90
Views
24
CrossRef citations to date
0
Altmetric
Review

Mast cells: multitalented facilitators of protection against bacterial pathogens

, , , , &
Pages 129-138 | Published online: 10 Jan 2014

References

  • Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat. Immunol. 9(11), 1215–1223 (2008).
  • Féger F, Varadaradjalou S, Gao Z, Abraham SN, Arock M. The role of mast cells in host defense and their subversion by bacterial pathogens. Trends Immunol. 23(3), 151–158 (2002).
  • Wesolowski J, Paumet F. The impact of bacterial infection on mast cell degranulation. Immunol. Res. 51(2–3), 215–226 (2011).
  • Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10(6), 440–452 (2010).
  • Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat. Immunol. 6(2), 135–142 (2005).
  • Chan CY, St John AL, Abraham SN. Plasticity in mast cell responses during bacterial infections. Curr. Opin. Microbiol. 15(1), 78–84 (2012).
  • Matsuguchi T. Mast cells as critical effectors of host immune defense against Gram-negative bacteria. Curr. Med. Chem. 19(10), 1432–1442 (2012).
  • Mayerhofer M, Aichberger KJ, Florian S, Valent P. Recognition sites for microbes and components of the immune system on human mast cells: relationship to CD antigens and implications for host defense. Int. J. Immunopathol. Pharmacol. 20(3), 421–434 (2007).
  • Urb M, Sheppard DC. The role of mast cells in the defence against pathogens. PLoS Pathog. 8(4), e1002619 (2012).
  • Dawicki W, Marshall JS. New and emerging roles for mast cells in host defence. Curr. Opin. Immunol. 19(1), 31–38 (2007).
  • Metz M, Maurer M. Mast cells – key effector cells in immune responses. Trends Immunol. 28(5), 234–241 (2007).
  • Gekara NO, Weiss S. Mast cells initiate early anti-Listeria host defences. Cell. Microbiol. 10(1), 225–236 (2008).
  • Sutherland RE, Olsen JS, McKinstry A, Villalta SA, Wolters PJ. Mast cell IL-6 improves survival from Klebsiella pneumonia and sepsis by enhancing neutrophil killing. J. Immunol. 181(8), 5598–5605 (2008).
  • Xu X, Zhang D, Lyubynska N et al. Mast cells protect mice from Mycoplasma pneumonia. Am. J. Respir. Crit. Care Med. 173(2), 219–225 (2006).
  • Chatterjea D, Burns-Guydish SM, Sciuto TE, Dvorak A, Contag CH, Galli SJ. Adoptive transfer of mast cells does not enhance the impaired survival of Kit(W)/Kit(W-v) mice in a model of low dose intraperitoneal infection with bioluminescent Salmonella typhimurium. Immunol. Lett. 99(1), 122–129 (2005).
  • Moon TC, St Laurent CD, Morris KE et al. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol. 3(2), 111–128 (2010).
  • Kumar V, Sharma A. Mast cells: emerging sentinel innate immune cells with diverse role in immunity. Mol. Immunol. 48(1–3), 14–25 (2010).
  • Metz M, Siebenhaar F, Maurer M. Mast cell functions in the innate skin immune system. Immunobiology 213(3–4), 251–260 (2008).
  • Ketavarapu JM, Rodriguez AR, Yu JJ et al. Mast cells inhibit intramacrophage Francisella tularensis replication via contact and secreted products including IL-4. Proc. Natl Acad. Sci. USA 105(27), 9313–9318 (2008).
  • Sandig H, Bulfone-Paus S. TLR signaling in mast cells: common and unique features. Front. Immunol. 3, 185 (2012).
  • Mrabet-Dahbi S, Metz M, Dudeck A, Zuberbier T, Maurer M. Murine mast cells secrete a unique profile of cytokines and prostaglandins in response to distinct TLR2 ligands. Exp. Dermatol. 18(5), 437–444 (2009).
  • Yoshioka M, Fukuishi N, Iriguchi S et al. Lipoteichoic acid downregulates FcepsilonRI expression on human mast cells through Toll-like receptor 2. J. Allergy Clin. Immunol. 120(2), 452–461 (2007).
  • Kirshenbaum AS, Swindle E, Kulka M, Wu Y, Metcalfe DD. Effect of lipopolysaccharide (LPS) and peptidoglycan (PGN) on human mast cell numbers, cytokine production, and protease composition. BMC Immunol. 9, 45 (2008).
  • Rodriguez AR, Yu JJ, Guentzel MN et al. Mast cell TLR2 signaling is crucial for effective killing of Francisella tularensis. J. Immunol. 188(11), 5604–5611 (2012).
  • Rocha-De-Souza CM, Berent-Maoz B, Mankuta D, Moses AE, Levi-Schaffer F. Human mast cell activation by Staphylococcus aureus: interleukin-8 and tumor necrosis factor α release and the role of Toll-like receptor 2 and CD48 molecules. Infect. Immun. 76(10), 4489–4497 (2008).
  • Rönnberg E, Guss B, Pejler G. Infection of mast cells with live streptococci causes a toll-like receptor 2- and cell-cell contact-dependent cytokine and chemokine response. Infect. Immun. 78(2), 854–864 (2010).
  • Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD. Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J. Allergy Clin. Immunol. 114(1), 174–182 (2004).
  • Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN. The mast cell tumor necrosis factor α response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc. Natl Acad. Sci. USA 96(14), 8110–8115 (1999).
  • Malaviya R, Ikeda T, Abraham SN, Malaviya R. Contribution of mast cells to bacterial clearance and their proliferation during experimental cystitis induced by type 1 fimbriated E. coli. Immunol. Lett. 91(2–3), 103–111 (2004).
  • Muñoz S, Hernández-Pando R, Abraham SN, Enciso JA. Mast cell activation by Mycobacterium tuberculosis: mediator release and role of CD48. J. Immunol. 170(11), 5590–5596 (2003).
  • Xie X, Wang L, Gong F et al. Intracellular Staphylococcus aureus-induced NF-kB activation and proinflammatory responses of P815 cells are mediated by NOD2. J. Huazhong Univ. Sci. Technol. Med. Sci. 32(3), 317–323 (2012).
  • Kra¨Mer S, Sellge G, Lorentz A et al. Selective activation of human intestinal mast cells by Escherichia coli Hemolysin1. J. Immunol. 181, 1438–1445 (2008).
  • Metz M, Magerl M, Kühl NF, Valeva A, Bhakdi S, Maurer M. Mast cells determine the magnitude of bacterial toxin-induced skin inflammation. Exp. Dermatol. 18(2), 160–166 (2009).
  • Edelson BT, Li Z, Pappan LK, Zutter MM. Mast cell-mediated inflammatory responses require the α 2 β 1 integrin. Blood 103(6), 2214–2220 (2004).
  • Edelson BT, Stricker TP, Li Z et al. Novel collectin/C1q receptor mediates mast cell activation and innate immunity. Blood 107(1), 143–150 (2006).
  • Kashiwakura J, Otani IM, Kawakami T. Monomeric IgE and mast cell development, survival and function. Adv. Exp. Med. Biol. 716, 29–46 (2011).
  • Chen X, Feng BS, Zheng PY et al. Fc γ receptor signaling in mast cells links microbial stimulation to mucosal immune inflammation in the intestine. Am. J. Pathol. 173(6), 1647–1656 (2008).
  • Lundequist A, Pejler G. Biological implications of preformed mast cell mediators. Cell. Mol. Life Sci. 68(6), 965–975 (2011).
  • Di Nardo A, Yamasaki K, Dorschner RA, Lai Y, Gallo RL. Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J. Immunol. 180(11), 7565–7573 (2008).
  • Di Nardo A, Vitiello A, Gallo RL. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol. 170(5), 2274–2278 (2003).
  • von Köckritz-Blickwede M, Goldmann O, Thulin P et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111(6), 3070–3080 (2008).
  • Abel J, Goldmann O, Ziegler C et al. Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake. J. Innate Immun. 3(5), 495–507 (2011).
  • Trivedi NN, Caughey GH. Mast cell peptidases: chameleons of innate immunity and host defense. Am. J. Respir. Cell Mol. Biol. 42(3), 257–267 (2010).
  • Thakurdas SM, Melicoff E, Sansores-Garcia L et al. The mast cell-restricted tryptase mMCP-6 has a critical immunoprotective role in bacterial infections. J. Biol. Chem. 282(29), 20809–20815 (2007).
  • Orinska Z, Maurer M, Mirghomizadeh F et al. IL-15 constrains mast cell-dependent antibacterial defenses by suppressing chymase activities. Nat. Med. 13(8), 927–934 (2007).
  • Wei OL, Hilliard A, Kalman D, Sherman M. Mast cells limit systemic bacterial dissemination but not colitis in response to Citrobacter rodentium. Infect. Immun. 73(4), 1978–1985 (2005).
  • McLachlan JB, Hart JP, Pizzo SV et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat. Immunol. 4(12), 1199–1205 (2003).
  • Chapoval S, Dasgupta P, Dorsey NJ, Keegan AD. Regulation of the T helper cell type 2 (Th2)/T regulatory cell (Treg) balance by IL-4 and STAT6. J. Leukoc. Biol. 87(6), 1011–1018 (2010).
  • Hültner L, Kölsch S, Stassen M et al. In activated mast cells, IL-1 upregulates the production of several Th2-related cytokines including IL-9. J. Immunol. 164(11), 5556–5563 (2000).
  • Stassen M, Arnold M, Hültner L et al. Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J. Immunol. 164(11), 5549–5555 (2000).
  • Stassen M, Müller C, Arnold M et al. IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-κ B is decisively involved in the expression of IL-9. J. Immunol. 166(7), 4391–4398 (2001).
  • Dugas B, Renauld JC, Pène J et al. Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur. J. Immunol. 23(7), 1687–1692 (1993).
  • Grohmann U, Van Snick J, Campanile F et al. IL-9 protects mice from Gram-negative bacterial shock: suppression of TNF-α, IL-12, and IFN-γ, and induction of IL-10. J. Immunol. 164(8), 4197–4203 (2000).
  • Arendse B, Van Snick J, Brombacher F. IL-9 is a susceptibility factor in Leishmania major infection by promoting detrimental Th2/type 2 responses. J. Immunol. 174(4), 2205–2211 (2005).
  • Wu B, Huang C, Kato-Maeda M et al. IL-9 is associated with an impaired Th1 immune response in patients with tuberculosis. Clin. Immunol. 126(2), 202–210 (2008).
  • Hoek KL, Duffy LB, Cassell GH, Dai Y, Atkinson TP. A role for the Mycoplasma pneumoniae adhesin P1 in interleukin (IL)-4 synthesis and release from rodent mast cells. Microb. Pathog. 39(4), 149–158 (2005).
  • Li H, Wang L, Ye L et al. Influence of Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone on mast cells. Med. Microbiol. Immunol. 198(2), 113–121 (2009).
  • Barbuti G, Moschioni M, Censini S, Covacci A, Montecucco C, Montemurro P. Streptococcus pneumoniae induces mast cell degranulation. Int. J. Med. Microbiol. 296(4–5), 325–329 (2006).
  • Granata F, Nardicchi V, Loffredo S et al. Secreted phospholipases A(2): a proinflammatory connection between macrophages and mast cells in the human lung. Immunobiology 214(9–10), 811–821 (2009).
  • RockMJ, DespotJ, LemanskeRF Jr. Mast cell granules modulate alveolar macrophage respiratory-burst activity and eicosanoid metabolism. J. Allergy Clin. Immunol. 86(4 Pt 1), 452–461 (1990).
  • Dabbous MK, North SM, Haney L, Tipton DA, Nicolson GL. Effects of mast cell-macrophage interactions on the production of collagenolytic enzymes by metastatic tumor cells and tumor-derived and stromal fibroblasts. Clin. Exp. Metastasis 13(1), 33–41 (1995).
  • Triggiani M, Gentile M, Secondo A et al. Histamine induces exocytosis and IL-6 production from human lung macrophages through interaction with H1 receptors. J. Immunol. 166(6), 4083–4091 (2001).
  • Ma YJ, Kim CH, Ryu KH et al. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells. BMB Rep. 44(5), 335–340 (2011).
  • Rodriguez AR, Yu JJ, Murthy AK et al. Mast cell/IL-4 control of Francisella tularensis replication and host cell death is associated with increased ATP production and phagosomal acidification. Mucosal Immunol. 4(2), 217–226 (2011).
  • Shelburne CP, Nakano H, St John AL et al. Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host Microbe 6(4), 331–342 (2009).
  • Dawicki W, Jawdat DW, Xu N, Marshall JS. Mast cells, histamine, and IL-6 regulate the selective influx of dendritic cell subsets into an inflamed lymph node. J. Immunol. 184(4), 2116–2123 (2010).
  • Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M. Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur. J. Immunol. 41(7), 1883–1893 (2011).
  • Skokos D, Botros HG, Demeure C et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J. Immunol. 170(6), 3037–3045 (2003).
  • Theiner G, Gessner A, Lutz MB. The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to Th2 polarized immune responses in vivo. Immunobiology 211(6–8), 463–472 (2006).
  • Mazzoni A, Young HA, Spitzer JH, Visintin A, Segal DM. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest. 108(12), 1865–1873 (2001).
  • Nakae S, Suto H, Iikura M et al. Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J. Immunol. 176(4), 2238–2248 (2006).
  • Gonzalez MC, Diaz P, Galleguillos FR, Ancic P, Cromwell O, Kay AB. Allergen-induced recruitment of bronchoalveolar helper (OKT4) and suppressor (OKT8) T-cells in asthma. Relative increases in OKT8 cells in single early responders compared with those in late-phase responders. Am. Rev. Respir. Dis. 136(3), 600–604 (1987).
  • Haczku A, Moqbel R, Jacobson M, Kay AB, Barnes PJ, Chung KF. T-cells subsets and activation in bronchial mucosa of sensitized Brown-Norway rats after single allergen exposure. Immunology 85(4), 591–597 (1995).
  • Kashiwakura J, Yokai H, Saito H, Okayama Y. T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J. Immunol. 173, 5247–5257 (2004).
  • Frandji P, Tkaczyk C, Oskeritzian C, David B, Desaymard C, Mecheri S. Exogenous and endogenous antigens are differentially presented by mast cells to CD4 T lymphocytes. Eur. J. Immunol. 26, 2517–2528 (1996).
  • Ott VL, Cambier JC, Kappler J, Marrack P, Swanson BJ. Mast cell-dependent migration of effector CD8 T cells through production of leukotriene B4. Nat. Immunol. 4, 974–981 (2003).
  • Nie X, Cai G, Zhang W et al. Lipopolysaccharide mediated mast cells induce IL-10 producing regulatory T cells through the ICOSL/ICOS axis. Clin. Immunol. 142(3), 269–279 (2012).
  • Hershko AY, Rivera J. Mast cell and T cell communication; amplification and control of adaptive immunity. Immunol. Lett. 128(2), 98–104 (2010).
  • Valitutti S, Espinosa E. Cognate interactions between mast cells and helper T lymphocytes. Self. Nonself. 1(2), 114–122 (2010).
  • Fox CC, Jewell SD, Whitacre CC. Rat peritoneal mast cells present antigen to a PPD-specific T cell line. Cell. Immunol. 158(1), 253–264 (1994).
  • Dimitriadou V, Mécheri S, Koutsilieris M, Fraser W, Al-Daccak R, Mourad W. Expression of functional major histocompatibility complex class II molecules on HMC-1 human mast cells. J. Leukoc. Biol. 64(6), 791–799 (1998).
  • Poncet P, Arock M, David B. MHC class II-dependent activation of CD4 T cell hybridomas by human mast cells through superantigen presentation. J. Leukocyte Biol. 166, 105–112 (1999).
  • Skokos D, Le Panse S, Villa I et al. Nonspecific B and T cell-stimulatory activity mediated by mast cells is associated with exosomes. Int. Arch. Allergy Immunol. 124(1–3), 133–136 (2001).
  • Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol. Biol. Cell 8(12), 2631–2645 (1997).
  • Kambayashi T, Allenspach EJ, Chang JT et al. Inducible MHC class II expression by mast cells supports effector and regulatory T cell activation. J. Immunol. 182(8), 4686–4695 (2009).
  • Nakae S, Suto H, Kakurai M, Sedgwick JD, Tsai M, Galli SJ. Mast cells enhance T cell activation: importance of mast cell-derived TNF. Proc. Natl Acad. Sci. USA 102(18), 6467–6472 (2005).
  • Salamon P, Shoham NG, Gavrieli R, Wolach B, Mekori YA. Human mast cells release Interleukin-8 and induce neutrophil chemotaxis on contact with activated T cells. Allergy 60(10), 1316–1319 (2005).
  • Inamura N, Mekori YA, Bhattacharyya SP, Bianchine PJ, Metcalfe DD. Induction and enhancement of Fc(epsilon)RI-dependent mast cell degranulation following coculture with activated T cells: dependency on ICAM-1- and leukocyte function-associated antigen (LFA)-1-mediated heterotypic aggregation. J. Immunol. 160(8), 4026–4033 (1998).
  • Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-α. J. Immunol. 167(7), 4008–4016 (2001).
  • Wang SH, Kirwan SM, Abraham SN, Staats HF, Hickey AJ. Stable dry powder formulation for nasal delivery of anthrax vaccine. J. Pharm. Sci. 101(1), 31–47 (2012).
  • McLachlan JB, Shelburne CP, Hart JP et al. Mast cell activators: a new class of highly effective vaccine adjuvants. Nat. Med. 14(5), 536–541 (2008).
  • McGowen AL, Hale LP, Shelburne CP, Abraham SN, Staats HF. The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine 27(27), 3544–3552 (2009).
  • Kaida S, Ohta Y, Imai Y, Ohashi K, Kawanishi M. Compound 48/80 causes oxidative stress in the adrenal gland of rats through mast cell degranulation. Free Radic. Res. 44(2), 171–180 (2010).
  • Menardi AC, Capellini VK, Celotto AC et al. Methylene blue administration in the compound 48/80-induced anaphylactic shock: hemodynamic study in pigs. Acta Cir. Bras. 26(6), 481–489 (2011).
  • St John AL, Chan CY, Staats HF, Leong KW, Abraham SN. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nat. Mater. 11(3), 250–257 (2012).
  • Supajatura V, Ushio H, Nakao A, Okumura K, Ra C, Ogawa H. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J. Immunol. 167(4), 2250–2256 (2001).
  • Masuda A, Yoshikai Y, Aiba K, Matsuguchi T. Th2 cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly regulated by c-Jun N-terminal kinase and p38 pathways. J. Immunol. 169(7), 3801–3810 (2002).
  • Mullaly SC, Kubes P. Mast cell-expressed complement receptor, not TLR2, is the main detector of zymosan in peritonitis. Eur. J. Immunol. 37(1), 224–234 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.