
  • Mold JE, Michaelsson J, Burt TD et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science322(5907), 1562–1565 (2008).
  • De Wit D, Tonon S, Olislagers V et al. Impaired responses to Toll-like receptor 4 and Toll-like receptor 3 ligands in human cord blood. J. Autoimmun.21, 277–281 (2003).
  • Edelson MB, Bagwell CE, Rozycki HJ. Circulating pro- and counterinflammatory cytokine levels and severity in necrotizing enterocolitis. Pediatrics103(4 Pt 1), 766–771 (1999).
  • Reichlin S. Neuroendocrine-immune interactions. N. Engl. J. Med.329(17), 1246–1253 (1993).
  • Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics50(4), 515–525 (1972).
  • Kavelaars A, Cats B, Visser GH et al. Ontogency of the responses of human peripheral blood T cells to glucocorticoids. Brain Behav. Immun.10(3), 288–297 (1996).
  • Barker DJP. The fetal origins of adult disease. Fetal. Mat. Med. Rev.6, 71–80 (1994).
  • Phillips DIW, Barker DJP, Fall CHD, Seckl JR, Whorwood CB, Wood PJ. Elevated plasma cortisol concentrations: a link between low birth weight and insulin resistance syndrome. J. Clin. Endocrinol. Metab.83, 757–760 (1998).
  • Pincus-Knackstedt MK, Joachim RA, Blois SM et al. Prenatal stress enhances susceptibility of murine adult offspring toward airway inflammation. J. Immunol.177(12), 8484–8492 (2006).
  • Ege MJ, Herzum I, Buchele G et al. Prenatal exposure to a farm environment modifies atopic sensitization at birth. J. Allergy Clin. Immunol.122(2), 407–412, e1–e4 (2008).
  • Phillips DI. External influences on the fetus and their long-term consequences. Lupus15(11), 794–800 (2006).
  • Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet J. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes40(Suppl. 2), 115–120 (1991).
  • Langley SC, Jackson AA. Increased systolic blood pressure in adult rats induced by fetal exposure to low protein diets. Clin. Sci.86, 217–222 (1994).
  • Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR. Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J. Clin. Invest.101, 2174–2181 (1998).
  • Jansson T, Lambert G. Effect of intrauterine growth restriction on blood pressure, glucose tolerance and sympathetic nervous system activity in the rat at 3–4 months of age. J. Hypertens.17, 1239–1248 (1999).
  • Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of Type 2 diabetes in the rat. Diabetes50, 2279–2286 (2001).
  • Douwes J, Cheng S, Travier N et al. Farm exposure in utero may protect against asthma, hay fever and eczema. Eur. Respir. J.32(3), 603–611 (2008).
  • Ege MJ, Bieli C, Frei R et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J. Allergy Clin. Immunol.117(4), 817–823 (2006).
  • Roduit C, Wohlgensinger J, Frei R et al. Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. J. Allergy Clin. Immunol.127(1), 179–185, 185 e171 (2011).
  • Strachan DP. Hay fever, hygiene, and household size. BMJ299(6710), 1259–1260 (1989).
  • Thornton CA, Macfarlane TV, Holt PG. The hygiene hypothesis revisited: role of materno–fetal interactions. Curr. Allergy Asthma Rep.10(6), 444–452 (2010).
  • Schaub B, Liu J, Hoppler S et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J. Allergy Clin. Immunol.123(4), 774–782 e775 (2009).
  • Pfefferle PI, Buchele G, Blumer N et al. Cord blood cytokines are modulated by maternal farming activities and consumption of farm dairy products during pregnancy: the PASTURE Study. J. Allergy Clin. Immunol.125(1), 108–115 e1–e3 (2010).
  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host–bacterial mutualism in the human intestine. Science307(5717), 1915–1920 (2005).
  • Sellon RK, Tonkonogy S, Schultz M et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun.66(11), 5224–5231 (1998).
  • Helgeland L, Brandtzaeg P. Development and function of intestinal B and T cells. Microbiol. Ecol. Health Dis.12(2), S110–S127 (2000).
  • Yamanaka T, Helgeland L, Farstad IN, Fukushima H, Midtvedt T, Brandtzaeg P. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer’s patches. J. Immunol.170(2), 816–822 (2003).
  • Guarner F, Bourdet-Sicard R, Brandtzaeg P et al. Mechanisms of disease: the hygiene hypothesis revisited. Nat. Clin. Pract. Gastroenterol. Hepatol.3(5), 275–284 (2006).
  • Bjorksten B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol.108(4), 516–520 (2001).
  • Vanderpool C, Yan F, Polk DB. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel Dis.14(11), 1585–1596 (2008).
  • van Baarlen P, Troost FJ, van Hemert S et al. Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc. Natl Acad. Sci. USA106(7), 2371–2376 (2009).
  • Roselli M, Finamore A, Nuccitelli S et al. Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of γδT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm. Bowel Dis.15(10), 1526–1536 (2009).
  • Kukkonen K, Savilahti E, Haahtela T et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol.119(1), 192–198 (2007).
  • Alfaleh K, Bassler D. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. (1), CD005496 (2008).
  • Lohsoonthorn V, Qiu C, Williams MA. Maternal serum C-reactive protein concentrations in early pregnancy and subsequent risk of preterm delivery. Clin. Biochem.40(5–6), 330–335 (2007).
  • Tjoa ML, van Vugt JM, Go AT, Blankenstein MA, Oudejans CB, van Wijk IJ. Elevated C-reactive protein levels during first trimester of pregnancy are indicative of preeclampsia and intrauterine growth restriction. J. Reprod. Immunol.59(1), 29–37 (2003).
  • Morales E, Guerra S, Garcia-Esteban R et al. Maternal C-reactive protein levels in pregnancy are associated with wheezing and lower respiratory tract infections in the offspring. Am. J. Obstet. Gynecol.204(2), 164 e161–169 (2011).
  • Bearfield C, Davenport ES, Sivapathasundaram V, Allaker RP. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG109(5), 527–533 (2002).
  • Madianos PN, Lieff S, Murtha AP et al. Maternal periodontitis and prematurity, Part II: maternal infection and fetal exposure. Obstet. Gynecol. Surv.58(7), 438–440 (2001).
  • Jeffcoat MK, Geurs NC, Reddy MS, Cliver SP, Goldenberg RL, Hauth JC. Periodontal infection and preterm birth: results of a prospective study. J. Am. Dent. Assoc.132(7), 875–880 (2001).
  • Dortbudak O, Eberhardt R, Ulm M, Persson GR. Periodontitis, a marker of risk in pregnancy for preterm birth. J. Clin. Periodontol.32(1), 45–52 (2005).
  • Offenbacher S, Katz V, Fertik G et al. Periodontal infection as a possible risk factor for preterm low birth weight. J. Periodontol.67(10 Suppl.), 1103–1113 (1996).
  • Goepfert AR, Jeffcoat MK, Andrews WW et al. Periodontal disease and upper genital tract inflammation in early spontaneous preterm birth. Obstet. Gynecol.104(4), 777–783 (2004).
  • Jared H, Boggess KA, Moss K et al. Fetal exposure to oral pathogens and subsequent risk for neonatal intensive care admission. J. Periodontol.80(6), 878–883 (2009).
  • Polyzos NP, Polyzos IP, Zavos A et al. Obstetric outcomes after treatment of periodontal disease during pregnancy: systematic review and meta-analysis. BMJ341, c7017 (2010).
  • Uppal A, Uppal S, Pinto A et al. The effectiveness of periodontal disease treatment during pregnancy in reducing the risk of experiencing preterm birth and low birth weight: a meta-analysis. J. Am. Dent. Assoc.141(12), 1423–1434 (2010).
  • Jeffcoat M, Parry S, Sammel M, Clothier B, Catlin A, Macones G. Periodontal infection and preterm birth: successful periodontal therapy reduces the risk of preterm birth. BJOG118(2), 250–256 (2011).
  • Klebanoff M, Searle K. The role of inflammation in preterm birth – focus on periodontitis. BJOG113(Suppl. 3), 43–45 (2006).
  • Holst D, Garnier Y. Preterm birth and inflammation – the role of genetic polymorphisms. Eur. J. Obstet. Gynecol. Reprod. Biol.141(1), 3–9 (2008).
  • Salminen A, Paananen R, Vuolteenaho R et al. Maternal endotoxin-induced preterm birth in mice: fetal responses in Toll-like receptors, collectins, and cytokines. Pediatr. Res.63(3), 280–286 (2008).
  • Jamieson DJ, Honein MA, Rasmussen SA et al. H1N1 2009 influenza virus infection during pregnancy in the USA. Lancet374(9688), 451–458 (2009).
  • Hardy JM, Azarowicz EN, Mannini A, Medearis DN Jr, Cooke RE. The effect of Asian influenza on the outcome of pregnancy, Baltimore, 1957–1958. Am. J. Public Health Nations Health51, 1182–1188 (1961).
  • Siegel M, Fuerst HT, Peress NS. Comparative fetal mortality in maternal virus diseases. A prospective study on rubella, measles, mumps, chicken pox and hepatitis. N. Engl. J. Med.274(14), 768–771 (1966).
  • Markenson GR, Yancey MK. Parvovirus B19 infections in pregnancy. Semin. Perinatol.22(4), 309–317 (1998).
  • O’Callaghan E, Sham P, Takei N, Glaver G, Murray RM. Schizophrenia after prenatal exposure to 1957 A2 influenza epidemic. Lancet337, 1248–1251 (1991).
  • Brown AS, Begg MD, Gravenstein S et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch. Gen. Psychiatry61(8), 774–780 (2004).
  • Jordan JA, Huff D, DeLoia JA. Placental cellular immune response in women infected with human parvovirus B19 during pregnancy. Clin. Diagn Lab.Immunol.8(2), 288–292 (2001).
  • Abrahams VM, Schaefer TM, Fahey JV et al. Expression and secretion of antiviral factors by trophoblast cells following stimulation by the TLR-3 agonist, poly(I:C). Hum. Reprod.21(9), 2432–2439 (2006).
  • Ilievski V, Lu SJ, Hirsch E. Activation of Toll-like receptors 2 or 3 and preterm delivery in the mouse. Reprod. Sci.14(4), 315–320 (2007).
  • Cardenas I, Mor G, Aldo P et al. Placental viral infection sensitizes to endotoxin-induced pre-term labor: a double hit hypothesis. Am. J. Reprod. Immunol.65(2), 110–117 (2011).
  • Cardenas I, Means RE, Aldo P et al. Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor. J. Immunol.185(2), 1248–1257 (2010).
  • Pereira L, Maidji E, McDonagh S, Tabata T. Insights into viral transmission at the uterine-placental interface. Trends Microbiol.13(4), 164–174 (2005).
  • Chaudhuri S, Lowen B, Chan G, Davey A, Riddell M, Guilbert LJ. Human cytomegalovirus interacts with Toll-like receptor 2 and CD14 on syncytiotrophoblasts to stimulate expression of TNFα mRNA and apoptosis. Placenta30(11), 994–1001 (2009).
  • World Health Organization. Africa Malaria Report. WHO, Geneva, Switzerland (2003).
  • Steketee RW, Wirima JJ, Campbell CC. Developing effective strategies for malaria prevention programs for pregnant African women. Am. J. Trop. Med. Hyg.55(1 Suppl.), 95–100 (1996).
  • Steketee RW, Nahlen BL, Parise ME, Menendez C. The burden of malaria in pregnancy in malaria-endemic areas. Am. J. Trop. Med. Hyg.64(1–2 Suppl.), 28–35 (2001).
  • Fried M, Duffy PE. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science272(5267), 1502–1504 (1996).
  • Schwarz NG, Adegnika AA, Breitling LP et al. Placental malaria increases malaria risk in the first 30 months of life. Clin. Infect. Dis.47(8), 1017–1025 (2008).
  • Fievet N, Varani S, Ibitokou S et al.Plasmodium falciparum exposure in utero, maternal age and parity influence the innate activation of foetal antigen presenting cells. Malar. J.8, 251 (2009).
  • Breitling LP, Fendel R, Mordmueller B, Adegnika AA, Kremsner PG, Luty AJ. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparumin utero. Infect. Immun.74(10), 5725–5729 (2006).
  • Dombrowski MP, Schatz M, Wise R et al. Asthma during pregnancy. Obstet. Gynecol.103(1), 5–12 (2004).
  • Demissie K, Breckenridge MB, Rhoads GG. Infant and maternal outcomes in the pregnancies of asthmatic women. Am. J. Respir. Crit. Care Med.158, 1091–1095 (1998).
  • Kallen B, Rydhstroem H, Aberg A. Asthma during pregnancy – a population based study. Eur. J. Epidemiol.16(2), 167–171 (2000).
  • Clifton V. Maternal asthma during pregnancy and fetal outcomes: potential mechanisms and possible solutions. Curr. Opin. Allergy Clin. Immunol.6(5), 307–311 (2006).
  • Clifton VL, Engel P, Smith R, Gibson P, Brinsmead M, Giles WB. Maternal and neonatal outcomes of pregnancies complicated by asthma in an Australian population. Aust. NZ J. Obstet. Gynaecol.49(6), 619–626 (2009).
  • Liu S, Wen SW, Demissie K, Marcoux S, Kramer MS. Maternal asthma and pregnancy outcomes: a retrospective cohort study. Am. J. Obstet. Gynecol.184(2), 90–96 (2001).
  • Murphy VE, Clifton VL, Gibson PG. Asthma exacerbations during pregnancy: incidence and association with adverse pregnancy outcomes. Thorax61(2), 169–176 (2006).
  • Lao TT, Huengsburg M. Labour and delivery in mothers with asthma. Eur. J. Obstet. Gynecol. Reprod. Biol.35(2–3), 183–190 (1990).
  • Enriquez R, Griffin MR, Carroll KN et al. Effect of maternal asthma and asthma control on pregnancy and perinatal outcomes. J. Allergy Clin. Immunol.120(3), 625–630 (2007).
  • Schatz M, Zeiger RS, Hoffman CP. Intrauterine growth is related to gestational pulmonary function in pregnant asthmatic women. Kaiser-Permanente Asthma and Pregnancy Study Group. Chest98(2), 389–392 (1990).
  • Bahna SL, Bjerkedal T. The course and outcome of pregnancy in women with bronchial asthma. Acta Allergol.27(5), 397–406 (1972).
  • Sears MR, Holdaway MD, Flannery EM, Herbison GP, Silva PA. Parental and neonatal risk factors for atopy, airway hyper-responsiveness, and asthma. Arch. Dis. Child.75(5), 392–398 (1996).
  • Murphy VE, Gibson PG, Giles WB et al. Maternal asthma is associated with reduced female fetal growth. Am. J. Respir. Crit. Care Med.168, 1317–1323 (2003).
  • Magnusson CGM. Cord serum IgE in relation to family history and as predictor of atopic disease in early infancy. Allergy43, 241–251 (1988).
  • Liu CA, Wang CL, Chuang H, Ou CY, Hsu TY, Yang KD. Prenatal prediction of infant atopy by maternal but not paternal total IgE levels. J. Allergy Clin. Immunol.112(5), 899–904 (2003).
  • Shah PS, Wegienka G, Havstad S, Johnson CC, Ownby DR, Zoratti EM. The relationship between cord blood immunoglobulin E levels and allergy-related outcomes in young adults. Ann. Allergy Asthma Immunol.106(3), 245–251 (2011).
  • Reece P, Thanendran A, Crawford L et al. Maternal allergy modulates cord blood hematopoietic progenitor Toll-like receptor expression and function. J. Allergy Clin. Immunol.127(2), 447–453 (2011).
  • Grzela K, Grzela T, Korczak-Kowalska G et al. Risk of allergy development correlates with IL-4 receptor expression on newborns’ monocytes and Th lymphocytes. Med. Sci. Monit.13(10), CR445–CR448 (2007).
  • Osei-Kumah A, Smith R, Clifton VL. Maternal and cord plasma cytokine and chemokine profile in pregnancies complicated by asthma. Cytokine43(2), 187–193 (2008).
  • Ponath PD, Qin S, Ringler DJ et al. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J. Clin. Invest.97(3), 604–612 (1996).
  • Friedlander SL, Jackson DJ, Gangnon RE et al. Viral infections, cytokine dysregulation and the origins of childhood asthma and allergic diseases. Pediatr. Infect. Dis. J.24(11 Suppl.), S170–S176, discussion S174–S175 (2005).
  • Copenhaver CC, Gern JE, Li Z et al. Cytokine response patterns, exposure to viruses, and respiratory infections in the first year of life. Am. J. Respir. Crit. Care Med.170(2), 175–180 (2004).
  • Macaubas C, de Klerk NH, Holt BJ et al. Association between antenatal cytokine production and the development of atopy and asthma at age 6 years. Lancet362(9391), 1192–1197 (2003).
  • Prescott SL, Noakes P, Chow BW et al. Presymptomatic differences in Toll-like receptor function in infants who have allergy. J. Allergy Clin. Immunol.391–399, 399 e1–e5 (2008).
  • Scott N, Hodyl N, Osei-Kumah A, Stark M, Smith R, Clifton V. The presence of maternal asthma during pregnancy suppresses the placental proinflammatory response to an immune challenge in vitro. Placenta32, 454–461 (2011).
  • Scott N, Hodyl N, Murphy V et al. Placental cytokine expression covaries with maternal asthma severity and fetal sex. J. Immunol.182(3), 1411–1420 (2009).
  • Msall ME, Buck GM, Rogers BT et al. Multivariate risks among extremely premature infants. J. Perinatol.14(1), 41–47 (1994).
  • Mwanyumba F, Inion I, Gaillard P, Mandaliya K, Praet M, Temmermen M. Placental inflammation and perinatal outcome. Eur. J. Obstet. Gynecol. Reprod. Biol.108, 164–170 (2003).
  • Moss TJ, Nitsos I, Kramer BW, Ikegami M, Newnham JP, Jobe AH. Intra-amniotic endotoxin induces lung maturation by direct effects on the developing respiratory tract in preterm sheep. Am. J. Obstet. Gynecol.187(4), 1059–1065 (2002).
  • Kallapur SG, Willet KE, Jobe AH, Ikegami M, Bachurski CJ. Intra-amniotic endotoxin: chorioamnionitis precedes lung maturation in preterm lambs. Am. J. Physiol. Lung Cell. Mol. Physiol.280(3), L527–L536 (2001).
  • Willet KE, Kramer BW, Kallapur SG et al. Intra-amniotic injection of IL-1 induces inflammation and maturation in fetal sheep lung. Am. J. Physiol. Lung Cell. Mol. Physiol.282(3), L411–L420 (2002).
  • Kallapur SG, Nitsos I, Moss TJ et al. IL-1 mediates pulmonary and systemic inflammatory responses to chorioamnionitis induced by lipopolysaccharide. Am. J. Respir. Crit. Care Med.179(10), 955–961 (2009).
  • Getahun D, Ananth CV, Kinzler WL. Risk factors for antepartum and intrapartum stillbirth: a population-based study. Am. J. Obstet. Gynecol.196(6), 499–507 (2007).
  • Goldenberg RL, Hauth JC, Andrews WW. Mechanisms of disease: intrauterine infection and preterm delivery. N. Eng. J. Med.342(20), 1500–1507 (2000).
  • Gibbs RS. The relationship between infections and adverse pregnancy outcomes: an overview. Ann. Periodontol.6(1), 153–163 (2001).
  • Marret S, Ancel PY, Marpeau L et al. Neonatal and 5-year outcomes after birth at 30–34 weeks of gestation. Obstet. Gynecol.110(1), 72–80 (2007).
  • Getahun D, Strickland D, Zeiger RS et al. Effect of chorioamnionitis on early childhood asthma. Arch. Pediatr. Adolesc. Med.164(2), 187–192 (2010).
  • Goepfert AR, Andrews WW, Carlo W et al. Umbilical cord plasma interleukin-6 concentrations in preterm infants and risk of neonatal morbidity. Am. J. Obstet. Gynecol.191(4), 1375–1381 (2004).
  • Salafia CM, Sherer DM, Spong CY et al. Fetal but not maternal serum cytokine levels correlate with histologic acute placental inflammation. Am J. Perinatol.14(7), 419–422 (1997).
  • Kumazaki K, Nakayama M, Yanagihara I, Suehara N, Wada Y. Immunohistochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum. Pathol.35(1), 47–54 (2004).
  • Vatten LJ, Skjaerven R. Offspring sex and pregnancy outcome by length of gestation. Early Hum. Dev.76(1), 47–54 (2004).
  • Di Renzo GC, Rosati A, Sarti RD, Cruciani L, Cutuli AM. Does fetal sex affect pregnancy outcome? Gend. Med.4(1), 19–30 (2007).
  • Engel PJ, Smith R, Brinsmead MW, Bowe SJ, Clifton VL. Male sex and pre-existing diabetes are independent risk factors for stillbirth. Aust. NZ J. Obstet. Gynaecol.48(4), 375–383 (2008).
  • Ingemarsson I. Gender aspects of preterm birth. BJOG110, 34–38 (2003).
  • Zeitlin J, Saurel-Cubizolles MJ, De Mouzon J. Fetal sex and preterm birth: are males at greater risk? Hum. Reprod.17, 2762–2768 (2002).
  • Stark M, Hodyl N, Wright I, Clifton V. The Influence of sex and antenatal betamethasone exposure on vasoconstrictors and the preterm microvasculature. Fetal Neonat. Med. DOI:10.3109/14767058.2011.569618 (2011) (Epub ahead of print).
  • Stark MJ, Clifton VL, Wright IMR. Sex-specific differences in peripheral microvascular blood flow in preterm infants. Pediatr. Res.63(4), 415–419 (2008).
  • Stark MJ, Clifton VL, Wright IMR. Microvascular blood flow, clinical illness severity and cardiovascular function in preterm’s. Arch. Dis. Child Fetal Neonat. Ed.93, F271–F274 (2008).
  • Stark M, Clifton V, Wright I. Carbon monoxide is a significant mediator of cardiovascular status following preterm birth. Pediatrics124(1), 277–284 (2009).
  • Stark MJ, Wright IMR, Clifton VL. Sex specific alterations in placental 11β-hydroxysteroid dehydrogenase 2 activity and early postnatal clinical course following antenatal betamethasone Am. J. Physiol. Regul. Integr. Comp. Physiol.297(2), R510–R514 (2009).
  • Fameli M, Kitraki E, Stylianopoulou F. Effects of hyperactivity of the maternal hypothalamic–pituitary–adrenal (HPA) axis during pregnancy on the development of the HPA axis and brain monoamines of the offspring. J. Dev. Neurosci.112, 651–659 (1994).
  • Goatz F, Doarner G, Malz U et al. Short- and long-term effects of perinatal interleukin-1β application in rats. Neuroendocrinology58, 344–351 (1993).
  • McCormick CM, Smythe JW, Sharma S, Meaney MJ. Sex-specific effects of prenatal stress on hypothalamic–pituitaryadrenal responses to stress and brain glucocorticoid receptor density in adult rats. Brain Res.84, 55–61 (1995).
  • Gotz F, Dorner G, Malz U et al. Short- and long-term effects of perinatal interleukin-1 β-application in rats. Neuroendocrinology58(3), 344–351 (1993).
  • Zhang Y, Cazakoff BN, Thai CA, Howland JG. Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats. Neuropharmacology DOI:10.1016/j.neuropharm.2011.02.022 (2011) (Epub ahead of print).
  • Clifton VL, Vanderlelie J, Perkins AV. Increased anti-oxidant enzyme activity and biological oxidation in placentae of pregnancies complicated by maternal asthma. Placenta26(10), 773–779 (2005).
  • Schroder J, Kahlke V, Staubach KH, Zabel P, Stuber F. Gender differences in human sepsis. Arch. Surg.133, 1200–1205 (1998).
  • Imahara SD, Jelacic S, Junker CE, O’Keefe GE. The influence of gender on human innate immunity. Surgery138, 275–282 (2005).
  • Spolarics Z. The X-files of inflammation: cellular mosaicism of X-linked polymorphic genes and the female advantage in the host response to injury and infection. Shock27(6), 597–604 (2007).
  • Yeganegi M, Watson CS, Martins A et al. Effect of Lactobacillus rhamnosus GR-1 supernatant and fetal sex on lipopolysaccharide-induced cytokine and prostaglandin-regulating enzymes in human placental trophoblast cells: implications for treatment of bacterial vaginosis and prevention of preterm labor. Am. J. Obstet. Gynecol.200(5), e1–e8 (2009).
  • Stevenson DK, Verter J, Fanaroff AA. Sex differences in outcomes of very low birthweight infants: the newborn male disadvantage. Arch. Dis. Childhood Fetal Neonat. Ed.83, F182–F185 (2000).
  • Ingemarrsson I. Gender aspects of preterm birth. BJOG110(Suppl. 20), 34–38 (2003).
  • Ghidini A, Salafia CM. Histologic placental lesions in women with recurrent preterm delivery. Acta. Obstet. Gynecol. Scand.84(6), 547–550 (2005).
  • Goldenberg RL, Andrews WW, Faye-Petersen OM, Goepfert AR, Cliver SP, Hauth JC. The Alabama Preterm Birth Study: intrauterine infection and placental histologic findings in preterm births of males and females less than 32 weeks. Am. J. Obstet. Gynecol.195(6), 1533–1537 (2006).
  • Marzi M, Vigano A, Trabattoni D et al. Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin. Exp. Immunol.106(1), 127–133 (1996).
  • Skinner NA, MacIsaac CM, Hamilton JA, Visvanathan K. Regulation of Toll-like receptor (TLR)2 and TLR4 on CD14dimCD16+ monocytes in response to sepsis-related antigens. Clin. Exp. Immunol.141(2), 270–278 (2005).
  • Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet373(9678), 1905–1917 (2009).
  • Silverman MN, Sternberg EM. Neuroendocrine–immune interactions in rheumatoid arthritis: mechanisms of glucocorticoid resistance. Neuroimmunomodulation15(1), 19–28 (2008).
  • Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Ann. Rev. Immunol.20, 125–163 (2002).
  • National Institutes of Health. The effect of antenatal steroids for fetal maturation on perinatal outcomes-interim draft statement. NIH Consensus Statement12(2), 1–24 (1994).
  • Willet KE, Jobe AH, Ikegami M et al. Postnatal lung function after prenatal steroid treatment in sheep: effect of gender. Pediatr. Res.42, 885–892 (1997).
  • Weitzel HK, Lorenz U, Kipper B. Clinical aspects of antenatal glucocorticoid treatment for prevention of neonatal respiratory distress syndrome. J. Perinat. Med.15, 441–446 (1987).
  • Kramer BW. Antenatal betamethasone changes cord blood monocyte responses to endotoxin in preterm lambs. Pediatr. Res.55, 764–768 (2004).
  • Kallapur SG, Kramer BW, Moss TJ. Maternal glucocorticoids increase endotoxin-induced lung inflammation in preterm lambs. Am. J. Physiol. Lung Cell. Mol. Physiol.284, L633–L642 (2003).
  • Turner JD, Muller CP. Structure of the glucocorticoid receptor (NR3C1) gene untranslated region: identification, and tissue distribution of multiple new human exon 1. J. Mol. Endocrinol.35(2), 283–292 (2005).
  • Presul E. Identification, tissue expression, and glucocorticoid responsiveness of alternative first exons of the human glucocorticoid receptor. J. Mol. Endocrinol.38(1–2), 79–90 (2007).
  • Geng CD, Vedeckis WV. Steroid-responsive sequences in the human glucocorticoid receptor gene 1A promoter. Mol. Endocrinol.18(4), 912–924 (2004).
  • Purton JF. Expression of the glucocorticoid receptor from the 1A promoter correlates with T lymphocyte sensitivity to glucocorticoid-induced cell death. J. Immunol.173(6), 3816–3824 (2004).
  • Johnson RF, Rennie N, Murphy V, Zakar T, Clifton V, Smith R. Expression of glucocorticoid receptor mRNA transcripts in the human placenta at term. J. Clin. Endocrinol. Metab.93(12), 4887–4893 (2008).
  • Turner JD. Highly individual methylation patterns of alternative glucocorticoid receptor promoters suggest individualized epigenetic regulatory mechanisms. Nucleic Acids Res.36(22), 7207–7218 (2008).
  • Oberlander TF. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics3(2), 97–106 (2008).
  • van Bel F, Heijnen CJ. Perinatal programming and reprogramming by glucocorticoid therapy and perinatal stress. Semin. Fetal Neonatal. Med.14(3), 127–129 (2009).
  • Hodyl NA, Stark M, Osei-Kumah A, Bowman M, Gibson P, Clifton VL. Fetal glucocorticoid regulated pathways are not affected by inhaled corticosteroid use for asthma during pregnancy. Am. J. Respir. Crit. Care Med.183(6), 716–722 (2010).
  • Fritz JH, Le Bourhis L, Sellge G et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity26(4), 445–459 (2007).
  • Stout RD, Bottomly K. Antigen-specific activation of effector macrophages by IFN-γ producing (TH1) T cell clones. Failure of IL-4-producing (TH2) T cell clones to activate effector function in macrophages. J. Immunol.142(3), 760–765 (1989).
  • Duffield JS. The inflammatory macrophage: a story of Jekyll and Hyde. Clin. Sci. (Lond.)104(1), 27–38 (2003).
  • Kim KD, Zhao J, Auh S et al. Adaptive immune cells temper initial innate responses. Nat. Med.13(10), 1248–1252 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.