220
Views
13
CrossRef citations to date
0
Altmetric
Review

T-cell receptor and carbamazepine-induced Stevens–Johnson syndrome and toxic epidermal necrolysis: understanding a hypersensitivity reaction

&
Pages 467-477 | Published online: 10 Jan 2014

References

  • Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15), 1200–1205 (1998).
  • Pirmohamed M, Naisbitt DJ, Gordon F, Park BK. The danger hypothesis – potential role in idiosyncratic drug reactions. Toxicology 181–182, 55–63 (2002).
  • Roujeau JC. Clinical heterogeneity of drug hypersensitivity. Toxicology 209(2), 123–129 (2005).
  • Hausmann O, Schnyder B, Pichler WJ. Drug hypersensitivity reactions involving skin. Handb. Exp. Pharmacol. (196), 29–55 (2010).
  • Chung WH, Hung SI, Hong HS et al. Medical genetics: a marker for Stevens–Johnson syndrome. Nature 428(6982), 486 (2004).
  • Hung SI, Chung WH, Liou LB et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl Acad. Sci. USA 102(11), 4134–4139 (2005).
  • Mallal S, Nolan D, Witt C et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308), 727–732 (2002).
  • McCormack M, Alfirevic A, Bourgeois S et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364(12), 1134–1143 (2011).
  • Chen P, Lin JJ, Lu CS et al.; Taiwan SJS Consortium. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N. Engl. J. Med. 364(12), 1126–1133 (2011).
  • Chessman D, Kostenko L, Lethborg T et al. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 28(6), 822–832 (2008).
  • Gomes ER, Demoly P. Epidemiology of hypersensitivity drug reactions. Curr. Opin. Allergy Clin. Immunol. 5(4), 309–316 (2005).
  • Roujeau JC, Stern RS. Severe adverse cutaneous reactions to drugs. N. Engl. J. Med. 331(19), 1272–1285 (1994).
  • Roujeau JC. The spectrum of Stevens–Johnson syndrome and toxic epidermal necrolysis: a clinical classification. J. Invest. Dermatol. 102(6), 28S–30S (1994).
  • Locharernkul C, Loplumlert J, Limotai C et al. Carbamazepine and phenytoin induced Stevens–Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia 49(12), 2087–2091 (2008).
  • Man CB, Kwan P, Baum L et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48(5), 1015–1018 (2007).
  • Mehta TY, Prajapati LM, Mittal B et al. Association of HLA-B*1502 allele and carbamazepine-induced Stevens–Johnson syndrome among Indians. Indian J. Dermatol. Venereol. Leprol. 75(6), 579–582 (2009).
  • Ozeki T, Mushiroda T, Yowang A et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum. Mol. Genet. 20(5), 1034–1041 (2011).
  • Britschgi M, von Greyerz S, Burkhart C, Pichler WJ. Molecular aspects of drug recognition by specific T cells. Curr. Drug Targets 4(1), 1–11 (2003).
  • Cribb AE, Nuss CE, Alberts DW et al. Covalent binding of sulfamethoxazole reactive metabolites to human and rat liver subcellular fractions assessed by immunochemical detection. Chem. Res. Toxicol. 9(2), 500–507 (1996).
  • Pichler WJ, Beeler A, Keller M et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol. Int. 55(1), 17–25 (2006).
  • Yang CW, Hung SI, Juo CG et al. HLA-B*1502-bound peptides: implications for the pathogenesis of carbamazepine-induced Stevens–Johnson syndrome. J. Allergy Clin. Immunol. 120(4), 870–877 (2007).
  • Naisbitt DJ, Britschgi M, Wong G et al. Hypersensitivity reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine profile of drug-specific T cell clones. Mol. Pharmacol. 63(3), 732–741 (2003).
  • Schmid DA, Depta JP, Pichler WJ. T cell-mediated hypersensitivity to quinolones: mechanisms and cross-reactivity. Clin. Exp. Allergy 36(1), 59–69 (2006).
  • Wu Y, Sanderson JP, Farrell J et al. Activation of T cells by carbamazepine and carbamazepine metabolites. J. Allergy Clin. Immunol. 118(1), 233–241 (2006).
  • Nassif A, Bensussan A, Boumsell L et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J. Allergy Clin. Immunol. 114(5), 1209–1215 (2004).
  • Wu Y, Farrell J, Pirmohamed M, Park BK, Naisbitt DJ. Generation and characterization of antigen-specific CD4+, CD8+, and CD4+CD8+ T-cell clones from patients with carbamazepine hypersensitivity. J. Allergy Clin. Immunol. 119(4), 973–981 (2007).
  • Rozieres A, Vocanson M, Rodet K et al. CD8+ T cells mediate skin allergy to amoxicillin in a mouse model. Allergy 65(8), 996–1003 (2010).
  • Mucida D, Cheroutre H. The many face-lifts of CD4 T helper cells. Adv. Immunol. 107, 139–152 (2010).
  • Oh S, Rankin AL, Caton AJ. CD4+CD25+ regulatory T cells in autoimmune arthritis. Immunol. Rev. 233(1), 97–111 (2010).
  • Soghoian DZ, Streeck H. Cytolytic CD4(+) T cells in viral immunity. Expert Rev. Vaccines 9(12), 1453–1463 (2010).
  • Naisbitt DJ, Farrell J, Wong G et al. Characterization of drug-specific T cells in lamotrigine hypersensitivity. J. Allergy Clin. Immunol. 111(6), 1393–1403 (2003).
  • Zawodniak A, Lochmatter P, Yerly D et al. In vitro detection of cytotoxic T and NK cells in peripheral blood of patients with various drug-induced skin diseases. Allergy 65(3), 376–384 (2010).
  • Wittmann M, Werfel T. Interaction of keratinocytes with infiltrating lymphocytes in allergic eczematous skin diseases. Curr. Opin. Allergy Clin. Immunol. 6(5), 329–334 (2006).
  • Chung WH, Hung SI, Yang JY et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens–Johnson syndrome and toxic epidermal necrolysis. Nat. Med. 14(12), 1343–1350 (2008).
  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat. Immunol. 9(5), 503–510 (2008).
  • Vivier E. What is natural in natural killer cells? Immunol. Lett. 107(1), 1–7 (2006).
  • Ronchi F, Falcone M. Immune regulation by invariant NKT cells in autoimmunity. Front. Biosci. 13, 4827–4837 (2008).
  • Snyder-Cappione JE, Tincati C, Eccles-James IG et al. A comprehensive ex vivo functional analysis of human NKT cells reveals production of MIP1-a and MIP1-β, a lack of IL-17, and a Th1-bias in males. PLoS ONE 5(11), e15412 (2010).
  • Chaves P, Torres MJ, Aranda A et al. Natural killer-dendritic cell interaction in lymphocyte responses in hypersensitivity reactions to betalactams. Allergy 65(12), 1600–1608 (2010).
  • Morel E, Escamochero S, Cabañas R, Díaz R, Fiandor A, Bellón T. CD94/NKG2C is a killer effector molecule in patients with Stevens–Johnson syndrome and toxic epidermal necrolysis. J. Allergy Clin. Immunol. 125(3), 703–710, 710.e1 (2010).
  • Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10(12), 849–859 (2010).
  • Shreffler WG, Wanich N, Moloney M, Nowak-Wegrzyn A, Sampson HA. Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J. Allergy Clin. Immunol. 123(1), 43–52.e7 (2009).
  • Takahashi R, Kano Y, Yamazaki Y, Kimishima M, Mizukawa Y, Shiohara T. Defective regulatory T cells in patients with severe drug eruptions: timing of the dysfunction is associated with the pathological phenotype and outcome. J. Immunol. 182(12), 8071–8079 (2009).
  • Pichler WJ, Naisbitt DJ, Park BK. Immune pathomechanism of drug hypersensitivity reactions. J. Allergy Clin. Immunol. 127(Suppl. 3), S74–S81 (2011).
  • Roth DB, Nakajima PB, Menetski JP, Bosma MJ, Gellert M. V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor delta rearrangement signals. Cell 69(1), 41–53 (1992).
  • Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6(12), 883–894 (2006).
  • Davis MM, Boniface JJ, Reich Z et al. Ligand recognition by alpha beta T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).
  • Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science 286(5441), 958–961 (1999).
  • Hermansson A, Ketelhuth DF, Strodthoff D et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J. Exp. Med. 207(5), 1081–1093 (2010).
  • Hovhannisyan Z, Weiss A, Martin A et al. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 456(7221), 534–538 (2008).
  • Risitano AM, Maciejewski JP, Green S, Plasilova M, Zeng W, Young NS. In-vivo dominant immune responses in aplastic anaemia: molecular tracking of putatively pathogenetic T-cell clones by TCR beta-CDR3 sequencing. Lancet 364(9431), 355–364 (2004).
  • Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A. Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262(5132), 422–424 (1993).
  • Friese MA, Jakobsen KB, Friis L et al. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat. Med. 14(11), 1227–1235 (2008).
  • Hwang HY, Bahk YY, Kim TG, Kim TY. Identification of a commonly used CDR3 region of infiltrating T cells expressing Vbeta13 and Vbeta15 derived from psoriasis patients. J. Invest. Dermatol. 120(3), 359–364 (2003).
  • Schwanninger A, Weinberger B, Weiskopf D et al. Age-related appearance of a CMV-specific high-avidity CD8+ T cell clonotype which does not occur in young adults. Immun. Ageing 5, 14 (2008).
  • Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8(6), 683–691 (1998).
  • Mack CL, Falta MT, Sullivan AK et al. Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia. Gastroenterology 133(1), 278–287 (2007).
  • Reichardt P, Lehmann I, Sierig G, Borte M. Analysis of T-cell receptor V-beta 2 in peripheral blood lymphocytes as a diagnostic marker for Kawasaki disease. Infection 30(6), 360–364 (2002).
  • Menezes JS, van den Elzen P, Thornes J et al. A public T cell clonotype within a heterogeneous autoreactive repertoire is dominant in driving EAE. J. Clin. Invest. 117(8), 2176–2185 (2007).
  • Gras S, Chen Z, Miles JJ et al. Allelic polymorphism in the T cell receptor and its impact on immune responses. J. Exp. Med. 207(7), 1555–1567 (2010).
  • Hallmayer J, Faraco J, Lin L et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat. Genet. 41(6), 708–711 (2009).
  • Pichler WJ, Zanni M, Von Greyerz S, Schnyder B, Mauri-Hellweg D, Wendland T. High IL-5 production by human drug-specific T cell clones. Int. Arch. Allergy Immunol. 113(1–3), 177–180 (1997).
  • Cederbrant K, Marcusson-Stâhl M, Hultman P. Characterization of primary recall in vitro lymphocyte responses to bacampicillin in allergic subjects. Clin. Exp. Allergy 30(10), 1450–1459 (2000).
  • Hashizume H, Takigawa M, Tokura Y. Characterization of drug-specific T cells in phenobarbital-induced eruption. J. Immunol. 168(10), 5359–5368 (2002).
  • Sieben S, Kawakubo Y, Al Masaoudi T, Merk HF, Blömeke B. Delayed-type hypersensitivity reaction to paraphenylenediamine is mediated by 2 different pathways of antigen recognition by specific alphabeta human T-cell clones. J. Allergy Clin. Immunol. 109(6), 1005–1011 (2002).
  • Ko TM, Chung WH, Wei CY et al. Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens–Johnson syndrome. J. Allergy Clin. Immunol. 128(6), 1266–1276.e11 (2011).
  • Hung SI, Chung WH, Jee SH et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet. Genomics 16(4), 297–306 (2006).
  • Porebski G, Gschwend-Zawodniak A, Pichler WJ. In vitro diagnosis of T cell-mediated drug allergy. Clin. Exp. Allergy 41(4), 461–470 (2011).
  • Beeler A, Zaccaria L, Kawabata T, Gerber BO, Pichler WJ. CD69 upregulation on T cells as an in vitro marker for delayed-type drug hypersensitivity. Allergy 63(2), 181–188 (2008).
  • Leyva L, Torres MJ, Posadas S et al. Anticonvulsant-induced toxic epidermal necrolysis: monitoring the immunologic response. J. Allergy Clin. Immunol. 105(1 Pt 1), 157–165 (2000).
  • Caubet JC, Pichler WJ, Eigenmann PA. Educational case series: mechanisms of drug allergy. Pediatr. Allergy Immunol. 22(6), 559–567 (2011).
  • Pelikan Z. Delayed asthmatic response: a new phenotype of bronchial response to allergen challenge and soluble adhesion molecules in the serum. Ann. Allergy Asthma Immunol. 106(2), 119–130 (2011).
  • Ebbens FA, Toppila-Salmi SK, Renkonen JA et al. Endothelial L-selectin ligand expression in nasal polyps. Allergy 65(1), 95–102 (2010).
  • Devillier P. Comparing the new antihistamines: the role of pharmacological parameters. Clin. Exp. Allergy 36(1), 5–7 (2006).
  • Pichler WJ. Direct T-cell stimulations by drugs–bypassing the innate immune system. Toxicology 209(2), 95–100 (2005).
  • Swanson HI. Cytochrome P450 expression in human keratinocytes: an aryl hydrocarbon receptor perspective. Chem. Biol. Interact. 149(2–3), 69–79 (2004).
  • Roychowdhury S, Svensson CK. Mechanisms of drug-induced delayed-type hypersensitivity reactions in the skin. AAPS J. 7(4), E834–E846 (2005).
  • Gerber BO, Zanni MP, Uguccioni M et al. Functional expression of the eotaxin receptor CCR3 in T lymphocytes co-localizing with eosinophils. Curr. Biol. 7(11), 836–843 (1997).
  • Lochmatter P, Beeler A, Kawabata TT, Gerber BO, Pichler WJ. Drug-specific in vitro release of IL-2, IL-5, IL-13 and IFN-gamma in patients with delayed-type drug hypersensitivity. Allergy 64(9), 1269–1278 (2009).
  • Hausmann O, Schnyder B, Pichler WJ. Drug hypersensitivity reactions involving skin. Handb. Exp. Pharmacol. (196), 29–55 (2010).
  • Vollmer J, Weltzien HU, Moulon C. TCR reactivity in human nickel allergy indicates contacts with complementarity-determining region 3 but excludes superantigen-like recognition. J. Immunol. 163(5), 2723–2731 (1999).
  • Büdinger L, Neuser N, Totzke U, Merk HF, Hertl M. Preferential usage of TCR-Vbeta17 by peripheral and cutaneous T cells in nickel-induced contact dermatitis. J. Immunol. 167(10), 6038–6044 (2001).
  • Vollmer J, Weltzien HU, Gamerdinger K, Lang S, Choleva Y, Moulon C. Antigen contacts by Ni-reactive TCR: typical alphass chain cooperation versus alpha chain-dominated specificity. Int. Immunol. 12(12), 1723–1731 (2000).
  • Popovic M, Shenton JM, Chen J et al. Nevirapine hypersensitivity. Handb. Exp. Pharmacol. (196), 437–451 (2010).
  • Brander C, Mauri-Hellweg D, Bettens F, Rolli H, Goldman M, Pichler WJ. Heterogeneous T cell responses to beta-lactam-modified self-structures are observed in penicillin-allergic individuals. J. Immunol. 155(5), 2670–2678 (1995).
  • Mauri-Hellweg D, Bettens F, Mauri D, Brander C, Hunziker T, Pichler WJ. Activation of drug-specific CD4+ and CD8+ T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine. J. Immunol. 155(1), 462–472 (1995).
  • Burkhart C, Britschgi M, Strasser I et al. Non-covalent presentation of sulfamethoxazole to human CD4+ T cells is independent of distinct human leucocyte antigen-bound peptides. Clin. Exp. Allergy 32(11), 1635–1643 (2002).
  • Price DA, Brenchley JM, Ruff LE et al. Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J. Exp. Med. 202(10), 1349–1361 (2005).
  • Lawson TM, Man S, Williams S, Boon AC, Zambon M, Borysiewicz LK. Influenza A antigen exposure selects dominant Vbeta17+ TCR in human CD8+ cytotoxic T cell responses. Int. Immunol. 13(11), 1373–1381 (2001).
  • Oksenberg JR, Panzara MA, Begovich AB et al. Selection for T-cell receptor V beta-D beta-J beta gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362(6415), 68–70 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.