149
Views
9
CrossRef citations to date
0
Altmetric
Review

Alterations of the autoimmune regulator transcription factor and failure of central tolerance: APECED as a model

, , , , , , , , & show all
Pages 43-51 | Published online: 10 Jan 2014

References

  • Grammatikos AP, Tsokos GC. Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus. Trends Mol. Med. 18(2), 101–108 (2012).
  • Pessach IM, Notarangelo LD. X-linked primary immunodeficiencies as a bridge to better understanding X-chromosome related autoimmunity. J. Autoimmun. 33(1), 17–24 (2009).
  • Pignata C, Alessio M, Ramenghi U et al. Clustering of distinct autoimmune diseases associated with functional abnormalities of T cell survival in children. Clin. Exp. Immunol. 121(1), 53–58 (2000).
  • Griesemer AD, Sorenson EC, Hardy MA. The role of the thymus in tolerance. Transplantation 90(5), 465–474 (2010).
  • Cheroutre H. Starting at the beginning: new perspectives on the biology of mucosal T-cells. Annu. Rev. Immunol. 22, 217–246 (2004).
  • Brewer JA, Kanagawa O, Sleckman BP, Muglia LJ. Thymocyte apoptosis induced by T cell activation is mediated by glucocorticoids in vivo. J. Immunol. 169(4), 1837–1843 (2002).
  • Palmer E. Negative selection – clearing out the bad apples from the T-cell repertoire. Nat. Rev. Immunol. 3(5), 383–391 (2003).
  • Kyewski B, Klein L. A central role for central tolerance. Annu. Rev. Immunol. 24, 571–606 (2006).
  • Derbinski J, Gäbler J, Brors B et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202(1), 33–45 (2005).
  • Anderson MS, Venanzi ES, Klein L et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597), 1395–1401 (2002).
  • Derbinski J, Pinto S, Rösch S, Hexel K, Kyewski B. Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc. Natl Acad. Sci. USA 105(2), 657–662 (2008).
  • Gillard GO, Farr AG. Features of medullary thymic epithelium implicate postnatal development in maintaining epithelial heterogeneity and tissue-restricted antigen expression. J. Immunol. 176(10), 5815–5824 (2006).
  • Kyewski B, Peterson P. Aire, master of many trades. Cell 140(1), 24–26 (2010).
  • Mathis D, Benoist C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).
  • Gardner JM, Devoss JJ, Friedman RS et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321(5890), 843–847 (2008).
  • Rooke R, Waltzinger C, Benoist C, Mathis D. Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity 7(1), 123–134 (1997).
  • Klein L. Dead man walking: how thymocytes scan the medulla. Nat. Immunol. 10(8), 809–811 (2009).
  • Koble C, Kyewski B. The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J. Exp. Med. 206(7), 1505–1513 (2009).
  • Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6(4), 331–337 (2005).
  • Cabarrocas J, Cassan C, Magnusson F et al. Foxp3+ CD25+ regulatory T-cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proc. Natl Acad. Sci. USA 103(22), 8453–8458 (2006).
  • DeFranco S, Bonissoni S, Cerutti F et al. Defective function of Fas in patients with type 1 diabetes associated with other autoimmune diseases. Diabetes 50(3), 483–488 (2001).
  • Foy TM, Page DM, Waldschmidt TJ et al. An essential role for gp39, the ligand for CD40, in thymic selection. J. Exp. Med. 182(5), 1377–1388 (1995).
  • Kishimoto H, Sprent J. Several different cell surface molecules control negative selection of medullary thymocytes. J. Exp. Med. 190(1), 65–73 (1999).
  • Kishimoto H, Surh CD, Sprent J. A role for Fas in negative selection of thymocytes in vivo. J. Exp. Med. 187(9), 1427–1438 (1998).
  • Nagamine K, Peterson P, Scott HS et al. Positional cloning of the APECED gene. Nat. Genet. 17(4), 393–398 (1997).
  • Consortium F-GA. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet. 17(4), 399–403 (1997).
  • Aaltonen J, Horelli-Kuitunen N, Fan JB et al. High-resolution physical and transcriptional mapping of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy locus on chromosome 21q22.3 by FISH. Genome Res. 7(8), 820–829 (1997).
  • Björses P, Halonen M, Palvimo JJ et al. Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am. J. Hum. Genet. 66(2), 378–392 (2000).
  • Ferguson BJ, Alexander C, Rossi SW et al. AIRE’s CARD revealed, a new structure for central tolerance provokes transcriptional plasticity. J. Biol. Chem. 283(3), 1723–1731 (2008).
  • Ramsey C, Bukrinsky A, Peltonen L. Systematic mutagenesis of the functional domains of AIRE reveals their role in intracellular targeting. Hum. Mol. Genet. 11(26), 3299–3308 (2002).
  • Gibson TJ, Ramu C, Gemünd C, Aasland R. The APECED polyglandular autoimmune syndrome protein, AIRE-1, contains the SAND domain and is probably a transcription factor. Trends Biochem. Sci. 23(7), 242–244 (1998).
  • Ilmarinen T, Eskelin P, Halonen M et al. Functional analysis of SAND mutations in AIRE supports dominant inheritance of the G228W mutation. Hum. Mutat. 26(4), 322–331 (2005).
  • Bottomley MJ, Stier G, Pennacchini D et al. NMR structure of the first PHD finger of autoimmune regulator protein (AIRE1). Insights into autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) disease. J. Biol. Chem. 280(12), 11505–11512 (2005).
  • Meloni A, Incani F, Corda D, Cao A, Rosatelli MC. Role of PHD fingers and COOH-terminal 30 amino acids in AIRE transactivation activity. Mol. Immunol. 45(3), 805–809 (2008).
  • Savkur RS, Burris TP. The coactivator LXXLL nuclear receptor recognition motif. J. Pept. Res. 63(3), 207–212 (2004).
  • Wang CY, Shi JD, Davoodi-Semiromi A, She JX. Cloning of Aire, the mouse homologue of the autoimmune regulator (AIRE) gene responsible for autoimmune polyglandular syndrome type 1 (ASP1). Genomics 55(3), 322–326 (1999).
  • Kuroda N, Mitani T, Takeda N et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice. J. Immunol. 174(4), 1862–1870 (2005).
  • Hubert FX, Kinkel SA, Crewther PE et al. Aire-deficient C57BL/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype. J. Immunol. 182(6), 3902–3918 (2009).
  • Johnnidis JB, Venanzi ES, Taxman DJ, Ting JP, Benoist CO, Mathis DJ. Chromosomal clustering of genes controlled by the aire transcription factor. Proc. Natl. Acad. Sci. USA 102(20), 7233–7238 (2005).
  • Abramson J, Giraud M, Benoist C, Mathis D. Aire’s partners in the molecular control of immunological tolerance. Cell 140(1), 123–135 (2010).
  • Pitkänen J, Vähämurto P, Krohn K, Peterson P. Subcellular localization of the autoimmune regulator protein. characterization of nuclear targeting and transcriptional activation domain. J. Biol. Chem. 276(22), 19597–19602 (2001).
  • Kalkhoven E. CBP and p300: HATs for different occasions. Biochem. Pharmacol. 68(6), 1145–1155 (2004).
  • Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat. Rev. Immunol. 8(12), 948–957 (2008).
  • Liiv I, Rebane A, Org T et al. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. Biochim. Biophys. Acta 1783(1), 74–83 (2008).
  • Ilmarinen T, Kangas H, Kytömaa T et al. Functional interaction of AIRE with PIAS1 in transcriptional regulation. Mol. Immunol. 45(7), 1847–1862 (2008).
  • Aloj G, Giardino G, Valentino L et al. Severe combined immunodeficiencies: new and old scenarios. Int. Rev. Immunol. 31(1), 43–65 (2012).
  • Oven I, Brdicková N, Kohoutek J, Vaupotic T, Narat M, Peterlin BM. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol. Cell. Biol. 27(24), 8815–8823 (2007).
  • Koh AS, Kuo AJ, Park SY et al. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc. Natl. Acad. Sci. USA 105(41), 15878–15883 (2008).
  • Matsumoto M. Contrasting models for the roles of Aire in the differentiation program of epithelial cells in the thymic medulla. Eur. J. Immunol. 41(1), 12–17 (2011).
  • Yano M, Kuroda N, Han H et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J. Exp. Med. 205(12), 2827–2838 (2008).
  • Poliani PL, Kisand K, Marrella V et al. Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells. Am. J. Pathol. 176(3), 1104–1112 (2010).
  • Cavadini P, Vermi W, Facchetti F et al. AIRE deficiency in thymus of 2 patients with Omenn syndrome. J. Clin. Invest. 115(3), 728–732 (2005).
  • Notarangelo L, Casanova JL, Conley ME et al.; International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee Meeting in Budapest, 2005. J. Allergy Clin. Immunol. 117(4), 883–896 (2006).
  • Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Clin. Endocrinol. Metab. 91(8), 2843–2850 (2006).
  • Zlotogora J, Shapiro MS. Polyglandular autoimmune syndrome type I among Iranian Jews. J. Med. Genet. 29(11), 824–826 (1992).
  • Aaltonen J, Björses P, Sandkuijl L, Perheentupa J, Peltonen L. An autosomal locus causing autoimmune disease: autoimmune polyglandular disease type I assigned to chromosome 21. Nat. Genet. 8(1), 83–87 (1994).
  • Rosatelli MC, Meloni A, Meloni A et al. A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. Hum. Genet. 103(4), 428–434 (1998).
  • Wolff AS, Erichsen MM, Meager A et al. Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J. Clin. Endocrinol. Metab. 92(2), 595–603 (2007).
  • Capalbo D, Mazza C, Giordano R et al. Molecular background and genotype-phenotype correlation in autoimmune-polyendocrinopathy-candidiasis-ectodermal-distrophy patients from Campania and in their relatives. J. Endocrinol. Invest. 35(2), 169–173 (2012).
  • Clemente MG, Meloni A, Obermayer-Straub P, Frau F, Manns MP, De Virgiliis S. Two cytochromes P450 are major hepatocellular autoantigens in autoimmune polyglandular syndrome type 1. Gastroenterology 114(2), 324–328 (1998).
  • Meloni A, Perniola R, Faà V, Corvaglia E, Cao A, Rosatelli MC. Delineation of the molecular defects in the AIRE gene in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients from Southern Italy. J. Clin. Endocrinol. Metab. 87(2), 841–846 (2002).
  • Cervato S, Mariniello B, Lazzarotto F et al. Evaluation of the autoimmune regulator (AIRE) gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives. Clin. Endocrinol. 70(3), 421–428 (2009).
  • Giordano C, Modica R, Allotta ML et al. Autoimmune polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) in Sicily: confirmation that R203X is the peculiar AIRE gene mutation. J. Endocrinol. Invest. 35(4), 384–388 (2012).
  • Betterle C, Greggio NA, Volpato M. Clinical review 93: autoimmune polyglandular syndrome type 1. J. Clin. Endocrinol. Metab. 83(4), 1049–1055 (1998).
  • Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N. Engl. J. Med. 322(26), 1829–1836 (1990).
  • Meager A, Visvalingam K, Peterson P et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 3(7), e289 (2006).
  • Alimohammadi M, Björklund P, Hallgren A et al. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N. Engl. J. Med. 358(10), 1018–1028 (2008).
  • Betterle C, Dal Pra C, Mantero F, Zanchetta R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr. Rev. 23(3), 327–364 (2002).
  • Tóth B, Wolff AS, Halász Z et al. Novel sequence variation of AIRE and detection of interferon-omega antibodies in early infancy. Clin. Endocrinol. 72(5), 641–647 (2010).
  • Kisand K, Bøe Wolff AS, Podkrajsek KT et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207(2), 299–308 (2010).
  • Puel A, Döffinger R, Natividad A et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207(2), 291–297 (2010).
  • Ströbel P, Murumägi A, Klein R et al. Deficiency of the autoimmune regulator AIRE in thymomas is insufficient to elicit autoimmune polyendocrinopathy syndrome type 1 (APS-1). J. Pathol. 211(5), 563–571 (2007).
  • Kisand K, Lilic D, Casanova JL, Peterson P, Meager A, Willcox N. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur. J. Immunol. 41(6), 1517–1527 (2011).
  • Michels AW, Gottlieb PA. Autoimmune polyglandular syndromes. Nat. Rev. Endocrinol. 6(5), 270–277 (2010).
  • Halonen M, Eskelin P, Myhre AG et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J. Clin. Endocrinol. Metab. 87(6), 2568–2574 (2002).
  • Kekäläinen E, Tuovinen H, Joensuu J et al. A defect of regulatory T-cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Immunol. 178(2), 1208–1215 (2007).
  • Laakso SM, Kekäläinen E, Rossi LH et al. IL-7 dysregulation and loss of CD8+ T cell homeostasis in the monogenic human disease autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Immunol. 187(4), 2023–2030 (2011).
  • Capalbo D, Elefante A, Spagnuolo MI et al. Posterior reversible encephalopathy syndrome in a child during an accelerated phase of a severe APECED phenotype due to an uncommon mutation of AIRE. Clin. Endocrinol. (Oxf) 69(3), 511–513 (2008).
  • Pignata C, Fiore M, de Filippo S, Cavalcanti M, Gaetaniello L, Scotese I. Apoptosis as a mechanism of peripheral blood mononuclear cell death after measles and varicella-zoster virus infections in children. Pediatr. Res. 43(1), 77–83 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.