408
Views
56
CrossRef citations to date
0
Altmetric
Review

Mechanism of human chorionic gonadotrophin-mediated immunomodulation in pregnancy

, , , , &
Pages 747-753 | Published online: 10 Jan 2014

References

  • Cole LA. HCG variants, the growth factors which drive human malignancies. Am. J. Cancer Res. 2(1), 22–35 (2012).
  • Angioni S, Spedicato M, Rizzo A et al. In vitro activity of human chorionic gonadotropin (hCG) on myometrium contractility. Gynecol. Endocrinol. 27(3), 180–184 (2011).
  • Norris W, Nevers T, Sharma S, Kalkunte S. Review: hCG, preeclampsia and regulatory T cells. Placenta 32(Suppl. 2), S182–S185 (2011).
  • Bansal AS. Joining the immunological dots in recurrent miscarriage. Am. J. Reprod. Immunol. 64(5), 307–315 (2010).
  • Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5(3), 266–271 (2004).
  • Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 112(1), 38–43 (2004).
  • Santner-Nanan B, Peek MJ, Khanam R et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol. 183(11), 7023–7030 (2009).
  • Herr F, Baal N, Reisinger K et al. HCG in the regulation of placental angiogenesis. Results of an in vitro study. Placenta 28(Suppl. A), S85–S93 (2007).
  • Kayisli UA, Selam B, Guzeloglu-Kayisli O, Demir R, Arici A. Human chorionic gonadotropin contributes to maternal immunotolerance and endometrial apoptosis by regulating Fas–Fas ligand system. J. Immunol. 171(5), 2305–2313 (2003).
  • Fluhr H, Krenzer S, Stein GM et al. Interferon-γ and tumor necrosis factor-α sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis. J. Cell. Sci. 120(Pt 23), 4126–4133 (2007).
  • Stahn R, Goletz S, Stahn R et al. Human chorionic gonadotropin (hCG) as inhibitior of E-selectin-mediated cell adhesion. Anticancer Res. 25(3A), 1811–1816 (2005).
  • Kalkunte S, Nevers T, Norris W et al. Presence of non-functional hCG in preeclampsia and rescue of normal pregnancy by recombinant hCG. Placenta 31, A126 (2010).
  • Chen JZ, Sheehan PM, Brennecke SP, Keogh RJ. Vessel remodelling, pregnancy hormones and extravillous trophoblast function. Mol. Cell. Endocrinol. 349(2), 138–144 (2012).
  • Foidart JM, Schaaps JP, Chantraine F, Munaut C, Lorquet S. Dysregulation of anti-angiogenic agents (sFlt-1, PLGF, and sEndoglin) in preeclampsia – a step forward but not the definitive answer. J. Reprod. Immunol. 82(2), 106–111 (2009).
  • Licht P, Fluhr H, Neuwinger J, Wallwiener D, Wildt L. Is human chorionic gonadotropin directly involved in the regulation of human implantation? Mol. Cell. Endocrinol. 269(1–2), 85–92 (2007).
  • Berndt S, Perrier d’Hauterive S, Blacher S et al. Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium. FASEB J. 20(14), 2630–2632 (2006).
  • Weedon-Fekjær MS, Taskén K. Review: spatiotemporal dynamics of hCG/cAMP signaling and regulation of placental function. Placenta 33(Suppl.), S87–S91 (2012).
  • Fluhr H, Bischof-Islami D, Krenzer S, Licht P, Bischof P, Zygmunt M. Human chorionic gonadotropin stimulates matrix metalloproteinases-2 and -9 in cytotrophoblastic cells and decreases tissue inhibitor of metalloproteinases-1, -2, and -3 in decidualized endometrial stromal cells. Fertil. Steril. 90(Suppl. 4), 1390–1395 (2008).
  • Tsampalas M, Gridelet V, Berndt S, Foidart JM, Geenen V, Perrier d’Hauterive S. Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J. Reprod. Immunol. 85(1), 93–98 (2010).
  • Fuchs T, Hammarström L, Smith CI, Brundin J. In vitro induction of murine suppressor T-cells by human chorionic gonadotropin. Acta Obstet. Gynecol. Scand. 59(4), 355–359 (1980).
  • Fuchs T, Hammarström L, Smith CI, Brundin J. In vitro induction of human suppressor T cells by a chorionic gonadotropin preparation. J. Reprod. Immunol. 3(2), 75–84 (1981).
  • Yamauchi S, Izumi S, Shiotsuka Y, Watanabe K, Ozawa A. Demonstration of HCG on the surface of maternal lymphocytes and discrimination of T and B cells by esterase cytochemistry. Tokai J. Exp. Clin. Med. 8(4), 333–337 (1983).
  • Lin J, Lojun S, Lei ZM, Wu WX, Peiner SC, Rao CV. Lymphocytes from pregnant women express human chorionic gonadotropin/luteinizing hormone receptor gene. Mol. Cell. Endocrinol. 111(1), R13–R17 (1995).
  • Eblen AC, Gerçel-Taylor C, Nakajima ST, Taylor DD. Modulation of T-cell CD3-zeta chain expression in early pregnancy. Am. J. Reprod. Immunol. 47(3), 167–173 (2002).
  • Khil LY, Jun HS, Kwon H et al. Human chorionic gonadotropin is an immune modulator and can prevent autoimmune diabetes in NOD mice. Diabetologia 50(10), 2147–2155 (2007).
  • Ueno A, Cho S, Cheng L et al. Transient upregulation of indoleamine 2,3-dioxygenase in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes 56(6), 1686–1693 (2007).
  • Wan H, Versnel MA, Leijten LM et al. Chorionic gonadotropin induces dendritic cells to express a tolerogenic phenotype. J. Leukoc. Biol. 83(4), 894–901 (2008).
  • Dong M, Ding G, Zhou J, Wang H, Zhao Y, Huang H. The effect of trophoblasts on T lymphocytes: possible regulatory effector molecules – a proteomic analysis. Cell Physiol. Biochem. 21(5–6), 463–472 (2008).
  • Segerer SE, Müller N, van den Brandt J et al. Impact of female sex hormones on the maturation and function of human dendritic cells. Am. J. Reprod. Immunol. 62(3), 165–173 (2009).
  • Koldehoff M, Katzorke T, Wisbrun NC et al. Modulating impact of human chorionic gonadotropin hormone on the maturation and function of hematopoietic cells. J. Leukoc. Biol. 90(5), 1017–1026 (2011).
  • Kruse N, Greif M, Moriabadi NF, Marx L, Toyka KV, Rieckmann P. Variations in cytokine mRNA expression during normal human pregnancy. Clin. Exp. Immunol. 119(2), 317–322 (2000).
  • Inoue T, Kanzaki H, Imai K et al. Progesterone stimulates the induction of human endometrial CD56+ lymphocytes in an in vitro culture system. J. Clin. Endocrinol. Metab. 81(4), 1502–1507 (1996).
  • Mao G, Wang J, Kang Y et al. Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice. Endocrinology 151(11), 5477–5488 (2010).
  • Carbone F, Procaccini C, De Rosa V et al. Divergent immunomodulatory effects of recombinant and urinary-derived FSH, LH, and hCG on human CD4+ T cells. J. Reprod. Immunol. 85(2), 172–179 (2010).
  • Kane N, Kelly R, Saunders PT, Critchley HO. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology 150(6), 2882–2888 (2009).
  • Nakashima A, Shima T, Inada K, Ito M, Saito S. The balance of the immune system between T cells and NK cells in miscarriage. Am. J. Reprod. Immunol. 67(4), 304–310 (2012).
  • Higuma-Myojo S, Sasaki Y, Miyazaki S et al. Cytokine profile of natural killer cells in early human pregnancy. Am. J. Reprod. Immunol. 54(1), 21–29 (2005).
  • Bansal AS, Bajardeen B, Shehata H, Thum MY. Recurrent miscarriage and autoimmunity. Expert Rev. Clin. Immunol. 7(1), 37–44 (2011).
  • Jasper MJ, Tremellen KP, Robertson SA. Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Mol. Hum. Reprod. 12(5), 301–308 (2006).
  • Jin LP, Chen QY, Zhang T, Guo PF, Li DJ. The CD4+CD25 bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin. Immunol. 133(3), 402–410 (2009).
  • Schumacher A, Brachwitz N, Sohr S et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal–maternal interface during early human pregnancy. J. Immunol. 182(9), 5488–5497 (2009).
  • Thum MY, Bhaskaran S, Abdalla HI et al. An increase in the absolute count of CD56dimCD16+CD69+ NK cells in the peripheral blood is associated with a poorer IVF treatment and pregnancy outcome. Hum. Reprod. 19(10), 2395–2400 (2004).
  • Toldi G, Svec P, Vásárhelyi B et al. Decreased number of FoxP3+ regulatory T cells in preeclampsia. Acta Obstet. Gynecol. Scand. 87(11), 1229–1233 (2008).
  • Singh O, Rao LV, Gaur A, Sharma NC, Alam A, Talwar GP. Antibody response and characteristics of antibodies in women immunized with three contraceptive vaccines inducing antibodies against human chorionic gonadotropin. Fertil. Steril. 52(5), 739–744 (1989).
  • Talwar GP, Singh O, Pal R et al. A vaccine that prevents pregnancy in women. Proc. Natl Acad. Sci. USA 91(18), 8532–8536 (1994).
  • Wass M, McCann K, Bagshawe KD. Isolation of antibodies to HCG/LH from human sera. Nature 274(5669), 369–370 (1978).
  • Housseau F, Rouas-Freiss N, Benifla JL et al. Reaction of peripheral-blood lymphocytes to the human chorionic gonadotropin β sub-unit in patients with productive tumors. Int. J. Cancer 63(5), 633–638 (1995).
  • Amato F, Warnes GM, Kirby CA, Norman RJ. Infertility caused by HCG autoantibody. J. Clin. Endocrinol. Metab. 87(3), 993–997 (2002).
  • Wang WJ, Hao CF, Yi-Lin et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol. 84(2), 164–170 (2010).
  • Zou SH, Yang ZZ, Zhang P et al. [Autoimmune disorders affect the in vitro fertilization outcome in infertile women]. Zhonghua Nan Ke Xue 14(4), 343–346 (2008).
  • Nakamura H, Usa T, Motomura M et al. Prevalence of interrelated autoantibodies in thyroid diseases and autoimmune disorders. J. Endocrinol. Invest. 31(10), 861–865 (2008).
  • Dittmar M, Kahaly GJ. Genetics of the autoimmune polyglandular syndrome type 3 variant. Thyroid 20(7), 737–743 (2010).
  • Mintziori G, Anagnostis P, Toulis KA, Goulis DG. Thyroid diseases and female reproduction. Minerva Med. 103(1), 47–62 (2012).
  • Bruysters M, Verhoef-Post M, Themmen AP. Asp330 and Tyr331 in the C-terminal cysteine-rich region of the luteinizing hormone receptor are key residues in hormone-induced receptor activation. J. Biol. Chem. 283(38), 25821–25828 (2008).
  • Zhang YM, Rao ChV, Lei ZM. Macrophages in human reproductive tissues contain luteinizing hormone/chorionic gonadotropin receptors. Am. J. Reprod. Immunol. 49(2), 93–100 (2003).
  • Walkington L, Webster J, Hancock BW, Everard J, Coleman RE. Hyperthyroidism and human chorionic gonadotrophin production in gestational trophoblastic disease. Br. J. Cancer 104(11), 1665–1669 (2011).
  • Toulis KA, Goulis DG, Venetis CA, Kolibianakis EM, Tarlatzis BC, Papadimas I. Thyroid autoimmunity and miscarriages: the corpus luteum hypothesis. Med. Hypotheses 73(6), 1060–1062 (2009).
  • Moncayo H, Moncayo R, Benz R, Wolf A, Lauritzen C. Ovarian failure and autoimmunity. Detection of autoantibodies directed against both the unoccupied luteinizing hormone/human chorionic gonadotropin receptor and the hormone-receptor complex of bovine corpus luteum. J. Clin. Invest. 84(6), 1857–1865 (1989).
  • Checa MA, Espinós JJ, Requena A. Efficacy and safety of human chorionic gonadotropin for follicular phase stimulation in assisted reproduction: a systematic review and meta-analysis. Fertil. Steril. 97(6), 1343–50.e1 (2012).
  • van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst. Rev. 10, CD009154 (2011).
  • Chambers AE, Nayini KP, Mills WE, Lockwood GM, Banerjee S. Circulating LH/hCG receptor (LHCGR) may identify pre-treatment IVF patients at risk of OHSS and poor implantation. Reprod. Biol. Endocrinol. 9, 161 (2011).
  • Bansal AS, Bajardeen B, Thum MY. The basis and value of currently used immunomodulatory therapies in recurrent miscarriage. J. Reprod. Immunol. 93(1), 41–51 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.