247
Views
34
CrossRef citations to date
0
Altmetric
Review

Photodynamic therapy induces an immune response against a bacterial pathogen

, , , , , & show all
Pages 479-494 | Published online: 10 Jan 2014

References

  • Hamblin MR, Mroz P, History of PDT - the first hundred years. In: Advances in Photodynamic Therapy: Basic, Translational and Clinical. MR Hamblin, P Mroz (Eds). Artech House, MA, USA, 1–12 (2008).
  • Agostinis P, Berg K, Cengel KA et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61(4), 250–281 (2011).
  • Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B. Biol. 39(1), 1–18 (1997).
  • St Denis TG, Dai T, Izikson L et al. All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2(6), 509–520 (2011).
  • Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3(5), 436–450 (2004).
  • Hamblin MR, Jori G. Photodynamic inactivation of microbial pathogens: medical and environmental applications. In: Comprehensive Series in Photochemical and Photobiological Sciences. GP Hader, G Jori (Eds). RSC Publishing, Cambridge, UK (2011)
  • Sharma SK, Dai T, Kharkwal GB et al. Drug discovery of antimicrobial photosensitizers using animal models. Curr. Pharm. Des. 17(13), 1303–1319 (2011).
  • Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections – state of the art. Photodiagnosis Photodyn. Ther. 6(3-4), 170–188 (2009).
  • Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR. Photodynamic therapy for infections: clinical applications. Lasers Surg. Med. 43(7), 755–767 (2011).
  • Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6(7), 535–545 (2006).
  • Mroz P, Hashmi JT, Huang YY, Lange N, Hamblin MR. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev. Clin. Immunol. 7(1), 75–91 (2011).
  • St Denis TG, Aziz K, Waheed AA et al. Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochem. Photobiol. Sci. 10(5), 792–801 (2011).
  • Dougherty TJ, Gomer CJ, Henderson BW et al. Photodynamic therapy. J. Natl Cancer Inst. 90(12), 889–905 (1998).
  • Gollnick SO, Owczarczak B, Maier P. Photodynamic therapy and anti-tumor immunity. Lasers Surg. Med. 38(5), 509–515 (2006).
  • Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81(1), 1–5 (2007).
  • Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim. Biophys. Acta 1805(1), 53–71 (2010).
  • Garg AD, Nowis D, Golab J, Agostinis P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis 15(9), 1050–1071 (2010).
  • Garg AD, Krysko DV, Vandenabeele P, Agostinis P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochem. Photobiol. Sci. 10(5), 670–680 (2011).
  • Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 65(3), 1018–1026 (2005).
  • Gomer CJ, Ryter SW, Ferrario A, Rucker N, Wong S, Fisher AM. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res. 56(10), 2355–2360 (1996).
  • Chun KH, Seong SY. CD14 but not MD2 transmit signals from DAMP. Int. Immunopharmacol. 10(1), 98–106 (2010).
  • Lee KM, Seong SY. Partial role of TLR4 as a receptor responding to damage-associated molecular pattern. Immunol. Lett. 125(1), 31–39 (2009).
  • Cecic I, Parkins CS, Korbelik M. Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors. Photochem. Photobiol. 74(5), 712–720 (2001).
  • Cecic I, Stott B, Korbelik M. Acute phase response-associated systemic neutrophil mobilization in mice bearing tumors treated by photodynamic therapy. Int. Immunopharmacol. 6(8), 1259–1266 (2006).
  • Krosl G, Korbelik M, Dougherty GJ. Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. Br. J. Cancer 71(3), 549–555 (1995).
  • de Vree WJ, Essers MC, de Bruijn HS, Star WM, Koster JF, Sluiter W. Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo. Cancer Res. 56(13), 2908–2911 (1996).
  • Cecic I, Korbelik M. Deposition of complement proteins on cells treated by photodynamic therapy in vitro. J. Environ. Pathol. Toxicol. Oncol. 25(1–2), 189–203 (2006).
  • Korbelik M, Cecic I. Complement activation cascade and its regulation: relevance for the response of solid tumors to photodynamic therapy. J. Photochem. Photobiol. B. Biol. 93(1), 53–59 (2008).
  • Li F, Cheng Y, Lu J, Hu R, Wan Q, Feng H. Photodynamic therapy boosts anti-glioma immunity in mice: a dependence on the activities of T cells and complement C3. J. Cell. Biochem. 112(10), 3035–3043 (2011).
  • Steubing RW, Yeturu S, Tuccillo A, Sun CH, Berns MW. Activation of macrophages by Photofrin II during photodynamic therapy. J. Photochem. Photobiol. B. Biol. 10(1-2), 133–145 (1991).
  • Evans S, Matthews W, Perry R, Fraker D, Norton J, Pass HI. Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages. J. Natl Cancer Inst. 82(1), 34–39 (1990).
  • Zhou F, Xing D, Chen WR. Regulation of HSP70 on activating macrophages using PDT-induced apoptotic cells. Int. J. Cancer 125(6), 1380–1389 (2009).
  • Korbelik M, Krosl G. Enhanced macrophage cytotoxicity against tumor cells treated with photodynamic therapy. Photochem. Photobiol. 60(5), 497–502 (1994).
  • Preise D, Oren R, Glinert I et al. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunol. Immunother. 58(1), 71–84 (2009).
  • Gollnick SO, Vaughan L, Henderson BW. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res. 62(6), 1604–1608 (2002).
  • Kushibiki T, Tajiri T, Tomioka Y, Awazu K. Photodynamic therapy induces interleukin secretion from dendritic cells. Int. J. Clin. Exp. Med. 3(2), 110–114 (2010).
  • Etminan N, Peters C, Lakbir D et al. Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acid-mediated photodynamic treatment of human glioblastoma spheroids in vitro. Br. J. Cancer 105(7), 961–969 (2011).
  • Kabingu E, Vaughan L, Owczarczak B, Ramsey KD, Gollnick SO. CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells. Br. J. Cancer 96(12), 1839–1848 (2007).
  • Hendrzak-Henion JA, Knisely TL, Cincotta L, Cincotta E, Cincotta AH. Role of the immune system in mediating the antitumor effect of benzophenothiazine photodynamic therapy. Photochem. Photobiol. 69(5), 575–581 (1999).
  • Canti G, Lattuada D, Nicolin A, Taroni P, Valentini G, Cubeddu R. Antitumor immunity induced by photodynamic therapy with aluminum disulfonated phthalocyanines and laser light. Anticancer. Drugs 5(4), 443–447 (1994).
  • Korbelik M, Dougherty GJ. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res. 59(8), 1941–1946 (1999).
  • Belicha-Villanueva A, Riddell J, Bangia N, Gollnick SO. The effect of photodynamic therapy on tumor cell expression of major histocompatibility complex (MHC) class I and MHC class I-related molecules. Lasers Surg. Med. 44(1), 60–68 (2012).
  • Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int. J. Cancer 127(4), 759–767 (2010).
  • Castano AP, Mroz P, Wu MX, Hamblin MR. Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proc. Natl Acad. Sci. USA 105(14), 5495–5500 (2008).
  • Mroz P, Hamblin MR. The immunosuppressive side of PDT. Photochem. Photobiol. Sci. 10(5), 751–758 (2011).
  • Matthews YJ, Damian DL. Topical photodynamic therapy is immunosuppressive in humans. Br. J. Dermatol. 162(3), 637–641 (2010).
  • Hayami J, Okamoto H, Sugihara A, Horio T. Immunosuppressive effects of photodynamic therapy by topical aminolevulinic acid. J. Dermatol. 34(5), 320–327 (2007).
  • Hunt DW, Levy JG. Immunomodulatory aspects of photodynamic therapy. Expert Opin. Investig. Drugs 7(1), 57–64 (1998).
  • Hunt DW, Jiang H, Granville DJ, Chan AH, Leong S, Levy JG. Consequences of the photodynamic treatment of resting and activated peripheral T lymphocytes. Immunopharmacology 41(1), 31–44 (1999).
  • Boumédine RS, Roy DC. Elimination of alloreactive T cells using photodynamic therapy. Cytotherapy 7(2), 134–143 (2005).
  • Lavie G, Meruelo D, Aroyo K, Mandel M. Inhibition of the CD8+ T cell-mediated cytotoxicity reaction by hypericin: potential for treatment of T cell-mediated diseases. Int. Immunol. 12(4), 479–486 (2000).
  • Favre L, Borle F, Velin D et al. Low dose endoluminal photodynamic therapy improves murine T cell-mediated colitis. Endoscopy 43(7), 604–616 (2011).
  • Rook AH, Wood GS, Duvic M, Vonderheid EC, Tobia A, Cabana B. A Phase II placebo-controlled study of photodynamic therapy with topical hypericin and visible light irradiation in the treatment of cutaneous T-cell lymphoma and psoriasis. J. Am. Acad. Dermatol. 63(6), 984–990 (2010).
  • Korbelik M, Krosl G, Krosl J, Dougherty GJ. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy. Cancer Res. 56(24), 5647–5652 (1996).
  • Castano AP, Liu Q, Hamblin MR. A green fluorescent protein-expressing murine tumour but not its wild-type counterpart is cured by photodynamic therapy. Br. J. Cancer 94(3), 391–397 (2006).
  • Mroz P, Szokalska A, Wu MX, Hamblin MR. Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response. PLoS ONE 5(12), e15194 (2010).
  • Kabingu E, Oseroff AR, Wilding GE, Gollnick SO. Enhanced systemic immune reactivity to a basal cell carcinoma associated antigen following photodynamic therapy. Clin. Cancer Res. 15(13), 4460–4466 (2009).
  • Thong PS, Olivo M, Kho KW et al. Immune response against angiosarcoma following lower fluence rate clinical photodynamic therapy. J. Environ. Pathol. Toxicol. Oncol. 27(1), 35–42 (2008).
  • Thong PS, Ong KW, Goh NS et al. Photodynamic-therapy-activated immune response against distant untreated tumours in recurrent angiosarcoma. Lancet Oncol. 8(10), 950–952 (2007).
  • Canti G, Calastretti A, Bevilacqua A, Reddi E, Palumbo G, Nicolin A. Combination of photodynamic therapy + immunotherapy + chemotherapy in murine leukiemia. Neoplasma 57(2), 184–188 (2010).
  • Uehara M, Sano K, Wang ZL, Sekine J, Ikeda H, Inokuchi T. Enhancement of the photodynamic antitumor effect by streptococcal preparation OK-432 in the mouse carcinoma. Cancer Immunol. Immunother. 49(8), 401–409 (2000).
  • Myers RC, Lau BH, Kunihira DY, Torrey RR, Woolley JL, Tosk J. Modulation of hematoporphyrin derivative-sensitized phototherapy with Corynebacterium parvum in murine transitional cell carcinoma. Urology 33(3), 230–235 (1989).
  • Korbelik M. Cancer vaccines generated by photodynamic therapy. Photochem. Photobiol. Sci. 10(5), 664–669 (2011).
  • Gollnick SO, Brackett CM. Enhancement of anti-tumor immunity by photodynamic therapy. Immunol. Res. 46(1–3), 216–226 (2010).
  • Allaire S, Wolfe F, Niu J, Lavalley MP. Contemporary prevalence and incidence of work disability associated with rheumatoid arthritis in the US. Arthritis Rheum. 59(4), 474–480 (2008).
  • Lacaille D. Arthritis and employment research: where are we? Where do we need to go? J. Rheumatol. Suppl. 72, 42–45 (2005).
  • Beischer AD, Bhathal P, de Steiger R, Penn D, Stylli S. Synovial ablation in a rabbit rheumatoid arthritis model using photodynamic therapy. ANZ J. Surg. 72(7), 517–522 (2002).
  • Trauner KB, Hasan T. Photodynamic treatment of rheumatoid and inflammatory arthritis. Photochem. Photobiol. 64(5), 740–750 (1996).
  • Peacock DJ, Banquerigo ML, Brahn E. A novel angiogenesis inhibitor suppresses rat adjuvant arthritis. Cell. Immunol. 160(2), 178–184 (1995).
  • Ratkay LG, Chowdhary RK, Neyndorff HC, Tonzetich J, Waterfield JD, Levy JG. Photodynamic therapy; a comparison with other immunomodulatory treatments of adjuvant-enhanced arthritis in MRL-lpr mice. Clin. Exp. Immunol. 95(3), 373–377 (1994).
  • Trauner KB, Gandour-Edwards R, Bamberg M, Shortkroff S, Sledge C, Hasan T. Photodynamic synovectomy using benzoporphyrin derivative in an antigen-induced arthritis model for rheumatoid arthritis. Photochem. Photobiol. 67(1), 133–139 (1998).
  • Ratkay LG, Chowdhary RK, Iamaroon A et al. Amelioration of antigen-induced arthritis in rabbits by induction of apoptosis of inflammatory cells with local application of transdermal photodynamic therapy. Arthritis Rheum. 41(3), 525–534 (1998).
  • Chowdhary RK, Ratkay LG, Canaan AJ, Waterfield JD, Richter AM, Levy JG. Uptake of verteporfin by articular tissues following systemic and intra-articular administration. Biopharm. Drug Dispos. 19(6), 395–400 (1998).
  • Funke B, Jungel A, Schastak S, Wiedemeyer K, Emmrich F, Sack U. Transdermal photodynamic therapy–a treatment option for rheumatic destruction of small joints? Lasers Surg. Med. 38(9), 866–874 (2006).
  • Oertel M, Schastak SI, Tannapfel A et al. Novel bacteriochlorine for high tissue-penetration: photodynamic properties in human biliary tract cancer cells in vitro and in a mouse tumour model. J. Photochem. Photobiol. B. Biol. 71(1–3), 1–10 (2003).
  • Schastak S, Jean B, Handzel R et al. Improved pharmacokinetics, biodistribution and necrosis in vivo using a new near infra-red photosensitizer: tetrahydroporphyrin tetratosylat. J. Photochem. Photobiol. B. Biol. 78(3), 203–213 (2005).
  • Anderson RR, Parrish JA. The optics of human skin. J. Invest. Dermatol. 77(1), 13–19 (1981).
  • Torikai E, Kageyama Y, Kohno E et al. Photodynamic therapy using talaporfin sodium for synovial membrane from rheumatoid arthritis patients and collagen-induced arthritis rats. Clin. Rheumatol. 27(6), 751–761 (2008).
  • Taber SW, Fingar VH, Coots CT, Wieman TJ. Photodynamic therapy using mono-L-aspartyl chlorin e6 (Npe6) for the treatment of cutaneous disease: a Phase I clinical study. Clin. Cancer Res. 4(11), 2741–2746 (1998).
  • Nakamura H, Suzuki Y, Takeichi M, Saito T, Takayama M, Aizawa K. Morphologic evaluation of the antitumor activity of photodynamic therapy (PDT) using mono-L-aspartyl chlorin e6 (NPe6) against uterine cervical carcinoma cell lines. Int. J. Gynecol. Cancer 12(2), 177–186 (2002).
  • Mori K, Yoneya S, Anzail K et al. Photodynamic therapy of experimental choroidal neovascularization with a hydrophilic photosensitizer: mono-L-aspartyl chlorin e6. Retina (Philadelphia, Pa) 21(5), 499–508 (2001).
  • Nagae T, Aizawa K, Uchimura N et al. Endovascular photodynamic therapy using mono-L-aspartyl-chlorin e6 to inhibit Intimal hyperplasia in balloon-injured rabbit arteries. Lasers Surg. Med. 28(4), 381–388 (2001).
  • Kato H, Furukawa K, Sato M et al. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer 42(1), 103–111 (2003).
  • Nitzan Y, Gutterman M, Malik Z, Ehrenberg B. Inactivation of Gram-negative bacteria by photosensitized porphyrins. Photochem. Photobiol. 55(1), 89–96 (1992).
  • Malik Z, Ladan H, Nitzan Y. Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J. Photochem. Photobiol. B. Biol. 14(3), 262–266 (1992).
  • Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB. Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob. Agents Chemother. 44(3), 522–527 (2000).
  • Valduga G, Bertoloni G, Reddi E, Jori G. Effect of extracellularly generated singlet oxygen on Gram-positive and Gram-negative bacteria. J. Photochem. Photobiol. B. Biol. 21(1), 81–86 (1993).
  • Tegos GP, Demidova TN, Arcila-Lopez D et al. Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem. Biol. 12(10), 1127–1135 (2005).
  • Mohr H, Lambrecht B, Selz A. Photodynamic virus inactivation of blood components. Immunol. Invest. 24(1–2), 73–85 (1995).
  • Kassab K, Ben Amor T, Jori G, Coppellotti O. Photosensitization of Colpoda inflata cysts by meso-substituted cationic porphyrins. Photochem. Photobiol. Sci. 1(8), 560–564 (2002).
  • Demidova TN, Hamblin MR. Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes. Appl. Environ. Microbiol. 71(11), 6918–6925 (2005).
  • Ferro S, Coppellotti O, Roncucci G, Ben Amor T, Jori G. Photosensitized inactivation of Acanthamoeba palestinensis in the cystic stage. J. Appl. Microbiol. 101(1), 206–212 (2006).
  • Jori G, Fabris C, Soncin M et al. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med. 38(5), 468–481 (2006).
  • Harris F, Chatfield LK, Phoenix DA. Phenothiazinium based photosensitisers–photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr. Drug Targets 6(5), 615–627 (2005).
  • Huang L, Huang YY, Mroz P et al. Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers. Antimicrob. Agents Chemother. 54(9), 3834–3841 (2010).
  • Kuznetsova N, Makarov D, Yuzhakova O et al. Photophysical properties and photodynamic activity of octacationic oxotitanium(IV) phthalocyanines. Photochem. Photobiol. Sci. 8(12), 1724–1733 (2009).
  • Usacheva MN, Teichert MC, Biel MA. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J. Photochem. Photobiol. B, Biol. 71(1–3), 87–98 (2003).
  • Usacheva MN, Teichert MC, Biel MA. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against Gram-positive and Gram-negative microorganisms. Lasers Surg. Med. 29(2), 165–173 (2001).
  • Wainwright M. Methylene blue derivatives – suitable photoantimicrobials for blood product disinfection? Int. J. Antimicrob. Agents 16(4), 381–394 (2000).
  • Wainwright M, Phoenix DA, Laycock SL, Wareing DR, Wright PA. Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus. FEMS Microbiol. Lett. 160(2), 177–181 (1998).
  • Lazzeri D, Rovera M, Pascual L, Durantini EN. Photodynamic studies and photoinactivation of Escherichia coli using meso-substituted cationic porphyrin derivatives with asymmetric charge distribution. Photochem. Photobiol. 80(2), 286–293 (2004).
  • Maisch T, Bosl C, Szeimies RM, Lehn N, Abels C. Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells. Antimicrob. Agents Chemother. 49(4), 1542–1552 (2005).
  • Segalla A, Borsarelli CD, Braslavsky SE et al. Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine. Photochem. Photobiol. Sci. 1(9), 641–648 (2002).
  • Kussovski V, Mantareva V, Angelov I et al. Photodynamic inactivation of Aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity. FEMS Microbiol. Lett. 294(2), 133–140 (2009).
  • Simonetti O, Cirioni O, Orlando F et al. Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection. Br. J. Dermatol. 164(5), 987–995 (2011).
  • Gad F, Zahra T, Francis KP, Hasan T, Hamblin MR. Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem. Photobiol. Sci. 3(5), 451–458 (2004).
  • Teichert MC, Jones JW, Usacheva MN, Biel MA. Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 93(2), 155–160 (2002).
  • Hamblin MR, Zahra T, Contag CH, McManus AT, Hasan T. Optical monitoring and treatment of potentially lethal wound infections in vivo. J. Infect. Dis. 187(11), 1717–1725 (2003).
  • Wong TW, Wang YY, Sheu HM, Chuang YC. Bactericidal effects of toluidine blue-mediated photodynamic action on Vibrio vulnificus. Antimicrob. Agents Chemother. 49(3), 895–902 (2005).
  • Zolfaghari PS, Packer S, Singer M et al. In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol. 9, 27 (2009).
  • Hamblin MR, O’Donnell DA, Murthy N, Contag CH, Hasan T. Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem. Photobiol. 75(1), 51–57 (2002).
  • Dai T, Tegos GP, Lu Z et al. Photodynamic therapy for Acinetobacter baumannii burn infections in mice. Antimicrob. Agents Chemother. 53(9), 3929–3934 (2009).
  • Lambrechts SA, Demidova TN, Aalders MC, Hasan T, Hamblin MR. Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem. Photobiol. Sci. 4(7), 503–509 (2005).
  • Shibli JA, Martins MC, Nociti FH Jr, Garcia VG, Marcantonio E Jr. Treatment of ligature-induced peri-implantitis by lethal photosensitization and guided bone regeneration: a preliminary histologic study in dogs. J. Periodontol. 74(3), 338–345 (2003).
  • Kömerik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M. In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob. Agents Chemother. 47(3), 932–940 (2003).
  • Fernandes LA, de Almeida JM, Theodoro LH et al. Treatment of experimental periodontal disease by photodynamic therapy in immunosuppressed rats. J. Clin. Periodontol. 36(3), 219–228 (2009).
  • de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Bonfante S, Garcia VG. Treatment of experimental periodontal disease by photodynamic therapy in rats with diabetes. J. Periodontol. 79(11), 2156–2165 (2008).
  • de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Oshiiwa M, Garcia VG. Influence of photodynamic therapy on the development of ligature-induced periodontitis in rats. J. Periodontol. 78(3), 566–575 (2007).
  • Berthiaume F, Reiken SR, Toner M, Tompkins RG, Yarmush ML. Antibody-targeted photolysis of bacteria in vivo. Biotechnology (NY) 12(7), 703–706 (1994).
  • Smetana Z, Malik Z, Orenstein A, Mendelson E, Ben-Hur E. Treatment of viral infections with 5-aminolevulinic acid and light. Lasers Surg. Med. 21(4), 351–358 (1997).
  • Moore C, Wallis C, Melnick JL, Kuns MD. Photodynamic treatment of herpes keratitis. Infect. Immun. 5(2), 169–171 (1972).
  • Gardlo K, Horska Z, Enk CD et al. Treatment of cutaneous leishmaniasis by photodynamic therapy. J. Am. Acad. Dermatol. 48(6), 893–896 (2003).
  • Sohl S, Kauer F, Paasch U, Simon JC. Photodynamic treatment of cutaneous leishmaniasis. J. Dtsch Dermatol. Ges. 5(2), 128–130 (2007).
  • González U, Pinart M, Reveiz L, Alvar J. Interventions for old world cutaneous leishmaniasis. Cochrane Database Syst. Rev. 4, CD005067 (2008).
  • Maisch T, Baier J, Franz B et al. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl Acad. Sci. USA 104(17), 7223–7228 (2007).
  • Tanaka M, Kinoshita M, Yoshihara Y et al. Influence of intra-articular neutrophils on the effects of photodynamic therapy for murine MRSA arthritis. Photochem. Photobiol. 86(2), 403–409 (2010).
  • Hamblin MR, Dai T. Can surgical site infections be treated by photodynamic therapy? Photodiagnosis Photodyn. Ther. 7(2), 134–136 (2010).
  • Tanaka M, Kinoshita M, Yoshihara Y et al. Photodynamic therapy using intra-articular Photofrin for murine MRSA arthritis: biphasic light dose response for neutrophil-mediated antibacterial effect. Lasers Surg. Med. 43(3), 221–229 (2011).
  • Tanaka M, Kinoshita M, Yoshihara Y et al. Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils. Photochem. Photobiol. 88(1), 227–232 (2012).
  • Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J. Antimicrob. Chemother. 57(4), 680–684 (2006).
  • Docampo R, Moreno SN, Muniz RP, Cruz FS, Mason RP. Light-enhanced free radical formation and trypanocidal action of gentian violet (crystal violet). Science 220(4603), 1292–1295 (1983).
  • Kato H, Usuda J, Okunaka T et al. Basic and clinical research on photodynamic therapy at Tokyo Medical University Hospital. Lasers Surg. Med. 38(5), 371–375 (2006).
  • Tseng SP, Teng LJ, Chen CT et al. Toluidine blue O photodynamic inactivation on multidrug-resistant Pseudomonas aeruginosa. Lasers Surg. Med. 41(5), 391–397 (2009).
  • Hirao A, Sato S, Saitoh D, Shinomiya N, Ashida H, Obara M. In vivo photoacoustic monitoring of photosensitizer distribution in burned skin for antibacterial photodynamic therapy. Photochem. Photobiol. 86(2), 426–430 (2010).
  • Renkin EM. Cellular and intercellular transport pathways in exchange vessels. Am. Rev. Respir. Dis. 146(5 Pt 2), S28–S31 (1992).
  • König K, Bockhorn V, Dietel W, Schubert H. Photochemotherapy of animal tumors with the photosensitizer methylene blue using a krypton laser. J. Cancer Res. Clin. Oncol. 113(3), 301–303 (1987).
  • Tanaka M, Mroz P, Dai T, Huang L, Morimoto Y et al. Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. PLoS ONE 7(6), e39823 (2012).
  • Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR. Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg. Med. 42(1), 38–44 (2010).
  • Cecic I, Korbelik M. Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors. Cancer Lett. 183(1), 43–51 (2002).
  • Montefort S, Gratziou C, Goulding D et al. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J. Clin. Invest. 93(4), 1411–1421 (1994).
  • Kielian T, Hickey WF. Proinflammatory cytokine, chemokine, and cellular adhesion molecule expression during the acute phase of experimental brain abscess development. Am. J. Pathol. 157(2), 647–658 (2000).
  • Sun YX, Dai DK, Liu R et al. Therapeutic effect of SN50, an inhibitor of nuclear factor-κB, in treatment of TBI in mice. Neurol. Sci. doi:10.1007/s10072-012-1007-z (2012) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.