194
Views
62
CrossRef citations to date
0
Altmetric
Review

Dendritic cells and aging: consequences for autoimmunity

, , &
Pages 73-80 | Published online: 10 Jan 2014

References

  • Agarwal S, Busse PJ. Innate and adaptive immunosenescence. Ann. Allergy Asthma Immunol.104(3), 183–190 (2010).
  • Boren E, Gershwin ME. Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun. Rev.3(5), 401–406 (2004).
  • Pawelec G, Larbi A. Immunity and ageing in man: annual review 2006/2007. Exp. Gerontol.43(1), 34–38 (2008).
  • Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr. Opin. Immunol.22(4), 507–513 (2010).
  • Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine18(16), 1717–1720 (2000).
  • Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J. Pathol.211(2), 144–156 (2007).
  • Agrawal S, Agrawal A, Doughty B et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J. Immunol.171(10), 4984–4989 (2003).
  • Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science327(5963), 291–295 (2010).
  • Manicassamy S, Pulendran B. Modulation of adaptive immunity with Toll-like receptors. Semin. Immunol.21(4), 185–193 (2009).
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Ann. Rev. Immunol.21, 685–711 (2003).
  • Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med.196(8), 1091–1097 (2002).
  • Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl Acad. Sci. USA99(1), 351–358 (2002).
  • Bratton DL, Henson PM. Autoimmunity and apoptosis: refusing to go quietly. Nat. Med.11(1), 26–27 (2005).
  • Wu X, Molinaro C, Johnson N, Casiano CA. Secondary necrosis is a source of proteolytically modified forms of specific intracellular autoantigens: implications for systemic autoimmunity. Arthritis Rheum.44(11), 2642–2652 (2001).
  • Joaquin AM, Gollapudi S. Functional decline in aging and disease: a role for apoptosis. J. Am. Geriatr. Soc.49(9), 1234–1240 (2001).
  • Zhang JH, Zhang Y, Herman B. Caspases, apoptosis and aging. Ageing Res. Rev.2(4), 357–366 (2003).
  • Behrens MI, Silva M, Schmied A et al. Age-dependent increases in apoptosis/necrosis ratios in human lymphocytes exposed to oxidative stress. J. Gerontol. A. Biol. Sci. Med. Sci.66(7), 732–740 (2011).
  • Gupta S, Young T, Yel L, Su H, Gollapudi S. Differential sensitivity of naive and subsets of memory CD4+ and CD8+ T cells to hydrogen peroxide-induced apoptosis. Genes Immun.8(7), 560–569 (2007).
  • Gaipl US, Brunner J, Beyer TD, Voll RE, Kalden JR, Herrmann M. Disposal of dying cells: a balancing act between infection and autoimmunity. Arthritis Rheum.48(1), 6–11 (2003).
  • Ip WK, Lau YL. Distinct maturation of, but not migration between, human monocyte-derived dendritic cells upon ingestion of apoptotic cells of early or late phases. J. Immunol.173(1), 189–196 (2004).
  • Agrawal A, Tay J, Ton S, Agrawal S, Gupta S. Increased reactivity of dendritic cells from aged subjects to self-antigen, the human DNA. J. Immunol.182(2), 1138–1145 (2009).
  • Agrawal A, Tay J, Yang GE, Agrawal S, Gupta S. Age-associated epigenetic modifications in human DNA increase its immunogenicity. Aging2(2), 93–100 (2010).
  • Hasler P, Zouali M. Immune receptor signaling, aging, and autoimmunity. Cell Immunol.233(2), 102–108 (2005).
  • Carette S, Marcoux S, Gingras S. Postmenopausal hormones and the incidence of rheumatoid arthritis. J. Rheumatol.16(7), 911–913 (1989).
  • Hasler P, Zouali M. B cell receptor signaling and autoimmunity. FASEB J.15(12), 2085–2098 (2001).
  • Ramos-Casals M, Garcia-Carrasco M, Brito MP, Lopez-Soto A, Font J. Autoimmunity and geriatrics: clinical significance of autoimmune manifestations in the elderly. Lupus12(5), 341–355 (2003).
  • Somers EC, Thomas SL, Smeeth L, Schoonen WM, Hall AJ. Incidence of systemic lupus erythematosus in the United Kingdom, 1990–1999. Arthritis Rheum.57(4), 612–618 (2007).
  • Hayashi Y, Utsuyama M, Kurashima C, Hirokawa K. Spontaneous development of organ-specific autoimmune lesions in aged C57BL/6 mice. Clin. Exp. Immunol.78(1), 120–126 (1989).
  • Yoshioka H, Yoshida H, Doi T et al. Autoimmune abnormalities in a murine model of accelerated senescence. Clin. Exp. Immunol.75(1), 129–135 (1989).
  • Bhatnagar H, Kala S, Sharma L, Jain S, Kim KS, Pal R. Serum and organ-associated anti-hemoglobin humoral autoreactivity: association with anti-Sm responses and inflammation. Eur. J. Immunol.41(2), 537–548 (2011).
  • Srivastava R, Yu S, Parks BW, Black LL, Kabarowski JH. Autoimmune-mediated reduction of high-density lipoprotein-cholesterol and paraoxonase 1 activity in systemic lupus erythematosus-prone gld mice. Arthritis Rheum.63(1), 201–211 (2011).
  • Mariotti S, Sansoni P, Barbesino G et al. Thyroid and other organ-specific autoantibodies in healthy centenarians. Lancet339(8808), 1506–1508 (1992).
  • Sireci G, Russo D, Dieli F et al. Immunoregulatory role of Jα281 T cells in aged mice developing lupus-like nephritis. Eur. J. Immunol.37(2), 425–433 (2007).
  • Aprahamian T, Takemura Y, Goukassian D, Walsh K. Ageing is associated with diminished apoptotic cell clearance in vivo. Clin. Exp. Immunol.152(3), 448–455 (2008).
  • Stacy S, Krolick KA, Infante AJ, Kraig E. Immunological memory and late onset autoimmunity. Mech. Ageing Dev.123(8), 975–985 (2002).
  • Johnson SA, Cambier JC. Ageing, autoimmunity and arthritis: senescence of the B cell compartment – implications for humoral immunity. Arthritis Res. Ther.6(4), 131–139 (2004).
  • Kline GH, Hayden TA, Klinman NR. B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J. Immunol.162(6), 3342–3349 (1999).
  • Larbi A, Fulop T, Pawelec G. Immune receptor signaling, aging and autoimmunity. Adv. Exp. Med. Biol.640, 312–324 (2008).
  • Globerson A, Effros RB. Ageing of lymphocytes and lymphocytes in the aged. Immunol. Today21(10), 515–521 (2000).
  • Desai A, Grolleau-Julius A, Yung R. Leukocyte function in the aging immune system. J. Leukoc. Biol.87(6), 1001–1009 (2010).
  • Sansoni P, Vescovini R, Fagnoni F et al. The immune system in extreme longevity. Exp. Gerontol.43(2), 61–65 (2008).
  • Weng NP, Akbar AN, Goronzy J. CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol.30(7), 306–312 (2009).
  • Goronzy JJ, Weyand CM. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity – catalysts of autoimmunity and chronic inflammation. Arthritis Res. Ther.5(5), 225–234 (2003).
  • Effros RB. Replicative senescence of CD8 T cells: effect on human ageing. Exp. Gerontol.39(4), 517–524 (2004).
  • Effros RB, Dagarag M, Spaulding C, Man J. The role of CD8+ T-cell replicative senescence in human aging. Immunol. Rev.205, 147–157 (2005).
  • Houssiau FA, Devogelaer JP, Van Damme J, de Deuxchaisnes CN, Van Snick J. Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum.31(6), 784–788 (1988).
  • Maggio M, Guralnik JM, Longo DL, Ferrucci L. Interleukin-6 in aging and chronic disease: a magnificent pathway. J. Gerontol. A. Biol. Sci. Med. Sci.61(6), 575–584 (2006).
  • Haynes L, Maue AC. Effects of aging on T cell function. Curr. Opin. Immunol.21(4), 414–417 (2009).
  • Lee JS, Lee WW, Kim SH et al. Age-associated alteration in naive and memory Th17 cell response in humans. Clin. Immunol.140(1), 84–91 (2011).
  • Hwang KA, Kim HR, Kang I. Aging and human CD4(+) regulatory T cells. Mech. Ageing Dev.130(8), 509–517 (2009).
  • Gregg R, Smith CM, Clark FJ et al. The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin. Exp. Immunol.140(3), 540–546 (2005).
  • Chiu BC, Stolberg VR, Zhang H, Chensue SW. Increased Foxp3(+) Treg cell activity reduces dendritic cell co-stimulatory molecule expression in aged mice. Mech. Ageing Dev.128(11–12), 618–627 (2007).
  • Rosenkranz D, Weyer S, Tolosa E et al. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J. Neuroimmunol.188(1–2), 117–127 (2007).
  • Cvetanovich GL, Hafler DA. Human regulatory T cells in autoimmune diseases. Curr. Opin. Immunol.22(6), 753–760 (2010).
  • Vila J, Isaacs JD, Anderson AE. Regulatory T cells and autoimmunity. Curr. Opin. Hematol.16(4), 274–279 (2009).
  • Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol.8(4), 345–350 (2007).
  • Johnson TE. Recent results: biomarkers of aging. Exp. Gerontol.41(12), 1243–1246 (2006).
  • Krabbe KS, Pedersen M, Bruunsgaard H. Inflammatory mediators in the elderly. Exp. Gerontol.39(5), 687–699 (2004).
  • Deon D, Ahmed S, Tai K et al. Cross-talk between IL-1 and IL-6 signaling pathways in rheumatoid arthritis synovial fibroblasts. J. Immunol.167(9), 5395–5403 (2001).
  • Jensen SS, Gad M. Differential induction of inflammatory cytokines by dendritic cells treated with novel TLR-agonist and cytokine based cocktails: targeting dendritic cells in autoimmunity. J. Inflamm. (Lond.)7, 37 (2010).
  • Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med.191(3), 411–416 (2000).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature392(6673), 245–252 (1998).
  • Hawiger D, Inaba K, Dorsett Y et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med.194(6), 769–779 (2001).
  • Hardin JA. Dendritic cells: potential triggers of autoimmunity and targets for therapy. Ann. Rheum. Dis.64(4), 86–90 (2005).
  • Ludewig B, Junt T, Hengartner H, Zinkernagel RM. Dendritic cells in autoimmune diseases. Curr. Opin. Immunol.13(6), 657–662 (2001).
  • Mehling A, Beissert S. Dendritic cells under investigation in autoimmune disease. Crit. Rev. Biochem. Mol. Biol.38(1), 1–21 (2003).
  • Hemmi H, Yoshino M, Yamazaki H et al. Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-β1-dependent cells. Int. Immunol.13(5), 695–704 (2001).
  • Nakagawa H, Hori Y, Sato S, Fitzpatrick TB, Martuza RL. The nature and origin of the melanin macroglobule. J. Invest. Dermatol.83(2), 134–139 (1984).
  • Steinman RM. Dendritic cells: understanding immunogenicity. Eur. J. Immunol.37(Suppl. 1), S53–S60 (2007).
  • Bluestone JA. Mechanisms of tolerance. Immunol. Rev.241(1), 5–19 (2011).
  • Ohashi PS, DeFranco AL. Making and breaking tolerance. Curr. Opin. Immunol.14(6), 744–759 (2002).
  • Bayry J, Thirion M, Delignat S et al. Dendritic cells and autoimmunity. Autoimmun. Rev.3(3), 183–187 (2004).
  • Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol.172(8), 4676–4680 (2004).
  • Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat. Immunol.6(3), 280–286 (2005).
  • Belz GT, Behrens GM, Smith CM et al. The CD8α(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med.196(8), 1099–1104 (2002).
  • Morelli AE, Thomson AW. Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol. Rev.196, 125–146 (2003).
  • Li HS, Verginis P, Carayanniotis G. Maturation of dendritic cells by necrotic thyrocytes facilitates induction of experimental autoimmune thyroiditis. Clin. Exp. Immunol.144(3), 467–474 (2006).
  • Asea A. Heat shock proteins and toll-like receptors. Handb. Exp. Pharmacol.(183), 111–127 (2008).
  • Calderwood SK, Mambula SS, Gray PJ Jr. Extracellular heat shock proteins in cell signaling and immunity. Ann. NY Acad. Sci.1113, 28–39 (2007).
  • Robek MD, Boyd BS, Chisari FV. Lambda interferon inhibits hepatitis B and C virus replication. J. Virol.79(6), 3851–3854 (2005).
  • Biron CA. Interferons α and β as immune regulators – a new look. Immunity14(6), 661–664 (2001).
  • Hoeffel G, Ripoche AC, Matheoud D et al. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity27(3), 481–492 (2007).
  • Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science294(5546), 1540–1543 (2001).
  • Blomberg S, Eloranta ML, Cederblad B, Nordlin K, Alm GV, Ronnblom L. Presence of cutaneous interferon-α producing cells in patients with systemic lupus erythematosus. Lupus10(7), 484–490 (2001).
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol.5(4), 296–306 (2005).
  • Banchereau J, Pascual V. Type 1 interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity25(3), 383–392 (2006).
  • Banchereau J, Pascual V, Palucka AK. Autoimmunity through cytokine-induced dendritic cell activation. Immunity20(5), 539–550 (2004).
  • Hammad H, Smits HH, Ratajczak C et al. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22. Eur. Cytokine Netw.14(4), 219–228 (2003).
  • Bruunsgaard H, Pedersen BK. Age-related inflammatory cytokines and disease. Immunol. Allergy Clin. North Am.23(1), 15–39 (2003).
  • Jonuleit H, Kuhn U, Muller G et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol.27(12), 3135–3142 (1997).
  • Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J. Immunol.178(11), 6912–6922 (2007).
  • Panda A, Qian F, Mohanty S et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J. Immunol.184(5), 2518–2527 (2010).
  • Hardin JA. Directing autoimmunity to nucleoprotein particles: the impact of dendritic cells and interferon α in lupus. J. Exp. Med.197(6), 681–685 (2003).
  • Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum.41(7), 1241–1250 (1998).
  • Rosen A, Casciola-Rosen L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ.6(1), 6–12 (1999).
  • Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol.2(12), 965–975 (2002).
  • Mevorach D, Zhou JL, Song X, Elkon KB. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J. Exp. Med.188(2), 387–392 (1998).
  • Shoshan Y, Mevorach D. Accelerated autoimmune disease in MRL/MpJ-Fas(lpr) but not in MRL/MpJ following immunization with high load of syngeneic late apoptotic cells. Autoimmunity37(2), 103–109 (2004).
  • Clayton AR, Prue RL, Harper L, Drayson MT, Savage CO. Dendritic cell uptake of human apoptotic and necrotic neutrophils inhibits CD40, CD80, and CD86 expression and reduces allogeneic T cell responses: relevance to systemic vasculitis. Arthritis Rheum.48(8), 2362–2374 (2003).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature403(6765), 41–45 (2000).
  • Kouzarides T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev.12(2), 198–209 (2002).
  • Berger SL. An embarrassment of niches: the many covalent modifications of histones in transcriptional regulation. Oncogene20(24), 3007–3013 (2001).
  • Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol.6(11), 838–849 (2005).
  • Peters AH, Mermoud JE, O’Carroll D et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat. Genet.30(1), 77–80 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.