128
Views
15
CrossRef citations to date
0
Altmetric
Review

Systemic lupus erythematosus, regulatory T cells and pregnancy

, , &
Pages 635-648 | Published online: 10 Jan 2014

References

  • D’cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet369(9561), 587–596 (2007).
  • Danchenko N, Satia JA, Anthony MS. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus15(5), 308–318 (2006).
  • Nelson-Piercy C. Handbook of Obstetric Medicine (Third Edition). Informa Healthcare, London, UK, 140–145 (2006).
  • Madazli R, Bulut B, Erenel H, Gezer A, Guralp O. Systemic lupus erythematosus and pregnancy. J. Obstet. Gynaecol.30(1), 17–20 (2010).
  • Smyth A, Oliveira GH, Lahr BD, Bailey KR, Norby SM, Garovic VD. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin. J. Am. Soc. Nephrol.5(11), 2060–2068 (2010).
  • Dorling J. Centre for Maternal and Child Enquiries (CMACE) Perinatal Mortality 2008: United Kingdom. CMACE, London, UK (2010).
  • Kontaki E, Boumpas DT. Innate immunity in systemic lupus erythematosus: sensing endogenous nucleic acids. J. Autoimmun.35(3), 206–211 (2010).
  • Veenstra Van Nieuwenhoven AL, Heineman MJ, Faas MM. The immunology of successful pregnancy. Hum. Reprod. Update9(4), 347–357 (2003).
  • Ohkura N, Sakaguchi S. Regulatory T cells: roles of T cell receptor for their development and function. Semin. Immunopathol.32(2), 95–106 (2010).
  • Barrett JH, Brennan P, Fiddler M, Silman AJ. Does rheumatoid arthritis remit during pregnancy and relapse postpartum? Results from a nationwide study in the United Kingdom performed prospectively from late pregnancy. Arthritis Rheum.42(6), 1219–1227 (1999).
  • Finkelsztejn A, Brooks JB, Paschoal FM Jr, Fragoso YD. What can we really tell women with multiple sclerosis regarding pregnancy? A systematic review and meta-analysis of the literature. BJOG118(7), 790–797 (2011).
  • Medawar PB. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. 7, 320–338 (1953).
  • Chaouat G, Kolb JP, Wegmann TG. The murine placenta as an immunological barrier between the mother and the fetus. Immunol. Rev.75, 31–60 (1983).
  • Luppi P. How immune mechanisms are affected by pregnancy. Vaccine21(24), 3352–3357 (2003).
  • Lyall F. The human placental bed revisited. Placenta23(8–9), 555–562 (2002).
  • Yoshinaga K. Research on blastocyst implantation essential factors (BIEFs). Am. J. Reprod. Immunol.63(6), 413–424 (2010).
  • Dimitriadis E, Nie G, Hannan NJ, Paiva P, Salamonsen LA. Local regulation of implantation at the human fetal–maternal interface. Int. J. Dev. Biol.54(2–3), 313–322 (2010).
  • Moffett-King A. Natural killer cells and pregnancy. Nat. Rev. Immunol.2(9), 656–663 (2002).
  • Abrahams VM, Kim YM, Straszewski SL, Romero R, Mor G. Macrophages and apoptotic cell clearance during pregnancy. Am. J. Reprod. Immunol.51(4), 275–282 (2004).
  • Tabiasco J, Rabot M, Aguerre-Girr M et al. Human decidual NK cells: unique phenotype and functional properties – a review. Placenta27(Suppl. A), S34–S39 (2006).
  • Cartwright JE, Fraser R, Leslie K, Wallace AE, James JL. Remodelling at the maternal–fetal interface: relevance to human pregnancy disorders. Reproduction140(6), 803–813 (2010).
  • Nagamatsu T, Schust DJ. The contribution of macrophages to normal and pathological pregnancies. Am. J. Reprod. Immunol.63(6), 460–471 (2010).
  • Mizuno M, Aoki K, Kimbara T. Functions of macrophages in human decidual tissue in early pregnancy. Am. J. Reprod. Immunol.31(4), 180–188 (1994).
  • Heikkinen J, Mottonen M, Komi J, Alanen A, Lassila O. Phenotypic characterization of human decidual macrophages. Clin. Exp. Immunol.131(3), 498–505 (2003).
  • Heikkinen J, Mottonen M, Alanen A, Lassila O. Phenotypic characterization of regulatory T cells in the human decidua. Clin. Exp. Immunol.136(2), 373–378 (2004).
  • Munn DH, Zhou M, Attwood JT et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science281(5380), 1191–1193 (1998).
  • Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am. J. Pathol.174(5), 1959–1971 (2009).
  • Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens63(1), 1–12 (2004).
  • Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol.30(6), 1538–1543 (2000).
  • Walker MR, Kasprowicz DJ, Gersuk VH et al. Induction of FOXP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J. Clin. Invest.112(9), 1437–1443 (2003).
  • Stephens LA, Mottet C, Mason D, Powrie F. Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro.Eur. J. Immunol.31(4), 1247–1254 (2001).
  • Hara M, Kingsley CI, Niimi M et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo.J. Immunol.166(6), 3789–3796 (2001).
  • Fontenot JD, Gavin MA, Rudensky AY. FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4(4), 330–336 (2003).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FOXP3. Science299(5609), 1057–1061 (2003).
  • Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol.4(4), 337–342 (2003).
  • Roncador G, Brown PJ, Maestre L et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur. J. Immunol.35(6), 1681–1691 (2005).
  • Powell BR, Buist NR, Stenzel P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr.100(5), 731–737 (1982).
  • Seddiki N, Santner-Nanan B, Martinson J et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med.203(7), 1693–1700 (2006).
  • Liu W, Putnam AL, Xu-Yu Z et al. CD127 expression inversely correlates with FOXP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med.203(7), 1701–1711 (2006).
  • Hartigan-O’Connor DJ, Poon C, Sinclair E, Mccune JM. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor α chain (CD127), allowing consistent identification and sorting of live cells. J. Immunol. Methods319(1–2), 41–52 (2007).
  • Seddiki N, Santner-Nanan B, Tangye SG et al. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood107(7), 2830–2838 (2006).
  • Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral circulating compartment of natural naive CD4 Tregs. J. Clin. Invest.115(7), 1953–1962 (2005).
  • Fritzsching B, Oberle N, Pauly E et al. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood108(10), 3371–3378 (2006).
  • Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat. Rev. Immunol.8(7), 523–532 (2008).
  • Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol.10(7), 490–500 (2010).
  • Miyara M, Yoshioka Y, Kitoh A et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FOXP3 transcription factor. Immunity30(6), 899–911 (2009).
  • Ito M, Nakashima A, Hidaka T et al. A role for IL-17 in induction of an inflammation at the fetomaternal interface in preterm labour. J. Reprod. Immunol.84(1), 75–85 (2010).
  • Mjosberg J, Berg G, Jenmalm MC, Ernerudh J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol. Reprod.82(4), 698–705 (2010).
  • Tilburgs T, Roelen DL, Van Der Mast BJ et al. Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(-) T-cells in decidua and maternal blood during human pregnancy. Placenta27(Suppl. A), S47–S53 (2006).
  • Mold JE, Michaelsson J, Burt TD et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science322(5907), 1562–1565 (2008).
  • Takahata Y, Nomura A, Takada H et al. CD25+CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (FOXP3) gene. Exp. Hematol.32(7), 622–629 (2004).
  • Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol.5(3), 266–271 (2004).
  • Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol.178(4), 2572–2578 (2007).
  • Robertson SA, Guerin LR, Moldenhauer LM, Hayball JD. Activating T regulatory cells for tolerance in early pregnancy – the contribution of seminal fluid. J. Reprod. Immunol.83(1–2), 109–116 (2009).
  • Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum. Reprod. Update15(5), 517–535 (2009).
  • Schumacher A, Brachwitz N, Sohr S et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal–maternal interface during early human pregnancy. J. Immunol.182(9), 5488–5497 (2009).
  • Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a Th2 phenomenon? Immunol. Today14(7), 353–356 (1993).
  • Raghupathy R. Th1-type immunity is incompatible with successful pregnancy. Immunol. Today18(10), 478–482 (1997).
  • Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF 3rd, Petraglia F. Inflammation and pregnancy. Reprod. Sci.16(2), 206–215 (2009).
  • Chaouat G, Ledee-Bataille N, Dubanchet S, Zourbas S, Sandra O, Martal J. Th1/Th2 paradigm in pregnancy: paradigm lost? Cytokines in pregnancy/early abortion: reexamining the Th1/Th2 paradigm. Int. Arch. Allergy. Immunol.134(2), 93–119 (2004).
  • Bates MD, Quenby S, Takakuwa K, Johnson PM, Vince GS. Aberrant cytokine production by peripheral blood mononuclear cells in recurrent pregnancy loss? Hum. Reprod.17(9), 2439–2444 (2002).
  • Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology112(1), 38–43 (2004).
  • Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod.10(5), 347–353 (2004).
  • Chirico DEA. Predictors of pregnancy complications in women with systemic lupus erythematosus. BJOG116, 1407–1408 (2009).
  • Xiong H, Zhou C, Qi G. Proportional changes of CD4+CD25+FOXP3+ regulatory T cells in maternal peripheral blood during pregnancy and labor at term and preterm. Clin. Invest. Med.33(6), E422 (2010).
  • Mjosberg J, Svensson J, Johansson E et al. Systemic reduction of functionally suppressive CD4dimCD25highFOXP3+ Tregs in human second trimester pregnancy is induced by progesterone and 17β-estradiol. J. Immunol.183(1), 759–769 (2009).
  • Leber A, Teles A, Zenclussen AC. Regulatory T cells and their role in pregnancy. Am. J. Reprod. Immunol.63(6), 445–459 (2010).
  • Crome SQ, Wang AY, Levings MK. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin. Exp. Immunol.159(2), 109–119 (2010).
  • Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol.63(6), 601–610 (2010).
  • Akbar AN, Vukmanovic-Stejic M, Taams LS, Macallan DC. The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat. Rev. Immunol.7(3), 231–237 (2007).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor FOXP3. J. Exp. Med.198(12), 1875–1886 (2003).
  • Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature441(7090), 235–238 (2006).
  • Sharma MD, Hou DY, Liu Y et al. Indoleamine 2,3-dioxygenase controls conversion of FOXP3+ Tregs to Th17-like cells in tumor-draining lymph nodes. Blood113(24), 6102–6111 (2009).
  • Nakashima A, Ito M, Yoneda S, Shiozaki A, Hidaka T, Saito S. Circulating and decidual Th17 cell levels in healthy pregnancy. Am. J. Reprod. Immunol.63(2), 104–109 (2010).
  • Santner-Nanan B, Peek MJ, Khanam R et al. Systemic increase in the ratio between FOXP3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol.183(11), 7023–7030 (2009).
  • Crispin JC, Kyttaris V, Juang YT, Tsokos GC. Systemic lupus erythematosus: new molecular targets. Ann. Rheum. Dis.66(Suppl. 3), iii65–iii69 (2007).
  • Isenberg DA, Manson JJ, Ehrenstein MR, Rahman A. Fifty years of anti-ds DNA antibodies: are we approaching journey’s end? Rheumatology (Oxford)46(7), 1052–1056 (2007).
  • Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J. Exp. Med.161(1), 72–87 (1985).
  • Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann. Rev. Immunol.22, 531–562 (2004).
  • Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med.184(2), 387–396 (1996).
  • Hayashi T, Hasegawa K, Adachi C. Elimination of CD4(+)CD25(+) T cell accelerates the development of glomerulonephritis during the preactive phase in autoimmune-prone female NZB x NZW F mice. Int. J. Exp. Pathol.86(5), 289–296 (2005).
  • Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML, Daikh DI. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J. Immunol.177(3), 1451–1459 (2006).
  • Hsu WT, Suen JL, Chiang BL. The role of CD4CD25 T cells in autoantibody production in murine lupus. Clin. Exp. Immunol.145(3), 513–519 (2006).
  • Monk CR, Spachidou M, Rovis F et al. MRL/Mp CD4+, CD25- T cells show reduced sensitivity to suppression by CD4+,CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum.52(4), 1180–1184 (2005).
  • Brunkow ME, Jeffery EW, Hjerrild KA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet.27(1), 68–73 (2001).
  • Riemekasten G, Langnickel D, Enghard P et al. Intravenous injection of a D1 protein of the Smith proteins postpones murine lupus and induces type 1 regulatory T cells. J. Immunol.173(9), 5835–5842 (2004).
  • Kang HK, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J. Immunol.178(12), 7849–7858 (2007).
  • Horwitz DA. Regulatory T cells in systemic lupus erythematosus: past, present and future. Arthritis Res. Ther.10(6), 227 (2008).
  • Barath S, Aleksza M, Tarr T, Sipka S, Szegedi G, Kiss E. Measurement of natural (CD4+CD25high) and inducible (CD4+IL-10+) regulatory T cells in patients with systemic lupus erythematosus. Lupus16(7), 489–496 (2007).
  • Crispin JC, Martinez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J. Autoimmun.21(3), 273–276 (2003).
  • Barath S, Soltesz P, Kiss E et al. The severity of systemic lupus erythematosus negatively correlates with the increasing number of CD4+CD25(high)FOXP3+ regulatory T cells during repeated plasmapheresis treatments of patients. Autoimmunity40(7), 521–528 (2007).
  • Miyara M, Amoura Z, Parizot C et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J. Immunol.175(12), 8392–8400 (2005).
  • Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J. Immunol.178(4), 2579–2588 (2007).
  • Bonelli M, Savitskaya A, Von Dalwigk K et al. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int. Immunol.20(7), 861–868 (2008).
  • Zhang B, Zhang X, Tang FL, Zhu LP, Liu Y, Lipsky PE. Clinical significance of increased CD4+CD25-FOXP3+ T cells in patients with new-onset systemic lupus erythematosus. Ann. Rheum. Dis.67(7), 1037–1040 (2008).
  • Venigalla RK, Tretter T, Krienke S et al. Reduced CD4+, CD25- T cell sensitivity to the suppressive function of CD4+, CD25high, CD127-/low regulatory T cells in patients with active systemic lupus erythematosus. Arthritis Rheum.58(7), 2120–2130 (2008).
  • Franz B, Fritzsching B, Riehl A et al. Low number of regulatory T cells in skin lesions of patients with cutaneous lupus erythematosus. Arthritis Rheum.56(6), 1910–1920 (2007).
  • Yates J, Whittington A, Mitchell P, Lechler RI, Lightstone L, Lombardi G. Natural regulatory T cells: number and function are normal in the majority of patients with lupus nephritis. Clin. Exp. Immunol.153(1), 44–55 (2008).
  • Mesquita D, de Melo Cruvinel W, Araujo J et al. Systemic lupus erythematosus exhibits a dynamic and continuum spectrum of effector/regulatory T cells. Scand. J. Rheumatol.40(1), 41–50 (2011).
  • Klein S, Kretz CC, Krammer PH, Kuhn A. CD127(low/-) and FOXP3(+) expression levels characterize different regulatory T-cell populations in human peripheral blood. J. Invest. Dermatol.130(2), 492–499 (2010).
  • Sfikakis PP, Souliotis VL, Fragiadaki KG, Moutsopoulos HM, Boletis JN, Theofilopoulos AN. Increased expression of the FOXP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin. Immunol.123(1), 66–73 (2007).
  • Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188(2), 287–296 (1998).
  • Takahashi T, Kuniyasu Y, Toda M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol.10(12), 1969–1980 (1998).
  • Oberle N, Eberhardt N, Falk CS, Krammer PH, Suri-Payer E. Rapid suppression of cytokine transcription in human CD4+CD25 T cells by CD4+FOXP3+ regulatory T cells: independence of IL-2 consumption, TGF-β, and various inhibitors of TCR signaling. J. Immunol.179(6), 3578–3587 (2007).
  • Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity21(4), 589–601 (2004).
  • Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood109(5), 2058–2065 (2007).
  • Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity30(5), 636–645 (2009).
  • Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. FOXP3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl Acad. Sci. USA105(29), 10113–10118 (2008).
  • DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM. Autoantigen-specific TGFβ-induced FOXP3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J. Immunol.179(7), 4685–4693 (2007).
  • Xing Q, Wang B, Su H, Cui J, Li J. Elevated Th17 cells are accompanied by FOXP3+ Treg cells decrease in patients with lupus nephritis. Rheumatol. Int. DOI: 10.1007/s00296-010-1771-0 (2011) (Epub ahead of print).
  • Ma J, Yu J, Tao X, Cai L, Wang J, Zheng SG. The imbalance between regulatory and IL-17-secreting CD4+ T cells in lupus patients. Clin. Rheumatol.29(11), 1251–1258 (2010).
  • Becker-Merok A, Eilertsen GO, Nossent JC. Levels of transforming growth factor-β are low in systemic lupus erythematosus patients with active disease. J. Rheumatol.37(10), 2039–2045 (2010).
  • Aggarwal N, Raveendran A, Suri V, Chopra S, Sikka P, Sharma A. Pregnancy outcome in systemic lupus erythematosus: Asia’s largest single centre study. Arch. Gynecol. Obstet.284(2), 281–285 (2010).
  • Clowse ME, Jamison M, Myers E, James AH. A national study of the complications of lupus in pregnancy. Am. J. Obstet. Gynecol.199(2), 127 e121–e126 (2008).
  • Ogishima D, Matsumoto T, Nakamura Y, Yoshida K, Kuwabara Y. Placental pathology in systemic lupus erythematosus with antiphospholipid antibodies. Pathol. Int.50(3), 224–229 (2000).
  • Costa AM, Maximiano EB, Avvad-Portari E, Jesus NR, Levy RA, Porto LC. Contractile cells and fibrillin-1 distribution is disturbed in terminal villi of placentae from patients with preeclampsia and systemic lupus erythematosus. Placenta27(2–3), 234–243 (2006).
  • Nayar R, Lage JM. Placental changes in a first trimester missed abortion in maternal systemic lupus erythematosus with antiphospholipid syndrome; a case report and review of the literature. Hum. Pathol.27(2), 201–206 (1996).
  • Ornoy A, Chen L, Silver RM, Miller RK. Maternal autoimmune diseases and immunologically induced embryonic and fetoplacental damage. Birth Defects Res. A. Clin. Mol. Teratol.70(6), 371–381 (2004).
  • Ornoy A, Yacobi S, Matalon ST et al. The effects of antiphospholipid antibodies obtained from women with SLE/APS and associated pregnancy loss on rat embryos and placental explants in culture. Lupus12(7), 573–578 (2003).
  • Schwartz N, Shoenfeld Y, Barzilai O et al. Reduced placental growth and hCG secretion in vitro induced by antiphospholipid antibodies but not by anti-Ro or anti-La: studies on sera from women with SLE/PAPS. Lupus16(2), 110–120 (2007).
  • Clowse ME. Lupus activity in pregnancy. Rheum. Dis. Clin. North Am.33(2), 237–252, v (2007).
  • Gupta R, Deepanjali S, Kumar A et al. A comparative study of pregnancy outcomes and menstrual irregularities in northern Indian patients with systemic lupus erythematosus and rheumatoid arthritis. Rheumatol. Int.30(12), 1581–1585 (2010).
  • Clowse ME, Magder LS, Witter F, Petri M. The impact of increased lupus activity on obstetric outcomes. Arthritis Rheum.52(2), 514–521 (2005).
  • Wang WJ, Hao CF, Qu QL, Wang X, Qiu LH, Lin QD. The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Hum. Reprod.25(10), 2591–2596 (2010).
  • Arruvito L, Sotelo AI, Billordo A, Fainboim L. A physiological role for inducible FOXP3(+) Treg cells. Lessons from women with reproductive failure. Clin. Immunol.136(3), 432–441 (2010).
  • Liu YS, Wu L, Tong XH et al. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am. J. Reprod. Immunol.65(5), 503–511 (2010).
  • Yang H, Qiu L, Chen G, Ye Z, Lu C, Lin Q. Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil. Steril.89(3), 656–661 (2008).
  • Wang WJ, Hao CF, Yi L et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol.84(2), 164–170 (2010).
  • Shima T, Sasaki Y, Itoh M et al. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol.85(2), 121–129 (2010).
  • Zenclussen AC, Gerlof K, Zenclussen ML et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am. J. Pathol.166(3), 811–822 (2005).
  • Petri M. Hopkins Lupus Pregnancy Center: 1987 to 1996. Rheum. Dis. Clin. North. Am.23(1), 1–13 (1997).
  • Chakravarty EF, Colon I, Langen ES et al. Factors that predict prematurity and preeclampsia in pregnancies that are complicated by systemic lupus erythematosus. Am. J. Obstet. Gynecol.192(6), 1897–1904 (2005).
  • Crocker I. Gabor Than Award Lecture 2006: pre-eclampsia and villous trophoblast turnover: perspectives and possibilities. Placenta28(Suppl. A), S4–S13 (2007).
  • Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of the immune system in preeclampsia. Mol. Asp. Med.28(2), 192–209 (2007).
  • Hu D, Chen Y, Zhang W, Wang H, Wang Z, Dong M. Alteration of peripheral CD4+CD25+ regulatory T lymphocytes in pregnancy and pre-eclampsia. Acta. Obstet. Gynecol. Scand.87(2), 190–194 (2008).
  • Paeschke S, Chen F, Horn N et al. Pre-eclampsia is not associated with changes in the levels of regulatory T cells in peripheral blood. Am. J. Reprod. Immunol.54(6), 384–389 (2005).
  • Steinborn A, Haensch GM, Mahnke K et al. Distinct subsets of regulatory T cells during pregnancy: is the imbalance of these subsets involved in the pathogenesis of preeclampsia? Clin. Immunol.129(3), 401–412 (2008).
  • Sasaki Y, Darmochwal-Kolarz D, Suzuki D et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin. Exp. Immunol.149(1), 139–145 (2007).
  • Toldi G, Rigo J Jr, Stenczer B, Vasarhelyi B, Molvarec A. Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am. J. Reprod. Immunol.66(3), 223–229 (2011).
  • Foidart JM, Schaaps JP, Chantraine F, Munaut C, Lorquet S. Dysregulation of anti-angiogenic agents (sFlt-1, PLGF, and sEndoglin) in preeclampsia – a step forward but not the definitive answer. J. Reprod. Immunol.82(2), 106–111 (2009).
  • Lamarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr. Hypertens. Rep.9(6), 480–485 (2007).
  • Maynard SE, Min JY, Merchan J et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest.111(5), 649–658 (2003).
  • Qazi U, Lam C, Karumanchi SA, Petri M. Soluble Fms-like tyrosine kinase associated with preeclampsia in pregnancy in systemic lupus erythematosus. J. Rheumatol.35(4), 631–634 (2008).
  • Motomura Y, Kanbayashi H, Khan WI et al. The gene transfer of soluble VEGF type I receptor (Flt-1) attenuates peritoneal fibrosis formation in mice but not soluble TGF-β type II receptor gene transfer. Am. J. Phys.288(1), G143–150 (2005).
  • Salmon JE, Heuser C, Triebwasser M et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med.8(3), e1001013 (2011).
  • Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J. Exp. Med.203(9), 2165–2175 (2006).
  • Forger F, Marcoli N, Gadola S, Moller B, Villiger PM, Ostensen M. Pregnancy induces numerical and functional changes of CD4+CD25high regulatory T cells in patients with rheumatoid arthritis. Ann. Rheum. Dis.67(7), 984–990 (2008).
  • Forger F, Villiger PM, Ostensen M. Pregnancy in patients with ankylosing spondylitis: do regulatory T cells play a role? Arthritis Rheum.61(2), 279–283 (2009).
  • Allan SE, Broady R, Gregori S et al. CD4+ T-regulatory cells: toward therapy for human diseases. Immunol. Rev.223, 391–421 (2008).
  • Gao W, Lu Y, El Essawy B, Oukka M, Kuchroo VK, Strom TB. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am. J. Transplant7(7), 1722–1732 (2007).
  • Jee Y, Piao WH, Liu R et al. CD4(+)CD25(+) regulatory T cells contribute to the therapeutic effects of glatiramer acetate in experimental autoimmune encephalomyelitis. Clin. Immunol.125(1), 34–42 (2007).
  • Tao R, De Zoeten EF, Ozkaynak E et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med.13(11), 1299–1307 (2007).
  • Zenclussen AC. CD4(+)CD25+ T regulatory cells in murine pregnancy. J. Reprod. Immunol.65(2), 101–110 (2005).
  • Clark DA, Fernandes J, Banwatt D. Prevention of spontaneous abortion in the CBA x DBA/2 mouse model by intravaginal TGF-β and local recruitment of CD4+8+ FOXP3+ cells. Am. J. Reprod. Immunol.59(6), 525–534 (2008).
  • Scarpellini F, Sbracia M. Use of granulocyte colony-stimulating factor for the treatment of unexplained recurrent miscarriage: a randomised controlled trial. Hum. Reprod.24(11), 2703–2708 (2009).
  • Kato Y, Kuwabara T, Itoh T et al. A possible relationship between abortions and placental embolism in pregnant rabbits given human granulocyte colony-stimulating factor. J. Toxicol. Sci.26(1), 39–50 (2001).
  • Suntharalingam G, Perry MR, Ward S et al. Cytokine storm in a Phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med.355(10), 1018–1028 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.