85
Views
7
CrossRef citations to date
0
Altmetric
Review

Natural killer cells in hepatitis C virus infection

, , &
Pages 775-788 | Published online: 10 Jan 2014

References

  • Seeff LB. The history of the ‘natural history’ of hepatitis C (1968–2009). Liver Int. 29, 89–99 (2009).
  • Lok AS, Seeff LB, Morgan TR et al.; HALT-C Trial Group. Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology 136(1), 138–148 (2009).
  • Yoshida H, Shiratori Y, Moriyama M et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of hepatocarcinogenesis by interferon therapy. Ann. Intern. Med. 131(3), 174–181 (1999).
  • Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 362(9399), 1907–1917 (2003).
  • El-Kamary SS, Jhaveri R, Shardell MD. All-cause, liver-related, and non-äìliver-related mortality among HCV-infected individuals in the general US population. Clin. Infect. Dis. 53(2), 150–157.
  • Burra P, De Martin E. Infections and organ transplantation: new challenges for prevention and treatment of hepatitis C virus. Transplant. Proc. 43(6), 2455–2456 (2011).
  • Forman LM, Lewis JD, Berlin JA, Feldman HI, Lucey MR. The association between hepatitis C infection and survival after orthotopic liver transplantation. Gastroenterology 122(4), 889–896 (2002).
  • Sarhan MA, Pham TN, Chen AY, Michalak TI. Hepatitis C virus infection of human T lymphocytes is mediated by CD5. J. Virol. 86(7), 3723–3735 (2012).
  • Durand T, Di Liberto G, Colman H et al. Occult infection of peripheral B cells by hepatitis C variants which have low translational efficiency in cultured hepatocytes. Gut 59(7), 934–942 (2010).
  • Blackard JT, Kemmer N, Sherman KE. Extrahepatic replication of HCV: insights into clinical manifestations and biological consequences. Hepatology 44(1), 15–22 (2006).
  • Ferri C, Monti M, La Civita L et al. Infection of peripheral blood mononuclear cells by hepatitis C virus in mixed cryoglobulinemia. Blood 82(12), 3701–3704 (1993).
  • Lerat H, Berby F, Trabaud MA et al. Specific detection of hepatitis C virus minus strand RNA in hematopoietic cells. J. Clin. Invest. 97(3), 845–851 (1996).
  • Pham TNQ, King D, Macparland SA et al. Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis c and occult infection. Gastroenterology 134(3), 812–822 (2008).
  • Bartosch B, Vitelli A, Granier C et al. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J. Biol. Chem. 278(43), 41624–41630 (2003).
  • Germi R, Crance JM, Garin D et al. Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption. J. Med. Virol. 68(2), 206–215 (2002).
  • Chevaliez S, Asselah T. Mechanisms of non-response to antiviral treatment in chronic hepatitis C. Clin. Res. Hepatol. Gastroenterol. 35(Suppl. 1), S31–S41 (2011).
  • Rai R, Deval J. New opportunities in anti-hepatitis C virus drug discovery: targeting NS4B. Antiviral Res. 90(2), 93–101 (2011).
  • Sarrazin C, Hézode C, Zeuzem S, Pawlotsky JM. Antiviral strategies in hepatitis C virus infection. J. Hepatol. 56(Suppl. 1), S88–S100 (2012).
  • Bacon BR, Gordon SC, Lawitz E et al.; HCV RESPOND-2 Investigators. Boceprevir for previously treated chronic HCV genotype 1 infection. N. Engl. J. Med. 364(13), 1207–1217 (2011).
  • Poordad F, McCone J Jr, Bacon BR et al.; SPRINT-2 Investigators. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med. 364(13), 1195–1206 (2011).
  • Jacobson IM, McHutchison JG, Dusheiko G et al.; ADVANCE Study Team. Telaprevir for previously untreated chronic hepatitis C virus infection. N. Engl. J. Med. 364(25), 2405–2416 (2011).
  • Zeuzem S, Andreone P, Pol S et al.; REALIZE Study Team. Telaprevir for retreatment of HCV infection. N. Engl. J. Med. 364(25), 2417–2428 (2011).
  • Perry CM. Telaprevir: a review of its use in the management of genotype 1 chronic hepatitis C. Drugs 72(5), 619–641 (2012).
  • Alberti A. What are the comorbidities influencing the management of patients and the response to therapy in chronic hepatitis C? Liver Int. 29(Suppl. 1), 15–18 (2009).
  • Sarasin-Filipowicz M, Oakeley EJ, Duong FH et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proc. Natl Acad. Sci. USA 105(19), 7034–7039 (2008).
  • Pascu M, Martus P, Höhne M et al. Sustained virological response in hepatitis C virus type 1b infected patients is predicted by the number of mutations within the NS5A-ISDR: a meta-analysis focused on geographical differences. Gut 53(9), 1345–1351 (2004).
  • De Maria A, Cossarizza A. CD4saurus Rex &HIVelociraptor vs. development of clinically useful immunological markers: a Jurassic tale of frozen evolution. J. Transl. Med. 9, 93 (2011).
  • Vivier E, Raulet DH, Moretta A et al. Innate or adaptive immunity? The example of natural killer cells. Science 331(6013), 44–49 (2011).
  • Romagnani C, Juelke K, Falco M et al. CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J. Immunol. 178(8), 4947–4955 (2007).
  • Björkström NK, Riese P, Heuts F et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116(19), 3853–3864 (2010).
  • Lopez-Vergès S, Milush JM, Pandey S et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116(19), 3865–3874 (2010).
  • De Maria A, Bozzano F, Cantoni C, Moretta L. Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-γ on activation. Proc. Natl Acad. Sci. USA 108(2), 728–732 (2011).
  • Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115(11), 2167–2176 (2010).
  • Marras F, Bozzano F, De Maria A. Involvement of activating NK cell receptors and their modulation in pathogen immunity. J. Biomed. Biotechnol. 2011, 152430 (2011).
  • Biassoni R, Cantoni C, Pende D et al. Human natural killer cell receptors and co-receptors. Immunol. Rev. 181, 203–214 (2001).
  • Sivori S, Parolini S, Falco M et al. 2B4 functions as a co-receptor in human NK cell activation. Eur. J. Immunol. 30(3), 787–793 (2000).
  • Fuchs A, Cella M, Kondo T, Colonna M. Paradoxic inhibition of human natural interferon-producing cells by the activating receptor NKp44. Blood 106(6), 2076–2082 (2005).
  • Bonaccorsi I, Cantoni C, Carrega P et al. The immune inhibitory receptor LAIR-1 is highly expressed by plasmacytoid dendritic cells and acts complementary with NKp44 to control IFNa production. PLoS One 5(11), e15080 (2010).
  • Tang Q, Grzywacz B, Wang H et al. Umbilical cord blood T cells express multiple natural cytotoxicity receptors after IL-15 stimulation, but only NKp30 is functional. J. Immunol. 181(7), 4507–4515 (2008).
  • Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene 27(45), 5932–5943 (2008).
  • Bryceson YT, Ljunggren HG. Tumor cell recognition by the NK cell activating receptor NKG2D. Eur. J. Immunol. 38(11), 2957–2961 (2008).
  • Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol. 2(3), 255–260 (2001).
  • Bottino C, Castriconi R, Pende D et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198(4), 557–567 (2003).
  • Byrd A, Hoffmann SC, Jarahian M, Momburg F, Watzl C. Expression analysis of the ligands for the natural killer cell receptors NKp30 and NKp44. PLoS One 2(12), e1339 (2007).
  • Costello RT, Sivori S, Marcenaro E et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99(10), 3661–3667 (2002).
  • Pende D, Rivera P, Marcenaro S et al. Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res. 62(21), 6178–6186 (2002).
  • Sutherland CL, Chalupny NJ, Cosman D. The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions. Immunol. Rev. 181, 185–192 (2001).
  • Cosman D, Müllberg J, Sutherland CL et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14(2), 123–133 (2001).
  • Brandt CS, Baratin M, Yi EC et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206(7), 1495–1503 (2009).
  • Mandelboim O, Lieberman N, Lev M et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409(6823), 1055–1060 (2001).
  • Hershkovitz O, Rosental B, Rosenberg LA et al. NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J. Immunol. 183(4), 2610–2621 (2009).
  • Vieillard V, Costagliola D, Simon A, Debré P; French Asymptomatiques à Long Terme (ALT) Study Group. Specific adaptive humoral response against a gp41 motif inhibits CD4 T-cell sensitivity to NK lysis during HIV-1 infection. AIDS 20(14), 1795–1804 (2006).
  • Cosman D, Fanger N, Borges L et al. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7(2), 273–282 (1997).
  • Biassoni R, Ugolotti E, De Maria A. NK cell receptors and their interactions with MHC. Curr. Pharm. Des. 15(28), 3301–3310 (2009).
  • Mingari MC, Schiavetti F, Ponte M et al. Human CD8+ T lymphocyte subsets that express HLA class I-specific inhibitory receptors represent oligoclonally or monoclonally expanded cell populations. Proc. Natl Acad. Sci. USA 93(22), 12433–12438 (1996).
  • De Maria A, Ferraris A, Guastella M et al. Expression of HLA class I-specific inhibitory natural killer cell receptors in HIV-specific cytolytic T lymphocytes: impairment of specific cytolytic functions. Proc. Natl Acad. Sci. USA 94(19), 10285–10288 (1997).
  • Costa P, Rusconi S, Mavilio D et al. Differential disappearance of inhibitory natural killer cell receptors during HAART and possible impairment of HIV-1-specific CD8 cytotoxic T lymphocytes. AIDS 15(8), 965–974 (2001).
  • Anfossi N, André P, Guia S et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25(2), 331–342 (2006).
  • Kim S, Poursine-Laurent J, Truscott SM et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436(7051), 709–713 (2005).
  • Orange JS, Wang B, Terhorst C, Biron CA. Requirement for natural killer cell-produced interferon γ in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J. Exp. Med. 182(4), 1045–1056 (1995).
  • Lieberman LA, Hunter CA. Regulatory pathways involved in the infection-induced production of IFN-γ by NK cells. Microbes Infect. 4(15), 1531–1538 (2002).
  • Ferlazzo G, Morandi B, D’Agostino A et al. The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur. J. Immunol. 33(2), 306–313 (2003).
  • Etzioni A, Eidenschenk C, Katz R, Beck R, Casanova JL, Pollack S. Fatal varicella associated with selective natural killer cell deficiency. J. Pediatr. 146(3), 423–425 (2005).
  • Cauda R, Laghi V, Tumbarello M, Ortona L, Whitley RJ. Immunological alterations associated with recurrent herpes simplex genitalis. Clin. Immunol. Immunopathol. 51(2), 294–302 (1989).
  • Welliver TP, Garofalo RP, Hosakote Y et al. Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J. Infect. Dis. 195(8), 1126–1136 (2007).
  • Gazit R, Gruda R, Elboim M et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol. 7(5), 517–523 (2006).
  • Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 457(7229), 557–561 (2009).
  • Björkström NK, Lindgren T, Stoltz M et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med. 208(1), 13–21 (2011).
  • Waggoner SN, Cornberg M, Selin LK, Welsh RM. Natural killer cells act as rheostats modulating antiviral T cells. Nature 481(7381), 394–398 (2012).
  • Lang PA, Lang KS, Xu HC et al. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc. Natl Acad. Sci. USA 109(4), 1210–1215 (2012).
  • Biron CA. Yet another role for natural killer cells: cytotoxicity in immune regulation and viral persistence. Proc. Natl Acad. Sci. USA 109(6), 1814–1815 (2012).
  • Warfield KL, Perkins JG, Swenson DL et al. Role of natural killer cells in innate protection against lethal ebola virus infection. J. Exp. Med. 200(2), 169–179 (2004).
  • Meazza R, Azzarone B, Orengo AM, Ferrini S. Role of common-γ chain cytokines in NK cell development and function: perspectives for immunotherapy. J. Biomed. Biotechnol. 2011, 861920 (2011).
  • De Maria A, Fogli M, Costa P et al. The impaired NK cell cytolytic function in viremic HIV-1 infection is associated with a reduced surface expression of natural cytotoxicity receptors (NKp46, NKp30 and NKp44). Eur. J. Immunol. 33(9), 2410–2418 (2003).
  • De Maria A, Moretta L. NK cell function in HIV-1 infection. Curr. HIV Res. 6(5), 433–440 (2008).
  • Mavilio D, Lombardo G, Kinter A et al. Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection. J. Exp. Med. 203(10), 2339–2350 (2006).
  • Kanto T, Inoue M, Miyatake H et al. Reduced numbers and impaired ability of myeloid and plasmacytoid dendritic cells to polarize T helper cells in chronic hepatitis C virus infection. J. Infect. Dis. 190(11), 1919–1926 (2004).
  • Saito K, Ait-Goughoulte M, Truscott SM et al. Hepatitis C virus inhibits cell surface expression of HLA-DR, prevents dendritic cell maturation, and induces interleukin-10 production. J. Virol. 82(7), 3320–3328 (2008).
  • Carbonneil C, Donkova-Petrini V, Aouba A, Weiss L. Defective dendritic cell function in HIV-infected patients receiving effective highly active antiretroviral therapy: neutralization of IL-10 production and depletion of CD4+CD25+ T cells restore high levels of HIV-specific CD4+ T cell responses induced by dendritic cells generated in the presence of IFN-α. J. Immunol. 172(12), 7832–7840 (2004).
  • Yoon JC, Shiina M, Ahlenstiel G, Rehermann B. Natural killer cell function is intact after direct exposure to infectious hepatitis C virions. Hepatology 49(1), 12–21 (2009).
  • Lassen MG, Lukens JR, Dolina JS, Brown MG, Hahn YS. Intrahepatic IL-10 maintains NKG2A+Ly49- liver NK cells in a functionally hyporesponsive state. J. Immunol. 184(5), 2693–2701 (2010).
  • Paust S, Gill HS, Wang BZ et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11(12), 1127–1135 (2010).
  • Pernollet M, Jouvin-Marche E, Leroy V, Vigan I, Zarski JP, Marche PN. Simultaneous evaluation of lymphocyte subpopulations in the liver and in peripheral blood mononuclear cells of HCV-infected patients: relationship with histological lesions. Clin. Exp. Immunol. 130(3), 518–525 (2002).
  • Joo Chun YM. Natural killer cell function is intact after direct exposure to infectious hepatitis C virions. Hepatology 49(1), 12–21 (2009).
  • Yoon JC, Lim JB, Park JH, Lee JM. Cell-to-cell contact with hepatitis C virus-infected cells reduces functional capacity of natural killer cells. J. Virol. 85(23), 12557–12569 (2011).
  • Amadei B, Urbani S, Cazaly A et al. Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology 138(4), 1536–1545 (2010).
  • Golden-Mason L, Cox AL, Randall JA, Cheng L, Rosen HR. Increased natural killer cell cytotoxicity and NKp30 expression protects against hepatitis C virus infection in high-risk individuals and inhibits replication in vitro. Hepatology 52(5), 1581–1589 (2010).
  • Khakoo SI, Thio CL, Martin MP et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305(5685), 872–874 (2004).
  • Winter CC, Gumperz JE, Parham P, Long EO, Wagtmann N. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J. Immunol. 161(2), 571–577 (1998).
  • Moesta AK, Norman PJ, Yawata M, Yawata N, Gleimer M, Parham P. Synergistic polymorphism at two positions distal to the ligand-binding site makes KIR2DL2 a stronger receptor for HLA-C than KIR2DL3. J. Immunol. 180(6), 3969–3979 (2008).
  • Ahlenstiel G, Martin MP, Gao X, Carrington M, Rehermann B. Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses. J. Clin. Invest. 118(3), 1017–1026 (2008).
  • Moreland AJ, Guethlein LA, Reeves RK et al. Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques. BMC Genomics 12, 295 (2011).
  • Ugolotti E, Vanni I, Raso A, Benzi F, Malnati M, Biassoni R. Human leukocyte antigen-B (-Bw6/-Bw4 I80, T80) and human leukocyte antigen-C (-C1/-C2) subgrouping using pyrosequence analysis. Hum. Immunol. 72(10), 859–868 (2011).
  • Seich Al BNK, Macnamara A, Vine AM et al. Enhances protective and detrimental HLA class I-mediated immunity in chronic viral infection. PLoS Pathog 7(10), e1002270 (2011).
  • Santantonio T, Fasano M, Sinisi E et al. Efficacy of a 24-week course of PEG-interferon α-2b monotherapy in patients with acute hepatitis C after failure of spontaneous clearance. J. Hepatol. 42(3), 329–333 (2005).
  • Wiegand J, Buggisch P, Boecher W et al.; German HEP-NET Acute HCV Study Group. Early monotherapy with pegylated interferon α-2b for acute hepatitis C infection: the HEP-NET acute-HCV-II study. Hepatology 43(2), 250–256 (2006).
  • Santantonio T, Medda E, Ferrari C et al. Risk factors and outcome among a large patient cohort with community-acquired acute hepatitis C in Italy. Clin. Infect. Dis. 43(9), 1154–1159 (2006).
  • Morishima C, Paschal DM, Wang CC et al. Decreased NK cell frequency in chronic hepatitis C does not affect ex vivo cytolytic killing. Hepatology 43(3), 573–580 (2006).
  • Bonorino P, Ramzan M, Camous X et al. Fine characterization of intrahepatic NK cells expressing natural killer receptors in chronic hepatitis B and C. J. Hepatol. 51(3), 458–467 (2009).
  • Pár G, Rukavina D, Podack ER et al. Decrease in CD3-negative-CD8dim(+) and Vdelta2/Vγ9 TcR+ peripheral blood lymphocyte counts, low perforin expression and the impairment of natural killer cell activity is associated with chronic hepatitis C virus infection. J. Hepatol. 37(4), 514–522 (2002).
  • Bonavita MS, Franco A, Paroli M et al. Normalization of depressed natural killer activity after interferon-α therapy is associated with a low frequency of relapse in patients with chronic hepatitis C. Int. J. Tissue React. 15(1), 11–16 (1993).
  • Jinushi M, Takehara T, Tatsumi T et al. Autocrine/paracrine IL-15 that is required for type I IFN-mediated dendritic cell expression of MHC class I-related chain A and B is impaired in hepatitis C virus infection. J. Immunol. 171(10), 5423–5429 (2003).
  • Meier UC, Owen RE, Taylor E et al. Shared alterations in NK cell frequency, phenotype, and function in chronic human immunodeficiency virus and hepatitis C virus infections. J. Virol. 79(19), 12365–12374 (2005).
  • Golden-Mason L, Madrigal-Estebas L, McGrath E et al. Altered natural killer cell subset distributions in resolved and persistent hepatitis C virus infection following single source exposure. Gut 57(8), 1121–1128 (2008).
  • De Maria A, Fogli M, Mazza S et al. Increased natural cytotoxicity receptor expression and relevant IL-10 production in NK cells from chronically infected viremic HCV patients. Eur. J. Immunol. 37(2), 445–455 (2007).
  • Crotta S, Brazzoli M, Piccioli D, Valiante NM, Wack A. Hepatitis C virions subvert natural killer cell activation to generate a cytokine environment permissive for infection. J. Hepatol. 52(2), 183–190 (2010).
  • Ahlenstiel G, Titerence RH, Koh C et al. Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-dependent manner. Gastroenterology 138(1), 325–35.e1 (2010).
  • Crotta S, Stilla A, Wack A et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J. Exp. Med. 195(1), 35–41 (2002).
  • Stegmann KA, Bjokstom NK, Ciesek S et al. Interferon α stimulated natural killer cells from patients with acute hepatitis C virus (HCV) infection recognize HCV-infected and uninfected hepatoma cells via DNAX accessory molecule-1. J. Infect. Dis. 205(9), 1351–1362 (2012).
  • Nattermann J, Feldmann G, Ahlenstiel G, Langhans B, Sauerbruch T, Spengler U. Surface expression and cytolytic function of natural killer cell receptors is altered in chronic hepatitis C. Gut 55(6), 869–877 (2006).
  • Ahlenstiel G, Titerence RH, Koh C et al. Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-α-dependent manner. Gastroenterology 138(1), 325.e322–335.e322 (2010).
  • Bozzano F, Picciotto A, Costa P et al. Activating NK cell receptor expression/function (NKp30, NKp46, DNAM-1) during chronic viraemic HCV infection is associated with the outcome of combined treatment. Eur. J. Immunol. 41(10), 2905–2914 (2011).
  • Ahlenstiel G, Edlich B, Hogdal LJ et al. Early changes in natural killer cell function indicate virologic response to interferon therapy for hepatitis C. Gastroenterology 141(4), 1231–9, 1239.e1 (2011).
  • Delahaye NF, Rusakiewicz S, Martins I et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med. 17(6), 700–707 (2011).
  • Vidal-Castiñeira JR, López-Vázquez A, Díaz-Peña R et al. Effect of killer immunoglobulin-like receptors in the response to combined treatment in patients with chronic hepatitis C virus infection. J. Virol. 84(1), 475–481 (2010).
  • Ge D, Fellay J, Thompson AJ et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461(7262), 399–401 (2009).
  • Tanaka Y, Nishida N, Sugiyama M et al. Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41(10), 1105–1109 (2009).
  • Thomas DL, Thio CL, Martin MP et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461(7265), 798–801 (2009).
  • Naggie S, Osinusi A, Katsounas A et al. Dysregulation of innate immunity in hepatitis C virus genotype 1 IL28B-unfavorable genotype patients: impaired viral kinetics and therapeutic response. Hepatology 56(2), 444–454 (2012).
  • Moghaddam A, Melum E, Reinton N et al. IL28B genetic variation and treatment response in patients with hepatitis C virus genotype 3 infection. Hepatology 53(3), 746–754 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.